首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clear-fell logging around small headwater streams in Tasmanian wet eucalypt forests was predicted to affect both the retention of leaf litter and the composition and size of leaf packs. Retention structures were surveyed in six natural streams and six streams in forest regenerated 3–5 years after clear-fell and burn logging. Logged streams had more wood, but retained less leaves than natural streams, and consequently had fewer and smaller leaf packs. Leaf packs from natural streams contained 200% more leaves, bark and twigs than packs from logged streams. The effect of buoyancy on leaf retention was assessed with release and recapture of marked Eucalyptus obliqua and Nothofagus cunninghamii leaves. Eucalypt leaves were more likely to be trapped by retention structures on the bed of the stream, while smaller, more buoyant N. cunninghamii leaves were mainly trapped by leaf packs. Leaf packs in natural streams were formed on a matrix of small twigs and long strips of bark, shed from the upper branches of mature stringybark eucalypts, while leaf retention was reduced in logged streams because there are no mature trees to provide effective retention structures. Changes to the channel form increase both discharge and sedimentation. These factors have strong implications for downstream nutrient processing and riverine food webs.  相似文献   

2.
1. Understanding relationships between resource and consumer diversity is essential to predicting how changes in resource diversity might affect several trophic levels and overall ecosystem functioning. 2. We tested for the effects of leaf litter species diversity (i.e. litter mixing) on litter mass remaining and macroinvertebrate communities (taxon diversity, abundance and biomass) during breakdown in a detritus‐based headwater stream (North Carolina, U.S.A.). We used full‐factorial analyses of single‐ and mixed‐species litter from dominant riparian tree species with distinct leaf chemistries [red maple (Acer rubrum), tulip poplar (Liriodendron tulipifera), chestnut oak (Quercus prinus) and rhododendron (Rhododendron maximum)] to test for additivity (single‐species litter presence/absence effects) and non‐additivity (emergent effects of litter species interactions). 3. Significant non‐additive effects of litter mixing on litter mass remaining were explained by species composition, but not richness, and litter‐mixing effects were variable throughout breakdown. Specifically, small differences in observed versus expected litter mass remaining were measured on day 14; whereas observed litter mass remaining in mixed‐species leaf packs was significantly higher on day 70 and lower on day 118 than expected from data for single‐species leaf packs. 4. Litter mixing had non‐additive effects on macroinvertebrate community structure. The number of species in litter mixtures (two to four), but not litter species composition, was a significant predictor of the dominance of particular macroinvertebrates (i.e. indicator taxa) within mixed‐species packs. 5. In addition, the presence/absence of high‐ (L. tulipifera) and low‐quality (R. maximum) litter had additive effects on macroinvertebrate taxon richness, abundance and biomass. The presence of L. tulipifera litter had both positive (synergistic) and negative (antagonistic) effects on invertebrate taxon richness, that varied during breakdown but were not related to litter chemistry. In contrast, the presence/absence of L. tulipifera had a negative relationship with total macroinvertebrate biomass (due to low leaf mass remaining when L. tulipifera was present and higher condensed and hydrolysable tannins associated with leaf packs lacking L. tulipifera). Macroinvertebrate abundance was consistently lower when R. maximum was present, which was partially explained by litter chemistry [e.g., high concentrations of lignin, condensed tannins, hydrolysable tannins and total phenolics and high carbon to nutrient (N and P) ratios]. 6. The bottom‐up effects of litter species diversity on stream macroinvertebrates and litter breakdown are different, which suggests that structural attributes of macroinvertebrate communities may only partially explain the effects of litter‐mixing on organic matter processing in streams. In addition, stream macroinvertebrates colonising decomposing litter are influenced by resource diversity as well as resource availability. Broad‐scale shifts in riparian tree species composition will alter litter inputs to streams, and our results suggest that changes in the diversity and availability of terrestrial litter may alter stream food webs and organic matter processing.  相似文献   

3.
Indirect effects of predators on basal resources in allochthonous-based food webs are poorly understood. We investigated indirect effects of predatory brown trout ( Salmo trutta ) on detritus dynamics in southern beech ( Nothofagus spp.) forest streams in New Zealand through predation on the obligate detritivore, Zelandopsyche ingens (Trichoptera, Oeconesidae). Trout presence/absence and Z. ingens density were manipulated in flow-through tanks to investigate the lethal and sub-lethal effects of trout on litter processing by Z. ingens . An experiment that allowed trout access to Z. ingens showed trout predation reduced densities of Z. ingens resulting in slower breakdown of coarse particulate organic matter (CPOM) and reduced production of fine particulate organic matter (FPOM). A second experiment that prevented trout access to Z. ingens , but allowed the transmission of trout cues, resulted in no change in litter processing rates in the presence of trout. Litter processing rates were higher in high Z. ingens density treatments compared to low density treatments. Thus, trout effects on litter processing were due to reduced Z. ingens densities, not trout-induced modifications to Z. ingens feeding behaviour. Field assays of litter processing rates using artificial leaf packs in natural streams showed significant reductions in CPOM loss in trout streams compared to fishless streams. Z. ingens dominated biomass in fishless stream leaf packs, but a facultative shredder, Olinga feredayi , dominated trout stream leaf packs. Thus, the absence of Z. ingens drove differences in processing rates between trout and fishless streams and the indirect effects of trout on litter processing observed in mesocosms were evident in complex, natural food webs. Overall our study provides evidence that predators can influence resource dynamics in donor-controlled food webs through their effects on consumers.  相似文献   

4.
  • 1 Leaf litter processing rates and macroinvertebrate shredder assemblages in leaf packs were compared in four streams on the Allegheny plateau in the central Appalachian Mountains, U.S.A.; these streams were characterized by different bedrock geology and streamwater pH.
  • 2 Leaf litter processing rates were fastest in the neutral streams, slowest in the acidic stream, and intermediate in the most alkaline stream.
  • 3 Slower processing rates in the acidic stream were associated with lower total shredder biomass, made up predominantly by small leuctrid and nemourid stoneflies.
  • 4 The differences in processing rates between the more alkaline stream and the neutral streams were not associated with differences in shredder biomass, but appeared to be related to taxonomic differences in the shredder assembiages. Insects were dominant in the neutral streams, and amphipods were dominant in the more alkaline stream.
  相似文献   

5.
1. Of the relatively few studies that have examined consequences of amphibian declines on stream ecosystems, virtually all have focused on changes in algae (or algal‐based food webs) and little is known about the potential effects of tadpoles on leaf decomposition. We compared leaf litter decomposition dynamics in two neotropical streams: one with an intact community of tadpoles (with frogs) and one where tadpoles were absent (frogless) as a result of a fungal pathogen that had driven amphibians locally extinct. The stream with tadpoles contained a diverse assemblage (23 species) of larval anurans, and we identified five species of glass frog (Centrolenidae) tadpoles that were patchily distributed but commonly associated with leaf detritus and organic sediments in pools. The latter reached total densities of 0–318 tadpoles m?2. 2. We experimentally excluded tadpoles from single‐species leaf packs incubated over a 40‐day period in streams with and without frogs. We predicted that decomposition rates would be higher in control (allowing access of tadpoles) treatments in the study stream with frogs than in the frogless stream and, in the stream with frogs, in the control than in the tadpole exclusion treatment. 3. In the stream with frogs, Centrolene prosoblepon and Cochranella albomaculata tadpoles were patchily distributed in leaf packs (0.0–33.3 m?2). In contrast to our predictions, leaf mass loss and temperature‐corrected leaf decomposition rates in control treatments were almost identical in our stream with frogs (41.01% AFDM lost, kdegree day = ?0.028 day?1) and in the frogless stream (41.81% AFDM lost, kdegree day = ?0.027 day?1) and between control and tadpole exclusion treatments within each stream. Similarly, there were no significant differences in leaf pack bacterial biomass, microbial respiration rates or macroinvertebrate abundance between treatments or streams. Invertebrate assemblages on leaf packs were similar between treatments (SIMI = 0.97) and streams (SIMI = 0.95) and were dominated by larval Chironomidae, Simuliidae (Diptera) and larval Anchytarsus spp. (Coleoptera). 4. In contrast to dramatic effects of grazing tadpoles on algal communities observed previously, tadpoles had no major effects on decomposition. While centrolenid tadpoles were common in the stream with frogs, their patchy distribution in both experimental and natural leaf packs suggests that their effects on detrital dynamics and microbes are probably more localised than those of grazing tadpoles on algae.  相似文献   

6.
Rates of leaf litter processing and densities of macroinvertebrates in leaf packs were compared at two sites that differed in catchment logging history. The processing rate of leaves of sugar maple (Acer saccharum Marsh.) was significantly faster in a stream draining a catchment that had been logged about 20 years ago than in one that had been undisturbed for 80 years. The faster processing rate was accompanied by significantly higher leaf pack densities of total macroinvertebrates, shredders, and collector-gatherers. The higher densities of leaf pack macroinvertebrates were apparently a result of differences in tree species between the two catchments. These differences resulted in greater inputs of fast-decomposing leaf litter to the stream draining the disturbed catchment and in smaller amounts of leaf litter remaining in the stream draining the disturbed catchment by spring when this study was conducted. The Unit is jointly sponsored by the West Virginia Department of Natural Resources, West Virginia University, the U.S. Fish and Wildlife Service, and the Wildlife Management Institute. The Unit is jointly sponsored by the West Virginia Department of Natural Resources, West Virginia University, the U.S. Fish and Wildlife Service, and the Wildlife Management Institute.  相似文献   

7.
Mike Dobson 《Hydrobiologia》1991,222(1):19-28
Aggregation of leat litter formed against small mesh obstacles — placebo traps — were studied in four streams differing in natural retentiveness and pH. In three of the streams, natural benthic accumulations of leaf litter were available for comparison, and in these the fauna in the plastic traps and the natural accumulations was similar. In two of the streams comparisons were made, in terms of percent composition, between the fauna of the stony benthos and that colonizing plastic traps and leaf-filled mesh bags. In an acid, naturally retentive stream, the fauna of the three treatments was similar, although shredders were relatively more abundant in plastic traps and mesh bags. In a circumneutral, non-retentive stream diversity of taxa was reduced in plastic traps compared with the stony benthos, and in mesh bags compared with plastic traps. Numbers of animals per g of leaf litter were similar in plastic traps and mesh bags in the retentive stream. In the non-retentive stream, however, there were fewer animals in mesh bags than in the plastic traps. For many purposes, the plastic traps produce leaf packs which closely mimic natural packs, but the results from mesh bags depend on the background retentiveness of the streams in question.  相似文献   

8.
1. To characterise geographic and small scale variation in the structure of macroinvertebrate communities in stream leaf packs, we collected one to three natural leaf pack communities from 119 reference streams in the Fraser River Basin and quantified their variability and correlation with aspects of the stream environment at several scales. We also sampled leaf packs in 19 test streams in the same geographic area exposed to stressors (nine logged, seven farmed, three mined catchments) to evaluate the leaf pack community as a tool for bioassessment. 2. There was substantial variation in the composition of invertebrate communities in leaf packs among reference streams of the Fraser River Basin. Capnia and Zapada (stoneflies), Baetis and Ephemerella (mayflies) and Tvetnia (midge) were the most common taxa found in the leaf packs. There were three types of assemblages identified by non‐metric multidimensional scaling; Capnia, Baetis and Ephemerella communities. 3. Leaf pack communities from the 19 test streams were plotted on a non‐metric multidimensional scaling ordination of the reference communities, and 14 of 19 sites fell outside the 80% confidence ellipse of the reference sites, including eight of nine logged, four of seven farmed and one of three mined catchments. Most of these streams plotted on the ordination near the Ephemerella reference communities. Reference stream communities had a similar number of genera per leaf pack (12.0) and genera per site (18.7) as the test streams (12.6 genera per leaf pack and 18.7 genera per site). Among the test sites, the farmed catchments had higher genera per leaf pack (17.8) and genera per site (21.9) than either the logged (11.5 genera per leaf pack; 19.9 genera per site) or mined (3.4 genera per leaf pack; 7.7 genera per site) catchments. 4. Heterogeneity of leaf pack communities within a site decreased as the number of genera found at the site increased. This was determined by allometric regression of the number of genera found at a site on the maximum number of genera possible, given the average number found per leaf pack. 5. There was a significant relationship between the composition of the leaf pack invertebrate community and stream geography (latitude, longitude, altitude, stream order). Canonical correspondence analysis showed differences among ‘big river’, ‘mountain stream’ and ‘southern’ communities. 6. There was no relationship between the composition of the leaf pack invertebrate community and stream channel and flow characteristics (bank dimensions, flow, slope). There was a significant relationship between the composition of the leaf pack invertebrate community and water quality of the stream (oxygen, nitrogen, phosphorus, conductivity, pH, temperature). ‘Cold, oxygen rich water’ communities were distinguishable from communities in streams with warmer, lower oxygen concentration. ‘High nutrient water’ communities were also distinct from communities in low nutrient streams. There was no relationship between the composition of the leaf pack invertebrate community and the nature of the leaf pack itself (i.e. morphology, decomposition, coniferous needle content). 7. Invertebrate communities in leaf packs show substantial, interpretable variation among reference streams. They are sensitive to human stressors at a landscape scale such as forestry and agriculture. Their diversity and composition varies at different spatial scales in a way that is at least partially explained by the environment of the stream and its catchment area.  相似文献   

9.
  1. We investigated how compositional differences in riparian leaf litter derived from burned and undisturbed forests influenced leaf breakdown and macroinvertebrate communities using experimental mixed-species leaf packs in boreal headwater streams. Leaf pack mixtures simulating leaf litter from dominant riparian woody-stem species in burned and undisturbed riparian zones were incubated in two references and two fire-disturbed streams for 5 weeks prior to measuring temperature-corrected breakdown rates and macroinvertebrate community composition, richness, and functional metrics associated with decomposers such as shredder abundance and % shredders.
  2. Leaf litter breakdown rates were higher and had greater variability in streams bordered by reference riparian forests than in streams where riparian forests had been burned during a wildfire. Streams bordered by fire disturbance showed significant effects of litter mixture on decomposition rates, observed as significantly higher decomposition rates of a fire-simulated leaf mixture compared to all other mixtures.
  3. Variation among sites was higher than variation among litter mixtures, especially for macroinvertebrate community composition. In general, fire-simulated leaf mixtures had greater shredder abundances and proportions, but lower overall macroinvertebrate abundance; however, the shredder abundance trend was not consistent across all leaf mixtures at each stream.
  4. These results show that disturbance-driven riparian forest condition and resulting composition of leaf subsidies to streams can influence aquatic invertebrate community composition and their function as decomposers. Therefore, if one of the primary goals of modern forest management is to emulate natural disturbance patterns, boreal forest managers should adapt silvicultural practices to promote leaf litter input that would arise post-fire, thereby supporting stream invertebrate communities and their function.
  相似文献   

10.
Lecerf A  Dobson M  Dang CK  Chauvet E 《Oecologia》2005,146(3):432-442
Riparian vegetation is closely connected to stream food webs through input of leaf detritus as a primary energy supply, and therefore, any alteration of plant diversity may influence aquatic ecosystem functioning. We measured leaf litter breakdown rate and associated biological parameters in mesh bags in eight headwater streams bordered either with mixed deciduous forest or with beech forest. The variety of leaf litter types in mixed forest results in higher food quality for large-particle invertebrate detritivores (‘shredders’) than in beech forest, which is dominated by a single leaf species of low quality. Breakdown rate of low quality (oak) leaf litter in coarse mesh bags was lower in beech forest streams than in mixed forest streams, a consequence of lower shredder biomass. In contrast, high quality (alder) leaf litter broke down at similar rates in both stream categories as a result of similar shredder biomass in coarse mesh bags. Microbial breakdown rate of oak and alder leaves, determined in fine mesh bags, did not differ between the stream categories. We found however aquatic hyphomycete species richness on leaf litter to positively co-vary with riparian plant species richness. Fungal species richness may enhance leaf litter breakdown rate through positive effects on resource quality for shredders. A feeding experiment established a positive relationship between fungal species richness per se and leaf litter consumption rate by an amphipod shredder (Gammarus fossarum). Our results show therefore that plant species richness may indirectly govern ecosystem functioning through complex trophic interactions. Integrating microbial diversity and trophic dynamics would considerably improve the prediction of the consequences of species loss.  相似文献   

11.
Leaf decomposition in an experimentally acidified stream channel   总被引:3,自引:2,他引:1  
Decomposition of Alnus rugosa and Myrica Gale leaves immersed in artificial stream channels fed by a small headwater creek was followed over a three month period. At the end of experiment, remaining weights of both leaf types confined in litter bags were significantly higher after immersion in experimentally acidified water (pH 4.0) than when immersed in control water (pH 6.2–7.0). For both types of leaves and for all sampling times, there was generally no difference in the C:N ratios between leaves in acidified and those in control water. In control water, oxygen uptake by microorganism on A. rugosa leaves was significantly higher after 46 days of immersion, whereas differences between treatments appeared only after 69 days for M. Gale leaves. Transfer of A. rugosa leaves from acid to control water led to a rapid increase in microbial activity; this increased activity was reflected in a fast weight loss of the leaves. For both leaf types, total numbers of macroinvertebrates were usually higher in litter bags immersed in control water. Macroinvertebrates colonizing the litter bags were mainly collector-gatherers: Chironomidae were numerically dominant in control leaf packs whereas Oligochaeta dominated in acid leaf packs. Macroinvertebrate biomass in M. Gale litter was higher in control than in acidified water, which contrasted with macroinvertebrate biomass in A. rugosa leaf packs which was not significantly different between treatments. Macroinvertebrate contribution to the breakdown of leaf litter was thus considered less important than the microbial contribution. This study demonstrated that decomposition of leaf litter in acidic headwater streams can be seriously reduced, mainly as a result of a lower microbial activity.  相似文献   

12.
1. We examined the relative importance of litter quality and stream characteristics in determining decomposition rate and the macroinvertebrate assemblage living on autumn‐shed leaves. 2. We compared the decomposition rates of five native riparian tree species (Populus fremontii, Alnus oblongifolia, Platanus wrightii, Fraxinus velutina and Quercus gambelii) across three south‐western streams in the Verde River catchment (Arizona, U.S.A.). We also compared the decomposition of three‐ and five‐species mixtures to that of single species to test whether plant species diversity affects rate. 3. Decomposition rate was affected by both litter quality and stream. However, litter quality accounted for most of the variation in decomposition rates. The relative importance of litter quality decreased through time, explaining 97% of the variation in the first week but only 45% by week 8. We also found that leaf mixtures decomposed more quickly than expected, when all the species included were highly labile or when the stream environment led to relatively fast decomposition. 4. In contrast to decomposition rate, differences in the invertebrate assemblage were more pronounced across streams than across leaf litter species within a stream. We also found significant differences between the invertebrate assemblage colonising leaf mixtures compared with that colonising pure species litter, indicating non‐additive properties of litter diversity on stream invertebrates. 5. This study shows that leaf litter diversity has the capacity to affect in‐stream decomposition rates and stream invertebrates, but that these effects depend on both litter quality and stream characteristics.  相似文献   

13.
Processing of maple leaf (Acer saccharum Marsh) packs, their colonization by invertebrates and nutrient dynamics in leaves were investigated in a forested reach and agricultural reach of Canagagigue Creek, Ontario. Shredders, Pycnopsyche, and collectors, Ephemerella subvaria, Stenonema vicarium and Baetis were significantly more numerous in packs at the forest site than in packs at the agricultural site, whereas filter feeders, especially blackflies, were significantly more numerous in packs at the agricultural site. Weight loss of litter packs was nearly equivalent at the two sites. However, there were major differences in the mechanism of processing between the sites. Physical abrasion and microbial activity governed weight loss of maple leaf packs at the agricultural site, whereas processing was governed mainly by microbial and invertebrate activity and, to a much lesser extent, by physical abrasion at the forest site. Both shredders and collector species played an important role in the processing of leaf material at the forest site. Greater uptake of N and P (P<0.05 in spring) and higher C concentrations were observed in leaf packs at the forest site than the agricultural site. Therefore, the results support the concept of retention of nutrients in forested areas and their export in deforested (agricultural) areas. Findings also indicated that the processing of leaf litter is not an efficient means of monitoring changes in stream ecosystems since leaf processing is affected by many factors, particularly physical abrasion.  相似文献   

14.
Leaf breakdown in streams is affected by several factors, such as leaf characteristics, water chemistry, microbial activity, and abundance of shredders. In turn, shredders may be resource-controlled. We hypothesized that the size of litter patches affects leaf breakdown, because large patches should be stable over time and therefore harbor high densities of shredders. We selected litter patches (area 0.25–10 m2) in 10 pools of three first-order streams (Manaus, Brazil). We installed 10 leaf packs of Mabea speciosa (Euphorbiaceae) in each patch, and sampled one after 1 day and three after 5, 19, and 28 days. The leaf packs were quickly colonized by the shredding caddisflies Triplectides and Phylloicus. The leaf breakdown rate (mean k = 0.026 ± 0.0015 SE) was high and similar to values reported for other tropical and temperate streams, although much higher than values reported for the adjacent Cerrado biome. Assemblage composition varied over time, but was not related to the size of litter patches. Contrary to our hypothesis, litter patch area did not affect breakdown rates (r 2 = 0.012, P = 0.766) or abundance of shredders after 5, 19, and 28 days (r 2 < 0.243, P > 0.147). We found, however, a positive relationship between the abundance of tropical shredders and leaf breakdown after 19 days (r 2 = 0.572, P = 0.011), suggesting that shredders play an important role in leaf breakdown in these headwater streams. Our study indicates that leaf breakdown rates in tropical streams are variable and can be as high as those of temperate streams.  相似文献   

15.
1. Lowland tropical streams have a chemically diverse detrital resource base, where leaf quality could potentially alter the effect of high nutrient concentrations on leaf breakdown. This has important implications given the extent and magnitude of anthropogenic nutrient loading to the environment. 2. Here, we examine if leaf quality (as determined by concentrations of cellulose, lignin and tannins) mediates the effects of high ambient phosphorus (P) concentration on leaf breakdown in streams of lowland Costa Rica. We hypothesised that P would have a stronger effect on microbial and insect processing of high‐ than of low‐quality leaves. 3. We selected three species that represented extremes of quality as measured in leaves of eight common riparian species. Species selected were, from high‐ to low‐quality: Trema integerrima > Castilla elastica > Zygia longifolia. We incubated single‐species leaf packs in five streams that had natural differences in ambient P concentration (10–140 μg soluble reactive phosphorus (SRP) L?1), because of variable inputs of solute‐rich groundwater and also in a stream that was experimentally enriched with P (approximately 200 μg SRP L?1). 4. The breakdown rate of all three species varied among the six streams: T. integerrima (k‐values range: 0.0451–0.129 day?1); C. elastica (k‐values range: 0.0064–0.021 day?1); and Z. longifolia (k‐values range: 0.002–0.008 day?1). Both ambient P concentration and flow velocity had significant effects on the breakdown rate of the three species. 5. Results supported our initial hypothesis that litter quality mediates the effect of high ambient P concentration on leaf processing by microbes and insects. The response of microbial respiration, fungal biomass and invertebrate density to high ambient P concentration was greater in Trema (high quality) than in Castilla or Zygia (low quality). Variation in flow velocity, however, confounded our ability to determine the magnitude of stimulation of breakdown rate by P. 6. Cellulose and lignin appeared to be the most important factors in determining the magnitude of P‐stimulation. Surprisingly, leaf secondary compounds did not have an effect. This contradicts predictions made by other researchers, regarding the key role of plant secondary compounds in affecting leaf breakdown in tropical streams.  相似文献   

16.
1. The organic matter dynamics of streams dominated by herbs and grass on their banks are poorly understood, despite the fact that such streams are common worldwide. Further, herbs and grasses can provide large quantities of detritus to stream food webs, and particularly small streams can be heavily shaded by overhanging vegetation, perhaps limiting in‐stream primary production. 2. We quantified the standing crop of edge vegetation and associated macroinvertebrate communities along three headwater streams with herbaceous and grass riparian vegetation on agricultural land in the Piedmont of Maryland, U.S.A., measured the decomposition of four common species of herbs and grasses using experimental leaf packs, and removed edge vegetation experimentally to determine the effect of shading on benthic algal production. 3. Large standing crops of plant material (average range: 68–276 g ash‐free dry mass per m−2), composed largely of monocotyledons, were found at all three study streams. These values are similar to those for coarse particulate organic matter in deciduous forested streams in the eastern U.S.A. In addition, diverse assemblages of shredding macroinvertebrates were observed at all three study sites. 4. Decomposition of the herbs was faster than that of the grasses, and both decomposed faster than most deciduous tree leaf litter. The decomposition rates of the herbs and grasses were significantly related to leaf quality as measured by leaf nitrogen content. Macroinvertebrate shredders colonized all experimental leaf packs, and the colonization of the herbs was faster than that of the grasses. 5. The accrual of chlorophyll‐a after the removal of shading vegetation was faster than that measured prior to removal as well as that in an unmanipulated control reach. 6. Given that the standing crop of organic matter in streams with herbs and grass along their banks was similar to that in forested streams, that the organic matter was rich in nitrogen and used by detritivores, and riparian shading limited algal growth, we suggest that herbaceous and grass plant material may be an important allochthonous food resource in such systems.  相似文献   

17.
Input, storage, export potential, and system-level processing of coarse organic matter were investigated in the intermittent streams that drain the Bear Brook Watershed in Maine (BBWM). BBWM is a paired catchment study investigating ecosystem effects of atmospheric N and S deposition. We predicted that the increased N loading to the treatment catchment would elevate input of organic matter, result in higher levels of coarse organic matter biomass, and increase litter processing rates in the treatment stream relative to the reference stream. We found that the streams draining BBWM did not have statistically different coarse organic matter input, biomass, or processing rates and we found only modest differences in export potential. System-level processing rates for maple (Acer spp.) litter were similar to rates previously quantified using litterbag methods. However, system-level processing rates for American beech (Fagus grandifolia) litter were an order of magnitude faster than rates measured with litterbags. This difference was likely due to movements of these leaves from riffle/runs and pools into debris dams, rather than differences in measurements of leaf tissue processing rates between methods. Organic matter dynamics of the intermittent streams at BBWM were similar to other forested, headwater streams. Our results indicate that the long-term N manipulation experiment at BBWM has not altered input, storage or processing of coarse organic matter in the treatment stream. Physical characteristics of these stream ecosystems appear to regulate organic matter dynamics rather than differences in nutrient chemistry.  相似文献   

18.
19.
1. Large-scale invasions of riparian trees can alter the quantity and quality of allochthonous inputs of leaf litter to streams and thus have the potential to alter stream organic matter dynamics. Non-native saltcedar ( Tamarix sp.) and Russian olive ( Elaeagnus angustifolia ) are now among the most common trees in riparian zones in western North America, yet their impacts on energy flow in streams are virtually unknown.
2. We conducted a laboratory feeding experiment to compare the growth of the aquatic crane fly Tipula (Diptera: Tipulidae) on leaf litter from native cottonwood ( Populus ) and non-native Tamarix and Elaeagnus . Tipula showed positive growth on leaf litter of all three species; however, after 7 weeks, larvae fed Tamarix leaves averaged 1.7 and 2.5 times the mass of those fed Elaeagnus and Populus , respectively. Tipula survival was highest on Populus , intermediate on Tamarix and lowest on Elaeagnus .
3. High Tipula growth on Tamarix probably reflects a combination of leaf chemistry and morphology. Conditioned Tamarix leaf litter had intermediate carbon : nitrogen values (33 : 1) compared to Populus (40 : 1) and Elaeagnus (26 : 1), and it had intermediate proportions of structural carbon (42%) compared to Elaeagnus (57%) and Populus (35%). Tamarix leaves are also relatively small and possibly more easily ingested by Tipula than either Elaeagnus or Populus .
4. Field surveys of streams in the western U.S.A. revealed that Tamarix and Elaeagnus leaf packs were rare compared to native Populus , probably due to the elongate shape and small size of the non-native leaves. Thus we conclude that, in general, the impact of non-native riparian invasion on aquatic shredders will depend not only on leaf decomposition rate and palatability but also on rates of leaf litter input to the stream coupled with streambed retention and subsequent availability to consumers.  相似文献   

20.
Continuing high rates of acidic deposition in the eastern United States may lead to long-term effects on stream communities, because sensitive catchments are continuing to lose anions and cations. We conducted a two-year study of the effects of pH and associated water chemistry variables on detrital processing in three streams with different bedrock geology in the Monongahela National Forest, West Virginia. We compared leaf pack processing rates and macroinvertebrate colonization and microbial biomass (ATP concentration) on the packs in the three streams. Breakdown rates of red maple and white oak leaf packs were significantly lower in the most acidic stream. The acidic stream also had significantly lower microbial and shredder biomass than two more circumneutral streams. Shredder composition differed among streams; large-particle detritivores dominated the shredder assemblages of the two circumneutral streams, and smaller shredders dominated in the acidic stream. Within streams, processing rates for three leaf species were not significantly different between the two years of the study even though invertebrate and microbial communities were different in the two years. Thus, macroinvertebrate and microbial communities differed both among streams that differed in their capacity to buffer the effects of acidic precipitation and among years in the same stream; these differences in biotic communities were not large enough to affect rates of leaf processing between the two years of the study, but they did significantly affect processing rates between acidic and circumneutral streams.The Unit is jointly sponsored by the National Biological Service, the West Virginian Division of Natural Resources, West Virginia University, and the Wildlife Management Institute.The Unit is jointly sponsored by the National Biological Service, the West Virginian Division of Natural Resources, West Virginia University, and the Wildlife Management Institute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号