首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human alpha1,3 fucosyltransferases (FucTs) contain four highly conserved cysteine (Cys) residues, in addition to a free Cys residue that lies near the binding site for GDP-fucose (Holmes, E. H., Xu, Z. , Sherwood, A. L., and Macher, B. A. (1995) J. Biol. Chem. 270, 8145-8151). The participation of the highly conserved Cys residues in disulfide bonds and their functional significance were characterized by mass spectrometry (MS) analyses and site-directed mutagenesis, respectively. Among the human FucTs is a subset of enzymes (FucT III, V, and VI) having highly homologous sequences, especially in the catalytic domain, and Cys residues in FucT III and V were characterized. The amino acid sequence of FucT III was characterized. Peptides containing the four conserved Cys residues were detected after reduction and alkylation, and found to be involved in disulfide bonds. The disulfide bond pattern was characterized by multiple stage MS analysis and the use of Glu-C protease and MS/MS analysis. Disulfide bonds in FucT III occur between Cys residues (Cys(81) to Cys(338) and Cys(91) to Cys(341)) at the N and C termini of the catalytic domain, bringing these ends close together in space. Mutagenesis of highly conserved Cys residues to Ser in FucT V resulted in proteins lacking enzymatic activity. Three of the four mutants have molecular weights similar to wild type enzyme and maintained an ability to bind GDP, whereas the other (Cys(104)) produced a series of lower molecular weight bands when characterized by Western blot analysis, and did not bind GDP. FucTs have highly conserved, potential N-linked sites, and our mass spectrometry analyses demonstrated that both N-linked sites are modified with oligosaccharides.  相似文献   

2.

Comparative sequence analyses have identified highly conserved genomic DNA sequences, including noncoding sequences, between humans and other species. By performing whole-genome comparisons of human and mouse, we have identified 611 conserved noncoding sequences longer than 500 bp, with more than 95% identity between the species. These long conserved noncoding sequences (LCNS) include 473 new sequences that do not overlap with previously reported ultraconserved elements (UCE), which are defined as aligned sequences longer than 200 bp with 100% identity in human, mouse, and rat. The LCNS were distributed throughout the genome except for the Y chromosome and often occurred in clusters within regions with a low density of coding genes. Many of the LCNS were also highly conserved in other mammals, chickens, frogs, and fish; however, we were unable to find orthologous sequences in the genomes of invertebrate species. In order to examine whether these conserved sequences are functionally important or merely mutational cold spots, we directly measured the frequencies of ENU-induced germline mutations in the LCNS of the mouse. By screening about 40.7 Mb, we found 35 mutations, including mutations at nucleotides that were conserved between human and fish. The mutation frequencies were equivalent to those found in other genomic regions, including coding sequences and introns, suggesting that the LCNS are not mutational cold spots at all. Taken together, these results suggest that mutations occur with equal frequency in LCNS but are eliminated by natural selection during the course of evolution.

  相似文献   

3.
Comparative sequence analyses have identified highly conserved genomic DNA sequences, including noncoding sequences, between humans and other species. By performing whole-genome comparisons of human and mouse, we have identified 611 conserved noncoding sequences longer than 500 bp, with more than 95% identity between the species. These long conserved noncoding sequences (LCNS) include 473 new sequences that do not overlap with previously reported ultraconserved elements (UCE), which are defined as aligned sequences longer than 200 bp with 100% identity in human, mouse, and rat. The LCNS were distributed throughout the genome except for the Y chromosome and often occurred in clusters within regions with a low density of coding genes. Many of the LCNS were also highly conserved in other mammals, chickens, frogs, and fish; however, we were unable to find orthologous sequences in the genomes of invertebrate species. In order to examine whether these conserved sequences are functionally important or merely mutational cold spots, we directly measured the frequencies of ENU-induced germline mutations in the LCNS of the mouse. By screening about 40.7 Mb, we found 35 mutations, including mutations at nucleotides that were conserved between human and fish. The mutation frequencies were equivalent to those found in other genomic regions, including coding sequences and introns, suggesting that the LCNS are not mutational cold spots at all. Taken together, these results suggest that mutations occur with equal frequency in LCNS but are eliminated by natural selection during the course of evolution.  相似文献   

4.
Coronavirus envelope (E) proteins play an important, not fully understood role(s) in the virus life cycle. All E proteins have conserved cysteine residues located on the carboxy side of the long hydrophobic domain, suggesting functional significance. In this study, we confirmed that mouse hepatitis coronavirus A59 E protein is palmitoylated. To understand the role of the conserved residues and the necessity of palmitoylation, three cysteines at positions 40, 44, and 47 were changed singly and in various combinations to alanine. Double- and triple-mutant E proteins resulted in decreased virus-like particle output when coexpressed with the membrane (M) protein. Mutant E proteins were also studied in the context of a full-length infectious clone. Single-substitution viruses exhibited growth characteristics virtually identical to those of the wild-type virus, while the double-substitution mutations gave rise to viruses with less robust growth phenotypes indicated by smaller plaques and decreased virus yields. In contrast, replacement of all three cysteines resulted in crippled virus with significantly reduced yields. Triple-mutant viruses did not exhibit impairment in entry. Mutant E proteins localized properly in infected cells. A comparison of intracellular and extracellular virus yields suggested that release is only slightly impaired. E protein lacking all three cysteines exhibited an increased rate of degradation compared to that of the wild-type protein, suggesting that palmitoylation is important for the stability of the protein. Altogether, the results indicate that the conserved cysteines and presumably palmitoylation are functionally important for virus production.  相似文献   

5.
We have discovered a family of small secreted proteins in Homo sapiens and Mus musculus. The IGF-like (IGFL) genes encode proteins of approximately 100 amino acids that contain 11 conserved cysteine residues at fixed positions, including two CC motifs. In H. sapiens, the family is composed of four genes and two pseudogenes that are referred as IGFL1 to IGFL4 and IGFL1P1 and IGFL1P2, respectively. Human IGFL genes are clustered together on chromosome 19 within a 35-kb interval. M. musculus has a single IGFL family member that is located on chromosome 7. Further, evolutionary analysis shows a lack of direct orthology between any of the four human members and the mouse gene. This relationship between the mouse and the human family members suggests that the multiple members in the human complement have arisen from recent duplication events that appear limited to the primate lineage. Structural considerations and sequence comparisons would suggest that IGFL proteins are distantly related to the IGF superfamily of growth factors. IGFL mRNAs display specific expression patterns; they are expressed in fetal tissues, breast, and prostate, and in many cancers as well, and this pattern is consistent with that of the IGF family members.  相似文献   

6.
We have evaluated the roles of key amino acids to the action of the natural inhibitor chagasin of papain-family cysteine peptidases. A W93A substitution decreased inhibitor affinity for human cathepsin L 100-fold, while substitutions of T31 resulted in 10-100-fold increases in the K(i) for cruzipain of Trypanosoma cruzi. A T31A/T32A double mutant had increased affinity for cathepsin L but not for cruzipain, while the T31-T32 deletion drastically affected inhibition of both human and parasite peptidases. These differential effects reflect the occurrence of direct interactions between chagasin and helix 8 of cathepsin L, interactions that do not occur with cruzipain.  相似文献   

7.
Tom Tang Y  Emtage P  Funk WD  Hu T  Arterburn M  Park EE  Rupp F 《Genomics》2004,83(4):727-734
We have discovered a family of small secreted proteins in Homo sapiens and Mus musculus using a novel database searching strategy. The family is composed of five highly homologous genes referred to as TAFA-1 to -5. The TAFA genes encode proteins of approximately 100 amino acids that contain conserved cysteine residues at fixed positions. TAFA-1 to -4 are more closely related to each other than to TAFA-5, in which a conserved motif including CC in TAFA-1 to -4 is not present. In H. sapiens, TAFA-3 has two isoforms formed by alternative splicing. Sequence homology analyses reveal that TAFA proteins appear distantly related to MIP-1alpha, a member of the CC-chemokine family. TAFA mRNAs are highly expressed in specific brain regions, with little expression seen in other tissues.  相似文献   

8.
The Bcl-2 oncoprotein is an integral membrane protein localized primarily to the outer membrane of the mitochondria. The precise molecular mechanism responsible for the antiapoptotic action of Bcl-2 remains unknown. Two cysteine residues are found in Bcl-2 and these residues are well-conserved across species. The first cysteine (cys(155)) is located in the alpha5 domain, a region important for the ion channel properties of Bcl-2, while the second cysteine (cys(226)) is located in the carboxyl-terminal membrane anchor domain. In this study, we found that replacement of both cysteines with serine residues generated a mutant protein that retained the ability to homodimerize and heterodimerize with proapoptotic Bax protein in vitro. In whole cells, the mutant protein efficiently heterodimerized with Bax, but exhibited impaired homodimerizationrelative to wild-type Bcl-2. The mutant protein was also less efficient than wild-type Bcl-2 at suppressing caspase activation, DNA fragmentation, and loss of viability during IL-3 withdrawal-induced apoptosis. Together, the data indicate that the cysteine residues in Bcl-2 contribute, but are not absolutely essential, to the ability of Bcl-2 to homodimerize, heterodimerize with Bax, and suppress apoptosis.  相似文献   

9.
10.
Hepatitis C virus glycoprotein E2 contains 18 conserved cysteines predicted to form nine disulfide pairs. In this study, a comprehensive cysteine-alanine mutagenesis scan of all 18 cysteine residues was performed in E1E2-pseudotyped retroviruses (HCVpp) and recombinant E2 receptor-binding domain (E2 residues 384 to 661 [E2(661)]). All 18 cysteine residues were absolutely required for HCVpp entry competence. The phenotypes of individual cysteines and pairwise mutation of disulfides were largely the same for retrovirion-incorporated E2 and E2(661), suggesting their disulfide arrangements are similar. However, the contributions of each cysteine residue and the nine disulfides to E2 structure and function varied. Individual Cys-to-Ala mutations revealed discordant effects, where removal of one Cys within a pair had minimal effect on H53 recognition and CD81 binding (C486 and C569) while mutation of its partner abolished these functions (C494 and C564). Removal of disulfides at C581-C585 and C452-C459 significantly reduced the amount of E1 coprecipitated with E2, while all other disulfides were absolutely required for E1E2 heterodimerization. Remarkably, E2(661) tolerates the presence of four free cysteines, as simultaneous mutation of C452A, C486A, C569A, C581A, C585A, C597A, and C652A (M+C597A) retained wild-type CD81 binding. Thus, only one disulfide from each of the three predicted domains, C429-C552 (DI), C503-C508 (DII), and C607-C644 (DIII), is essential for the assembly of the E2(661) CD81-binding site. Furthermore, the yield of total monomeric E2 increased to 70% in M+C597A. These studies reveal the contribution of each cysteine residue and the nine disulfide pairs to E2 structure and function.  相似文献   

11.
The G protein-coupled vasopressin V2 receptor (V2 receptor) contains a pair of conserved cysteine residues (C112 and C192) which are thought to form a disulfide bond between the first and second extracellular loops. The conserved cysteine residues were found to be important for the correct formation of the ligand binding domain of some G protein-coupled receptors. Here we have assessed the properties of the V2 receptor after site-directed mutagenesis of its conserved cysteine residues in transiently transfected human embryonic kidney (HEK 293) cells. Mutant receptors (C112S, C112A and C192S, C192A) were non-functional and located mostly in the cell's interior. The conserved cysteine residues of the V2 receptor are thus not only important for the structure of the ligand binding domain but also for efficient intracellular receptor transport. In addition to the functional significance of the conserved cysteine residues, we have also analyzed the defects of two mutant V2 receptors which cause X-linked nephrogenic diabetes insipidus (NDI) by the introduction of additional cysteine residues into the second extracellular loop (mutants G185C, R202C). These mutations are assumed to impair normal disulfide bond formation. Mutant receptor G185C and R202C were efficiently transported to the plasma membrane but were defective in ligand binding. Only in the case of the mutant receptor R202C, the more sensitive adenylyl cyclase activity assay revealed vasopressin-stimulated cAMP formation with a 35-fold increased EC(50) value and with a reduced EC(max), indicating that ligand binding is not completely abolished. Taking the unaffected intracellular transport of both NDI-causing mutant receptors into account, our results indicate that the observed impairment of ligand binding by the additional cysteine residues is not due to the prevention of disulfide bond formation between the conserved cysteine residues.  相似文献   

12.
13.
The roles of two conserved cysteine residues involved in the activation of the adenovirus proteinase (AVP) were investigated. AVP requires two cofactors for maximal activity, the 11-amino acid peptide pVIc (GVQSLKRRRCF) and the viral DNA. In the AVP-pVIc crystal structure, conserved Cys104 of AVP has formed a disulfide bond with conserved Cys10 of pVIc. In this work, pVIc formed a homodimer via disulfide bond formation with a second-order rate constant of 0.12 M(-1) s(-1), and half of the homodimer could covalently bind to AVP via thiol-disulfide exchange. Alternatively, monomeric pVIc could form a disulfide bond with AVP via oxidation. Regardless of the mechanism by which AVP becomes covalently bound to pVIc, the kinetic constants for substrate hydrolysis were the same. The equilibrium dissociation constant, K(d), for the reversible binding of pVIc to AVP was 4.4 microM. The K(d) for the binding of the mutant C10A-pVIc was at least 100-fold higher. Surprisingly, the K(d) for the binding of the C10A-pVIc mutant to AVP decreased at least 60-fold, to 6.93 microM, in the presence of 12mer ssDNA. Furthermore, once the mutant C10A-pVIc was bound to an AVP-DNA complex, the macroscopic kinetic constants for substrate hydrolysis were the same as those exhibited by wild-type pVIc. Although the cysteine in pVIc is important in the binding of pVIc to AVP, formation of a disulfide bond between pVIc and AVP was not required for maximal stimulation of enzyme activity by pVIc.  相似文献   

14.
Steiner S  Born W  Fischer JA  Muff R 《FEBS letters》2003,555(2):285-290
The receptor-activity-modifying protein (RAMP) 1 is a single-transmembrane-domain protein associated with the calcitonin-like receptor (CLR) to reveal a calcitonin gene-related peptide (CGRP) receptor. The extracellular region of RAMP1 contains six conserved cysteines. Here, Cys(27) in myc-tagged human (h) RAMP1 was deleted (hRAMP1Delta1), and Cys(40), Cys(57), Cys(72), Cys(82) and Cys(104) were each replaced by Ala. In COS-7 cells expressing hCLR/myc-hRAMP1Delta1 or -C82A, cell surface expression, [(125)I]halphaCGRP binding and cAMP formation in response to halphaCGRP were similar to those of hCLR/myc-hRAMP1. Cell surface expression of myc-hRAMP1-C72A was reduced to 24+/-7% of myc-hRAMP1, and that of -C40A, -C57A and -C104A was below 10%. [(125)I]halphaCGRP binding of hCLR/myc-hRAMP1-C72A was 13+/-3% of hCLR/myc-hRAMP1 and it was undetectable in hCLR/myc-hRAMP1-C40A-, -C57A- and -C104A-expressing cells. Maximal cAMP stimulation by halphaCGRP in hCLR/myc-hRAMP1-C40A- and -C72A-expressing cells was 14+/-1% and 33+/-2% of that of the hCLR/myc-hRAMP1 with comparable EC(50). But cAMP stimulation was abolished in cells expressing hCLR/myc-hRAMP1-C57A and -C104A. In conclusion, CGRP receptor function was not affected by the deletion of Cys(27) or the substitution of Cys(82) by Ala in hRAMP1, but it was impaired by the substitution of Cys(40), Cys(57), Cys(72) and Cys(104) by Ala. These four cysteines are required for the transport of hRAMP1 together with the CLR to the cell surface.  相似文献   

15.
In metazoa and fungi, the catabolic dissimilation of cysteine begins with its sulfoxidation to cysteine sulfinic acid by the enzyme cysteine dioxygenase (CDO). In these organisms, CDO plays an important role in the homeostatic regulation of steady-state cysteine levels and provides important oxidized metabolites of cysteine such as sulfate and taurine. To date, there has been no experimental evidence for the presence of CDO in prokaryotes. Using PSI-BLAST searches and crystallographic information about the active-site geometry of mammalian CDOs, we identified a total of four proteins from Bacillus subtilis, Bacillus cereus, and Streptomyces coelicolor A3(2) that shared low overall identity to CDO (13 to 21%) but nevertheless conserved important active-site residues. These four proteins were heterologously expressed and purified to homogeneity by a single-step immobilized metal affinity chromatography procedure. The ability of these proteins to oxidize cysteine to cysteine sulfinic acid was then compared against recombinant rat CDO. The kinetic data strongly indicate that these proteins are indeed bona fide CDOs. Phylogenetic analyses of putative bacterial CDO homologs also indicate that CDO is distributed among species within the phyla of Actinobacteria, Firmicutes, and Proteobacteria. Collectively, these data suggest that a large subset of eubacteria is capable of cysteine sulfoxidation. Suggestions are made for how this novel pathway of cysteine metabolism may play a role in the life cycle of the eubacteria that have it.  相似文献   

16.
1. The nature of the subunits in rabbit muscle triose phosphate isomerase has been investigated. 2. Amino acid analyses show that there are five cysteine residues and two methionine residues/subunit. 3. The amino acid sequences around the cysteine residues have been determined; these account for about 75 residues. 4. Cleavage at the methionine residues with cyanogen bromide gave three fragments. 5. These results show that the subunits correspond to polypeptide chains, containing about 230 amino acid residues. The chains in triose phosphate isomerase seem to be shorter than those of other glycolytic enzymes.  相似文献   

17.
Each of two hydrophobic subunits of Na+-translocating NADH:quinone oxidoreductase (NQR), NqrD and NqrE, contain a pair of strictly conserved cysteine residues within their transmembrane alpha-helices. Site-directed mutagenesis showed that substitutions of these residues in NQR of Vibrio harveyi blocked the Na+-dependent and 2-n-heptyl-4-hydroxyquinoline N-oxide-sensitive quinone reductase activity of the enzyme. However, these mutations did not affect the interaction of NQR with NADH and menadione. It was demonstrated that these conserved cysteine residues are necessary for the correct folding and/or the stability of the NQR complex. Mass and EPR spectroscopy showed that NQR from V. harveyi bears only a 2Fe-2S cluster as a metal-containing prosthetic group.  相似文献   

18.
The oxidoreductase ERp57 is a component of the major histocompatibility complex (MHC) class I peptide-loading complex. ERp57 can interact directly with MHC class I molecules, however, little is known about which of the cysteine residues within the MHC class I molecule are relevant to this interaction. MHC class I molecules possess conserved disulfide bonds between cysteines 101-164, and 203-259 in the peptide-binding and alpha3 domain, respectively. By studying a series of mutants of these conserved residues, we demonstrate that ERp57 predominantly associates with cysteine residues in the peptide-binding domain, thus indicating ERp57 has direct access to the peptide-binding groove of MHC class I molecules during assembly.  相似文献   

19.
Hyaluronan synthase (HAS), the enzyme responsible for the production of hyaluronic acid (HA), is a well-conserved membrane-bound protein in both prokaryotes and eukaryotes. This enzyme performs at least six discrete functions in producing a heterodisaccharide polymer of several million molecular weight and extruding it from the cell. Among the conserved motifs and domains within the Class I HAS family are four cysteine residues. Cysteines in many proteins are important in establishing and maintaining tertiary structure or in the coordination of catalytic functions. In the present study we utilized a combination of site-directed mutagenesis, chemical labeling, and kinetic analyses to determine the importance of specific Cys residues for catalysis and structure of the HA synthase from Streptococcus pyogenes (spHAS). The enzyme activity of spHAS was partially inhibited by cysteine-reactive chemical reagents such as N-ethylmaleimide. Quantitation of the number of Cys residues modified by these reagents, using MALDI-TOF mass spectrometry, demonstrated that there are no stable disulfide bonds in spHAS. The six Cys residues of spHAS were then mutated, individually and in various combinations, to serine or alanine. The single Cys-mutants were all kinetically similar to the wild-type enzyme in terms of their V(max) and K(m) values for HA synthesis. The Cys-null mutant, in which all Cys residues were mutated to alanine, retained approximately 66% of wild-type activity, demonstrating that despite their high degree of conservation within the HAS family, Cys residues are not absolutely necessary for HA biosynthesis by the spHAS enzyme.  相似文献   

20.
Mitochondrial complex I exists as a mixture of two inter-convertible forms: active (A) and de-activated (D), the latter being sensitive to SH-modifying compounds. To investigate if the conserved cysteine-rich 11.5 kDa subunit of Neurospora crassa complex I is involved in this process, we subjected the corresponding genomic DNA to site-directed mutagenesis. The four cysteine residues of the subunit were separately substituted with serine residues and the resulting proteins were independently expressed in a null-mutant strain. All of the obtained mutant strains were able to assemble a complex I with similar kinetic properties to those observed in the wild-type enzyme, indicating that none of the cysteine residues of the 11.5 kDa protein is individually relevant for the A/D transition process. Diminished amounts of assembled complex I seem to be the major effect of these specific mutations. The cysteine residues are likely important to the acquisition and stabilization of the correct 11.5 kDa protein conformation and this is reflected in the assembly/stability of complex I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号