首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In a recent publication (Kutschera, 1996), it was reported thatthe cell walls of growing rye coleoptiles exhibit irreversible(plastic) extensibility in a rheological extension test. Basicallysimilar measurements with cell walls of maize coleoptiles hadpreviously shown that the apparent plastic extensibility determinedin this material is in reality due to the slowly reversible(viscoelastic) extensibility of the walls. A recent reinvestigationof this discrepancy showed that rye coleoptile walls also behaveas a perfectly viscoelastic material if precautions are takento prevent measuring artefacts. Similar results were obtainedwith cell walls from the growing zone of various other seedlingorgans (maize mesocotyl, maize root, cucumber hypocotyl). Itis concluded that plastic extensibility has not yet been convincinglydemonstrated by rheological tests that determine the intrinsicmaterial properties of cell walls. Reported changes in mechanicalmaterial properties of cell walls produced by growth-controllingfactors such as auxin or light may generally be attributed tochanges in viscoelasticity which are not directly related tothe chemo-rheological processes controlling wall extension ofgrowing cells. Key words: Cell wall extensibility, extension growth, plastic cell wall extensibility, viscoelastic cell wall extensibility  相似文献   

2.
It has been proposed that spacing between cellulose microfibrils within plant cell walls may be an important determinant of their mechanical properties. A consequence of this hypothesis is that the water content of cell walls may alter their extensibility and that low water potentials may directly reduce growth rates by reducing cell wall spacing. This paper describes a number of experiments in which the water potential of frozen and thawed growing hypocotyls of sunflower (Helianthus annuus L.) were altered using solutions of high molecular weight polyethylene glycol (PEG) or Dextran while their extension under constant stress was monitored using a creep extensiometer (frozen and thawed tissue was used to avoid confounding effects of turgor or active responses to the treatments). Clear reductions in extensibility were observed using both PEG and Dextran, with effects observed in hypocotyl segments treated with PEG 35 000 solutions with osmotic pressures of > or =0.21 MPa suggesting that the relatively mild stresses required to reduce water potentials of plants in vivo by 0.21 MPa may be sufficient to reduce growth rates via a direct effect on wall extensibility. It is noted, therefore, that the water binding capacity of plant cell walls may be of ecophysiological importance. Measurements of cell walls of sunflower hypocotyls using scanning electron microscopy confirmed that treatment of hypocotyls with PEG solutions reduced wall thickness, supporting the hypothesis that the spatial constraint of movement of cellulose microfibrils affects the mechanical properties of the cell wall.  相似文献   

3.
Calcium and the cell wall   总被引:11,自引:5,他引:6  
Abstract. From this brief review it appears that the interactions between calcium ions and cell walls play a key role in plant physiology. Calcium ions are involved in many mechnisms: for example, stabilization of cell wall structures, acidic growth, ion exchange properties, control of the activities of wall enzymes. All these properties originate from the tight binding of calcium ions to the pectins present in the cell walls. The factor most important for controlling wall behaviour is the density of non-diffusible charges and, due to its high affinity, calcium can significantly affect this factor. We also discuss the theoretical ion exchange models in relation to the specific role of calcium ions.  相似文献   

4.
Because of their large sizes and simple shapes, giant‐celled algae have been used to study how the structural and mechanical properties of cell walls influence cell growth. Here we review known relationships between cell wall and cell growth properties that are characteristic of three representative taxa of giant‐celled algae, namely, Valonia ventricosa, internodal cells of characean algae, and Vaucheria frigida. Tip‐growing cells of the genus Vaucheria differ from cells undergoing diffuse growth in V. ventricosa and characean algae in terms of their basic architectures (non‐lamellate vs. multilamellate) and their dependence upon pH and Ca2+ for cell wall extensibility. To further understand the mechanisms controlling cell growth by cell walls, comparative analyses of cell wall structures and/or associated growth modes will be useful. The giant‐celled algae potentially serve as good models for such investigations because of their wide variety of developmental processes and cell shapes exhibited.  相似文献   

5.
The composition of guard cell walls in sugar beet leaves (Beta vulgaris L.) was studied by using histochemical staining and immunocytochemical detection of cell wall antigens. The findings were compared with those in the walls of epidermal and mesophyll cells. Probing of leaf sections with monoclonal antibodies against pectins, terminal fucosyl residues linked alpha-(1-->2) to galactose, beta-(1-->3)-glucans and arabinogalactan-proteins revealed several specific features of guard cells. Pectic epitopes recognized by JIM7 were homogeneously distributed in the wall, whereas pectins recognized by JIM5 were not found in the walls themselves, but were abundant in the cuticular layer. Large amounts of molecules bearing terminal fucose were located predominantly in ventral and lateral guard cell walls. Much smaller amounts were detected in dorsal walls of these cells, as well as in the walls of pavement and mesophyll cells. Conspicuous accumulation of these compounds was observed in the vicinity of the guard cell plasmalemma, whereas labelling was scarce in the areas of the wall adjacent to the cell surface. The presence of callose clearly marked the ventral wall between the recently formed, very young guard cells. Callose also appeared in some mature walls, where it was seen as punctate deposits that probably reflected a specific physiological state of the guard cells. Large amounts of arabinogalactan-proteins were deposited within the cuticle, and smaller amounts of these proteoglycans were also detected in other tissues of the leaf. The histochemical and immunocytochemical structure of the guard cell wall is discussed in the light of its multiple functions, most of which involve changes in cell size and shape.  相似文献   

6.
7.
A central problem in plant biology is how cell expansion is coordinated with wall synthesis. We have studied growth and wall deposition in epidermal cells of dark-grown Arabidopsis hypocotyls. Cells elongated in a biphasic pattern, slowly first and rapidly thereafter. The growth acceleration was initiated at the hypocotyl base and propagated acropetally. Using transmission and scanning electron microscopy, we analyzed walls in slowly and rapidly growing cells in 4-d-old dark-grown seedlings. We observed thick walls in slowly growing cells and thin walls in rapidly growing cells, which indicates that the rate of cell wall synthesis was not coupled to the cell elongation rate. The thick walls showed a polylamellated architecture, whereas polysaccharides in thin walls were axially oriented. Interestingly, innermost cellulose microfibrils were transversely oriented in both slowly and rapidly growing cells. This suggested that transversely deposited microfibrils reoriented in deeper layers of the expanding wall. No growth acceleration, only slow growth, was observed in the cellulose synthase mutant cesA6(prc1-1) or in seedlings, which had been treated with the cellulose synthesis inhibitor isoxaben. In these seedlings, innermost microfibrils were transversely oriented and not randomized as has been reported for other cellulose-deficient mutants or following treatment with dichlorobenzonitrile. Interestingly, isoxaben treatment after the initiation of the growth acceleration in the hypocotyl did not affect subsequent cell elongation. Together, these results show that rapid cell elongation, which involves extensive remodeling of the cell wall polymer network, depends on normal cellulose deposition during the slow growth phase.  相似文献   

8.
Exo- and endo-glucanases mediate specific degradation of cell wall (1,3)(1,4)-beta-D-glucans and these enzymes have been related to auxin-mediated growth and development of cereal coleoptiles. However, their distribution and functions have not been well established in other tissues. In this study the glucanase activities and cell wall autolytic activities of different maize organs were determined. Autolysis assays serve to evaluate the hydrolysis of cell wall polymers in situ by measuring the sugars released from the insoluble cell wall matrix resulting from the action of bound enzymes. Autolytic activities were observed in the cell walls of elongating young leaves, mesocotyl and roots of maize. Wall proteins extracted from all of these structures are enriched in several types of glucanases and other wall polysaccharide hydrolases. These enzymes therefore appear to have a widespread and fundamental role in wall metabolism in growing tissues.  相似文献   

9.
Differential growth of the nodal regions of graviresponding Tradescantia fluminensis (Wandering Jew) was analysed with special respect to the extension-restricting epidermal cells of the opposite growing and growth-inhibited organ flanks. Gravicurvature of horizontally gravistimulated isolated nodes depends on auxin (indolyl-3-acetic acid, IAA) and shows a node-specific profile in which the third node below the tip showed the greatest response. Exogenously supplied gibberellic acid induced no gravitropic growth. Vertically oriented isolated nodes supplied with exogenous IAA showed, on an electron microscopical level, conspicuous membrane invaginations with adjacent wall depositions restricted to the outer tangential epidermal cell walls. Their number was more than doubled by exogenously supplied Ca2+, which inhibited IAA-induced growth. No such changes could be detected in water-incubated segments or inner tissues of IAA-supplied segments. Gravistimulated differential growth of nodes of intact shoots and of nodal segments was characterized by changes similar to the ones induced by exogenous IAA, with greatly increased numbers of wall depositions within the epidermal cells of the growth-inhibited upper organ flank. Similar to the gravistimulated wall depositions, an asymmetric distribution pattern of Ca2+ was detected in the epidermal cell walls employing x-ray energy spectrum analysis (EDX). The results indicate that growth of nodes of Tradescantia fluminensis is regulated via IAA-induced secretion and subsequent infiltration of wall components enabling wall extension. The data support the hypothesis that temporary differential growth during gravicurvature of Tradescantia fluminensis is mediated by the antagonistic effect of Ca(2+)-ions on the infiltration of IAA-induced wall-loosening components into the outer, extension-restricting epidermal walls thereby inhibiting growth.  相似文献   

10.
Liszkay A  Kenk B  Schopfer P 《Planta》2003,217(4):658-667
Hydroxyl radicals (*OH), produced in the cell wall, are capable of cleaving wall polymers and can thus mediate cell wall loosening and extension growth. It has recently been proposed that the biochemical mechanism responsible for *OH generation in the cell walls of growing plant organs represents an enzymatic reaction catalyzed by apoplastic peroxidase (POD). This hypothesis was investigated by supplying cell walls of maize ( Zea mays L.) coleoptiles and sunflower ( Helianthus annuus L.) hypocotyls with external NADH, an artificial substrate known to cause *OH generation by POD in vitro. The effects of NADH on wall loosening, growth, and *OH production in vivo were determined. NADH mediates cell wall extension in vitro and in vivo in an H2O2-dependent reaction that shows the characteristic features of POD. NADH-mediated production of *OH in vivo was demonstrated in maize coleoptiles using electron paramagnetic resonance spectroscopy in combination with a specific spin-trapping reaction. Kinetic properties and inhibitor/activator sensitivities of the *OH-producing reaction in the cell walls of coleoptiles resembled the properties of horseradish POD. Apoplastic consumption of external NADH by living coleoptiles can be traced back to the superimposed action of two enzymatic reactions, a KCN-sensitive reaction mediated by POD operating in the *OH-forming mode, and a KCN-insensitive reaction with the kinetic properties of a superoxide-producing plasma-membrane NADH oxidase the activity of which can be promoted by auxin. Under natural conditions, i.e. in the absence of external NADH, this enzyme may provide superoxide (O2*-) (and H2O2 utilized by POD for) *OH production in the cell wall.  相似文献   

11.
Regulation of cell wall biosynthesis   总被引:5,自引:0,他引:5  
  相似文献   

12.
Guard cells dynamically adjust their shape in order to regulate photosynthetic gas exchange, respiration rates and defend against pathogen entry. Cell shape changes are determined by the interplay of cell wall material properties and turgor pressure. To investigate this relationship between turgor pressure, cell wall properties and cell shape, we focused on kidney‐shaped stomata and developed a biomechanical model of a guard cell pair. Treating the cell wall as a composite of the pectin‐rich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially oriented fibres are critical for opening. We find that the opening dynamics are dictated by the mechanical stress response of the cell wall matrix, and as the turgor rises, the pectinaceous matrix stiffens. We validate these predictions with stomatal opening experiments in selected Arabidopsis cell wall mutants. Thus, using a computational framework that combines a 3D biomechanical model with parameter optimization, we demonstrate how to exploit subtle shape changes to infer cell wall material properties. Our findings reveal that proper stomatal dynamics are built on two key properties of the cell wall, namely anisotropy in the form of hoop reinforcement and strain stiffening.  相似文献   

13.
Streiblová, Eva (Czechoslovak Academy of Sciences, Prague, Czechoslovakia), I. Málek, and K. Beran. Structural changes in the cell wall of Schizosaccharomyces pombe during cell division. J. Bacteriol. 91:428-435. 1966.-Individual stages of growing and dividing cells of Schizosaccharomyces pombe were studied by means of fluorescence and electron microscopy with the use of metal-shadowed isolated walls, replicas, and ultrathin sections. Vegetative cells were found to contain division scars (six at the most); their formation and structure are described. More data on the growth of arthrospores were obtained. New structural observations were made on the architecture of the cell wall (original wall ring, polar cell wall, plug wall band, additional wall ring). Structural changes of cell surfaces and lateral walls during fission are represented schematically to the fourth generation. The question of origin of the septum is discussed, and on this basis the entire structure of the cell wall is interpreted.  相似文献   

14.
A study was made of the properties of a spherical mutant obtained from the E. coli K12 HfrC strain under the effect of N-nitroso-N-methyl-urea. The growth of the mutant of full value media was characterized by a marked reduction of the cell division at the rest phase, but exponential growth phase failed to differ from the growth of the parental strain. Electron microscopic study of surface structures of the mutant cells which grew under physiological conditions permitted to distinguish two types: the first type had a typical structure of the cell wall characteristic of Gram negative microbes; the second type was framed by a bicontour membrane without any distinct structure. The presence of these two types of cells was also confirmed by their different sensitivity to the ionic detergents. On the basis of chemical analysis of peptidoglycan of the cell wall (which was markedly decreased in amount in the mutant cells), and also of the unsually high accumlation of the UDP-precursors of peptidoglycan under conditions of penicillin action it is supposed that normal regulation of metabolism of the cell walls was deranged. Mutation designated by 11rA symbol was plotted by phase PI transduction alongside of strA gene.  相似文献   

15.
The primary cell wall of dicotyledonous plants can be considered as a concentrated polymer assembly, containing in particular polysaccharides among which cellulose and pectins are known to be the major components. In order to understand and control the textural quality of plant-derived foods, it is highly important to elucidate the rheological and microstructural properties of these components, individually and in mixture, in order to define their implication for structural and mechanical properties of primary plant cell wall. In this study, the rheological and microstructural properties of model systems composed of sugar-beet microfibrillated cellulose and HM pectins from various sources, with varied degrees of methylation and containing different amounts of neutral sugar side chains, were investigated. The influence of the presence of calcium and/or sodium ions and the biopolymer concentrations on the properties of the mixed systems were also studied. The characterizations of the mixed system, considered as a simplified model of primary plant cell wall, showed that whatever the structural characteristics of the pectins, the ionic conditions of the medium and the biopolymer concentrations, the gelation of the composite was mainly controlled by cellulose. Thus, the cellulose network would be the principal component governing the mechanical properties of the cell walls. However, the neutral sugar side chains of the pectins seem to play a part in the interactions with cellulose, as shown by the interesting viscoelastic properties of cellulose/apple HM pectins systems. The rigidity of cellulose/pectins composite was strongly influenced by the structural characteristics of pectins. The particular properties of primary plant cell walls would thus result from the solid viscoelastic properties of cellulose, its interactions with pectins according to their structural characteristics (implication of the neutral sugar side chains and the specific potential calcic interactions) and of the distribution of the components in separate phases.  相似文献   

16.
Highly purified cell walls of Chromatium vinosum were isolated by differential centrifugation, with or without Triton X-100 extraction. The isolated material had a protein composition similar to that of cell walls obtained by sucrose density gradient centrifugation. Twenty-two proteins were reproducibly detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A 42-kilodalton protein was shown to account for 65% of the total cell wall protein. The majority of cell wall proteins were solubilized in sodium dodecyl sulfate at room temperature; however, they existed as high-molecular-weight complexes unless heated to 45 degrees C or above. The cell wall contained one heat-modifiable protein which migrated with an apparent molecular weight of 37,400 when solubilized at 70 degrees C or below, but which migrated with an apparent molecular weight of 52,500 if solubilized at 100 degrees C. The electrophoretic mobility of three proteins was modified by 2-mercaptoethanol. The majority of C. vinosum cell wall proteins had isoelectric points between pH 4.5 and 5.5, and the 42-kilodalton protein focused at pH 4.9. No proteins were detected which were analogous to the lipoprotein or peptidoglycan-associated proteins of the Enterobacteriaceae. Nearest-neighbor analysis with a reducible, cross-linking reagent indicated that three proteins, including the 42-kilodalton protein, associated with themselves. Most of the cell wall proteins were partially accessible to proteases in both intact cells and isolated cell walls. Protease treatment of the whole cell or isolated cell wall digested approximately an 11,000-molecular-weight portion of the 42-kilodalton protein.  相似文献   

17.
Plant development results from controlled cell divisions, structural modifications, and reorganizations of the cell wall. Thereby, regulation of cell wall behaviour takes place at multiple length scales involving compositional and architectural aspects in addition to various developmental and/or environmental factors. The physical properties of the primary wall are largely determined by the nature of the complex polymer network, which exhibits time-dependent behaviour representative of viscoelastic materials. Here, a dynamic nanoindentation technique is used to measure the time-dependent response and the viscoelastic behaviour of the cell wall in single living cells at a micron or sub-micron scale. With this approach, significant changes in storage (stiffness) and loss (loss of energy) moduli are captured among the tested cells. The results reveal hitherto unknown differences in the viscoelastic parameters of the walls of same-age similarly positioned cells of the Arabidopsis ecotypes (Col 0 and Ws 2). The technique is also shown to be sensitive enough to detect changes in cell wall properties in cells deficient in the activity of the chromatin modifier ATX1. Extensive computational modelling of the experimental measurements (i.e. modelling the cell as a viscoelastic pressure vessel) is used to analyse the influence of the wall thickness, as well as the turgor pressure, at the positions of our measurements. By combining the nanoDMA technique with finite element simulations quantifiable measurements of the viscoelastic properties of plant cell walls are achieved. Such techniques are expected to find broader applications in quantifying the influence of genetic, biological, and environmental factors on the nanoscale mechanical properties of the cell wall.  相似文献   

18.
BACKGROUND AND AIMS: Bamboos are among the most important plants in the world. The anatomical structure and mechanical properties of the culm internode are well documented. Fewer details are available of the culm node. The aim of this study was a topochemical investigation on lignification and cell wall thickening in developing and maturing bamboo nodes. The deposition sequence and distribution of lignin structural units and cell wall thickening in different anatomical regions of the node of Phyllostachys viridiglaucescens and Phyllostachys nigra are discussed. METHODS: Cell wall thickening and lignification are investigated in the outer part of the nodal region and in the diaphragm of developing and maturing P. nigra culms and in maturing culms of P. viridiglaucescens of different age classes. The lignification during ageing was studied topochemically by means of cellular UV microspectrophotometry. A combination of light microscopy and image analysis techniques were used to measure cell wall thickness. KEY RESULTS: The fibre and parenchyma cell wall thickness does not significantly increase during ageing. In the diaphragm, the cell walls are thinner and the cell diameter is larger than in the outer part of the node. In shoots, the lignin content in the epidermis, hypodermis and in both fibre and parenchyma cells of the diaphragm is relatively low compared with older culms. The fibre and parenchyma cells of the diaphragm have higher values of p-coumaric and ferulic acids than fibre and parenchyma cells of the outer part of the node. CONCLUSIONS: It was hypothesized that the combination of more hydroxycinnamic acids and of thinner cell walls in combination with higher cell diameters (lower density and lower stiffness) in the diaphragm than in the outer part of the node may play an important role in the biomechanical function of the node by acting as a spring-like joint to support the culm by bending forces.  相似文献   

19.
A Liu  X Yin  L Shi  P Li  KL Thornburg  R Wang  S Rugonyi 《PloS one》2012,7(7):e40869
During developmental stages, biomechanical stimuli on cardiac cells modulate genetic programs, and deviations from normal stimuli can lead to cardiac defects. Therefore, it is important to characterize normal cardiac biomechanical stimuli during early developmental stages. Using the chicken embryo model of cardiac development, we focused on characterizing biomechanical stimuli on the Hamburger-Hamilton (HH) 18 chick cardiac outflow tract (OFT), the distal portion of the heart from which a large portion of defects observed in humans originate. To characterize biomechanical stimuli in the OFT, we used a combination of in vivo optical coherence tomography (OCT) imaging, physiological measurements and computational fluid dynamics (CFD) modeling. We found that, at HH18, the proximal portion of the OFT wall undergoes larger circumferential strains than its distal portion, while the distal portion of the OFT wall undergoes larger wall stresses. Maximal wall shear stresses were generally found on the surface of endocardial cushions, which are protrusions of extracellular matrix onto the OFT lumen that later during development give rise to cardiac septa and valves. The non-uniform spatial and temporal distributions of stresses and strains in the OFT walls provide biomechanical cues to cardiac cells that likely aid in the extensive differential growth and remodeling patterns observed during normal development.  相似文献   

20.
A sustainable bioeconomy that includes increased agricultural productivity and new technologies to convert renewable biomass to value-added products may help meet the demands of a growing world population for food, energy and materials. The potential use of plant biomass is determined by the properties of the cell walls, consisting of polysaccharides, proteins, and the polyphenolic polymer lignin. Comprehensive knowledge of cell wall glycan structure and biosynthesis is therefore essential for optimal utilization. However, several areas of plant cell wall research are hampered by a lack of available pure oligosaccharide samples that represent structural features of cell wall glycans. Here, we provide an update on recent chemical syntheses of plant cell wall oligosaccharides and their application in characterizing plant cell wall-directed antibodies and carbohydrate-active enzymes including glycosyltransferases and glycosyl hydrolases, with a particular focus on glycan array technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号