首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three main pathways have been implicated in desensitization of receptors that stimulate adenylylcyclase (AC): cAMP-mediated phosphorylation; cAMP-independent phosphorylation, and receptor internalization. Cell lines derived from the murine Ltk- cell were found useful in exploring the contribution of cAMP-dependent phosphorylation in V2 vasopressin receptor desensitization. The HTB-2 cell expresses the human V2 vasopressin receptor, introduced by transfection of human genomic DNA, and the prostaglandin E1 (PGE1) receptor, endogenous to the Ltk- cell. The A7 cell expresses the hamster beta 2-adrenoceptor, which undergoes the above-mentioned desensitization processes. Treatment of HTB-2 cells with arginine-vasopressin (AVP) had no effect on AC responsiveness to PGE1, but promoted desensitization of the AVP response. This was seen as a 5-6-fold right shift in the dose-response curves for AVP action (cAMP accumulation in intact cells and AC stimulation in homogenates and isolated membranes) and in a decrease in the maximum effect of AVP on these parameters. AVP treatment caused a decrease in cell surface receptors to approximately 75% of control without changes in KD, as determined by Scatchard analysis. When cAMP was increased by treatment with 10 microM PGE1 and isobutylmethylxanthine, desensitization of the PGE1 receptor was observed but not of the AVP receptor. In A7 cells the same treatment caused, as expected, a 3-fold right shift in the dose-response curve for AC stimulation by isoproterenol, indicating that L cells can mediate heterologous desensitization. These data demonstrate that the V2 vasopressin and the PGE1 receptors undergo homologous desensitization in the absence of cAMP-mediated phosphorylation and that this component is not required for vasopressin receptor internalization.  相似文献   

2.
Chondrogenesis was monitored in micromass cultures of mesenchymal cells derived from the distal tip of stage-25 chick limb buds over a 6-day period. Alcian green staining and immunofluorescent localization of cartilage-specific proteoglycans revealed the appearance of cartilage matrix by day 3 of cell culture. By day 6, cultures contained a uniform and homogeneous population of fully differentiated chondrocytes throughout the cell layer, with only a narrow rim of nonchondrogenic cells around the extreme periphery of the culture. Synthesis of sulfated glycosaminoglycans also progressively increased between days 3 and 6, being 8-fold higher at day 6 than at day 1 of culture. Both adenylate cyclase (AC) activity and cAMP concentrations increased dramatically during the first 2 days of culture, reaching maximal levels by day 2, which remained elevated and stable throughout the remaining chondrogenic period (days 3-6). Responsiveness of both AC and cAMP concentrations of the cells to PGE2 was maximal by day 1 of culture and was increased over control cells by 12-fold and 8-fold respectively. Both responses, however, were dramatically reduced by day 3, at which time the initiation of cartilage formation was apparent. Responsiveness of cells during the prechondrogenic period to PGE2 was relatively specific in that no effects could be demonstrated with equivalent concentrations of PGF2 alpha or 6-keto-PGF1 alpha, although PGl2 did produce increases in cAMP concentrations of about 50% of those of PGE2. These results indicate that previously reported changes in the cAMP system in heterogeneous cell cultures derived from whole limb buds reflect changes occurring in the chondrogenic cell type and indicate further that peak responsiveness of the cAMP system of these cells to prostaglandins is restricted to prechondrogenic developmental periods.  相似文献   

3.
The changes in responsiveness of granulosa cells to either FSH or prostaglandin E2 (PGE2), during culture of the cells, have been examined. In freshly isolated cells, FSH and PGE2 stimulated both cyclic AMP and progesterone production in a dose-dependent manner. In these cells, FSH stimulated cyclic AMP production to a greater extent than did PGE2. After the cells had been cultured for 2 days, neither FSH nor PGE2 stimulated progesterone production to any detectable extent. In these cells the ability of FSH to stimulate cyclic AMP was decreased, and that of PGE2 was increased markedly, such that PGE2 was far more effective than FSH in stimulating cyclic AMP. After culture of the cells for a further 2 days (4 days total), the FSH stimulation of cyclic AMP returned to that seen in freshly isolated cells, whereas the stimulation by PGE2 remained elevated. The acute stimulation of progesterone production could be restored by chronic exposure of the cells to either FSH or PGE2. These results demonstrate that dramatic changes in responsiveness of granulosa cells take place during culture. The results also suggest that some stimulating factor must be present to maintain the steroidogenic capabilities of the cells. Without this, although the cells are able to produce cyclic AMP in response to FSH, they cannot produce progesterone.  相似文献   

4.
The activity of the membrane bound adenylyl cyclase (AC), the effects of nucleotides, Mg2+-cations and its responsiveness to isoproterenol and prostaglandin E1 (PGE1) were examined in a transplantable rat Leydig cell tumor (H-540). Both isoproterenol and PGE1 caused activation of the AC in Leydig cell tumors. The degree of activation by PGE1 (4-5-fold) was approximately twice that of isoproterenol (2-3-fold). The addition of both AC agonists simultaneously was not additive indicating that they activate AC of the same cell. Increasing concentrations of ATP (0.025-2.0 X 10 mM) caused a concentration dependent increase in both the basal and hormone stimulated AC activity, and the activation by isoproterenol and PGE1 (relative response) revealed a slight but significant increase with increasing ATP concentrations. Lineweaver-Burke analysis of these data indicated an apparent Km for ATP (Mg X ATP) of 0.16 mM. Free magnesium did not influence the apparent Km of the AC for ATP. Increasing concentrations of free Mg2+ (0.24-13.2 mM) also caused a concentration dependent increasing activation of AC activity up to a concentration of approx 6 mM in excess of Mg2+-binding ingredients. Higher concentrations of free Mg2+ (13.1 mM) caused a small but significant decrease in both basal and agonist stimulated AC activity. In contrast to other reports, activation by isoproterenol and PGE1 was in general not influenced by the concentration of Mg2+. Both GTP and GMP-P(NH)P stimulated basal and hormone stimulated AC activity (Kact 1 microM), but with different kinetics. In the presence of GTP, AC activity was almost constant for 90 min. In the presence of GMP-P(NH)P, AC activity was much higher, but constant AC activity occurred after a certain lag time (7-10 min), which was reduced by PGE1 and isoproterenol. In conclusion, cAMP production in Leydig cell tumors is stimulated by both PGE1 and isoproterenol. The AC activity and activation by these agonists are regulated by Mg2+ and nucleotides in a slightly different manner from most other cells. The association between AC activation and stimulation of steroid production by Leydig cell tumors remains to be investigated.  相似文献   

5.
Prostaglandin E2 (PGE2) plays an important role in bone development and metabolism. To interfere therapeutically in the PGE2 pathway, however, knowledge about the involved enzymes (cyclooxygenases) and receptors (PGE2 receptors) is essential. We therefore examined the production of PGE2 in cultured growth plate chondrocytes in vitro and the effects of exogenously added PGE2 on cell proliferation. Furthermore, we analysed the expression and spatial distribution of cyclooxygenase (COX)-1 and COX-2 and PGE2 receptor types EP1, EP2, EP3 and EP4 in the growth plate in situ and in vitro. PGE2 synthesis was determined by mass spectrometry, cell proliferation by DNA [3H]-thymidine incorporation, mRNA expression of cyclooxygenases and EP receptors by RT-PCR on cultured cells and in homogenized growth plates. To determine cellular expression, frozen sections of rat tibial growth plate and primary chondrocyte cultures were stained using immunohistochemistry with polyclonal antibodies directed towards COX-1, COX-2, EP1, EP2, EP3, and EP4. Cultured growth plate chondrocytes transiently secreted PGE2 into the culture medium. Although both enzymes were expressed in chondrocytes in vitro and in vivo, it appears that mainly COX-2 contributed to PGE2-dependent proliferation. Exogenously added PGE2 stimulated DNA synthesis in a dose-dependent fashion and gave a bell-shaped curve with a maximum at 10-8 M. The EP1/EP3 specific agonist sulprostone and the EP1-selective agonist ONO-D1-004 increased DNA synthesis. The effect of PGE2 was suppressed by ONO-8711. The expression of EP1, EP2, EP3, and EP4 receptors in situ and in vitro was observed; EP2 was homogenously expressed in all zones of the growth plate in situ, whereas EP1 expression was inhomogenous, with spared cells in the reserve zone. In cultured cells these four receptors were expressed in a subset of cells only. The most intense staining for the EP1 receptor was found in polygonal cells surrounded by matrix. Expression of receptor protein for EP3 and EP4 was observed also in rat growth plates. In cultured chrondrocytes, however, only weak expression of EP3 and EP4 receptor was detected. We suggest that in growth plate chondrocytes, COX-2 is responsible for PGE2 release, which stimulates cell proliferation via the EP1 receptor.  相似文献   

6.
Magnetic fields (MFs) have been used as an external stimulus to increase cell proliferation in chondrocytes and extracellular matrix (ECM) synthesis of articular cartilage. However, previously published studies have not shown that MFs are homogeneous through cell culture systems. In addition, variables such as stimulation times and MF intensities have not been standardized to obtain the best cellular proliferative rate or an increase in molecular synthesis of ECM. In this work, a stimulation device, which produces homogeneous MFs to stimulate cell culture surfaces was designed and manufactured using a computational model. Furthermore, an in vitro culture of primary rat chondrocytes was established and stimulated with two MF schemes to measure both proliferation and ECM synthesis. The best proliferation rate was obtained with an MF of 2 mT applied for 3 h, every 6 h for 8 days. In addition, the increase in the synthesis of glycosaminoglycans was statistically significant when cells were stimulated with an MF of 2 mT applied for 5 h, every 6 h for 8 days. These findings suggest that a stimulation with MFs is a promising tool that could be used to improve in vitro treatments such as autologous chondrocyte implantation, either to increase cell proliferation or stimulate molecular synthesis. Bioelectromagnetics. 2020;41:41–51 © 2019 Bioelectromagnetics Society  相似文献   

7.
It has been observed that both interleukin-1 (IL-1) and extracellular ATP stimulate the production of prostaglandin E (PGE) by human articular chondrocytes in monolayer culture. The combined effects of recombinant human IL-1 beta and ATP were therefore studied using these cells. IL-1 beta rapidly enhanced the response to a maximally effective concentration of ATP (100 microM). On continuous exposure of the cells to the cytokine, its effect was greatest after approx. 24 h and tended to decline thereafter. The enhancement of the response to 100 microM ATP by IL-1 beta was dose-dependent. Removal of IL-1 beta prior to treating the cells with 100 microM ATP did not affect the degree of enhancement of the response. The effect of the cytokine on the response to suboptimal concentrations of extracellular ATP was also tested. IL-1 beta lowered the minimum concentration of ATP required to elicit an increase in the production of PGE by human articular chondrocytes. These findings are of interest, since they indicate a synergistic interaction between a cytokine and a purinergic agonist. Moreover, since both the sensitivity of the cells to extracellular ATP and the maximum response to this agent were enhanced, it is possible that IL-1 modulates more than one step in the process of P2-purinoceptor-mediated stimulation of PGE production. These observations may be relevant to the pathogenesis of some forms of arthritis.  相似文献   

8.
We have established a permanent line of lapine synovial fibroblasts called HIG-82. Upon appropriate stimulation, these cells mimicked primary cultures of lapine synovial cells in producing substances which activated primary cultures of lapine articular chondrocytes. Activated chondrocytes secreted prostaglandin E2 (PGE2) and latent neutral collagenase, gelatinase, and caseinase, but not acid hydrolases, into their culture media. PGE2 itself did not activate the chondrocytes. Heating the crude, synovial-conditioned media at 70 degrees C for 30 min reduced their activating activity by 49.3 +/- 20.5% (n = 7). Production of PGE2 by chondrocytes was maximal during the first day of exposure to synovial conditioned media, whereas the production of neutral proteinases peaked during the second day. All the chondrocyte-stimulating activity was present in a fraction of Mr 10,000-25,000. Unlike the crude conditioned medium, this partially-purified material retained full activity following heating to 70 degrees C for 30 min. These data indicate that synovial fibroblasts (type B synoviocytes) are a source of chondrocyte activator(s) and that neutral, but not acid, proteinases may be involved in extracellular proteolysis which leads to the resorption of the cartilaginous matrix seen in bioassays of catabolin.  相似文献   

9.
Summary Chondrocytes isolated from the proliferative and differentiating zones of 3-wk-old chick growth plates were cultured in the presence of 10% fetal bovine serum (FBS) and ascorbic acid for up to 21 d in a high cell density culture within Eppendorf tubes. The proliferative, differentiating, and calcification properties of the chondrocytes were examined by immunolocalization and by enzyme histochemical and biochemical methods. The cells maintained a chondrocyte phenotype throughout culture: they were round in shape and synthesized both collagen type II and proteoglycans. The expression of a hypertrophic phenotype was evident by Day 3 of culture and from this time onwards characteristics of terminal differentiation were observed. The cells were positive for both alkaline phosphatase (ALP) activity and c-myc protein and the surrounding matrix stained strongly for collagen type X. Small foci of mineralization associated with individual chondrocytes were first evident by Day 6 and more widespread areas of mineralization occupying large areas of matrix were present by Day 15. Mineralization occurred without the addition of exogenous phosphate to the medium. This culture system displays characteristics that are similar in both morphological and developmental terms to that of chick chondrocyte differentiation and calcification in vivo and therefore offers an excellent in vitro model for endochondral ossification.  相似文献   

10.
Prostaglandin E2 (PGE2), similar to beta-adrenergic receptor agonists, can protect airways from bronchoconstriction and resulting increase in airway resistance induced by a number of agents, including cholinergic receptor agonists and antigen. We examined the impact of sustained alterations in PGE2 pathways on changes in airway resistance. Genetic methods were utilized to alter PGE2 metabolism and signal transduction in the murine lung. PGE2 levels were elevated by generating mice lacking 15-hydroxyprostaglandin (Hpgd-/-), the major catabolic enzyme of PGE2, and by generating a transgenic line in which mouse PGE2 synthase (Ptges) expression is driven by a human lung-specific promoter, hSP-C. Conversely, to determine the impact of loss of PGE2 on airway reactivity, we examined mice lacking this synthase (Ptges-/-) and receptors that mediate the actions of PGE2, particularly the PGE2 EP2 receptor (Ptger2). Diminished capacity to produce and respond to PGE2 did not alter the response of mice to cholinergic stimuli. In contrast, the responsiveness to cholinergic stimulation was dramatically altered in animals with elevated PGE2 levels. The Hpgd-/- and hSP-C-Ptges transgenic lines both showed attenuated airway responsiveness to methacholine as measured by lung resistance. Thus, whereas compromise of the Ptges/PGE2/Ptger2 pathway does not alter airway responsiveness, genetic modulation that elevates PGE2 levels in the lung attenuates airway responsiveness.  相似文献   

11.
P G McGuire  N W Seeds 《Neuron》1990,4(4):633-642
The ability of differentiating sensory neurons to remodel a fibronectin substratum was examined. During the early stages of neurite outgrowth, fibronectin was cleared from areas beneath the neuronal soma and processes. The removal of fibronectin occurred in the presence and absence of plasminogen and was associated with the release of fibronectin fragments into the culture medium. The degradation of fibronectin was dependent upon neuronal contact with the substratum. Extraction of cells with the nonionic detergent Triton X-114 identified plasminogen activator and plasmin associated with the cell surface. These findings suggest that the plasminogen activator/plasmin system may play an important role in the interaction of differentiating sensory neurons with the extracellular matrix during axonal outgrowth.  相似文献   

12.
Ovotransferrin expression during chick embryo tibia development has been investigated in vivo by immunocytochemistry and in situ hybridization. Ovotransferrin was first observed in the 7 day cartilaginous rudiment. At later stages, the factor was localized in the articular zone of the bone epiphysis and in the bone diaphysis where it was concentrated in hypertrophic cartilage, in zones of cartilage erosion and in the osteoid at the chondro-bone junction. When the localization of the ovotransferrin receptors was investigated, it was observed that chondrocytes at all stages of differentiation express a low level of the oviduct (tissue) specific receptor. Interestingly, high levels of the receptor were detectable in the 13-d old tibia in the diaphysis collar of stacked-osteoprogenitor cells and in the layer of derived osteoblasts. High levels of oviduct receptor were also observed in the primordia of the menisci. Metabolic labeling of proteins secreted by cultured chondrocytes and osteoblasts and Northern blot analysis of RNA extracted from the same cells confirmed and completed the above information. Ovotransferrin was expressed by in vitro differentiating chondrocytes in the early phase of the culture and, at least when culture conditions allowed extracellular matrix assembly, also by hypertrophic chondrocytes and derived osteoblast-like cells. Osteoblasts directly obtained from bone chips produced ovotransferrin only at the time of culture mineralization. By Western blot analysis, oviduct receptor proteins were detected at a very low level in extract from differentiating and hypertrophic chondrocytes and at a higher level in extract from hypertrophic chondrocytes undergoing differentiation to osteoblast-like cells and from mineralizing osteoblasts. Based on these results, the existence of autocrine and paracrine loops involving ovotransferrin and its receptor during chondrogenesis and endochondral bone formation is discussed.  相似文献   

13.
The relationship between replication and the synthesis of matrix sulfated proteoglycans was investigated with fetal rat chondrocytes grown in monolayer culture. The effect of N6 O2' dibutyryl adenosine 3', 5' cyclic monophosphate (DBcAMP), adenosine 3', 5' cyclic monophosphate (cAMP), 8 Bromo adenosine 3', 5' cyclic monophosphate (8 Br-cAMP), sodium butyrate and hydroxyurea was examined. Between 0.05 and 0.5 mM DBcAMP, a dose related inhibition of cell division and stimulation of [35SO=/4] incorporation into matrix proteoglycans was demonstrated. At the higher concentrations of DBcAMP, cell division was completely inhibited and the enhancement of [35SO=/4] incorporation into matrix proteoglycans ranged between 40 and 120% (P less than 0.01). Utilizing 14C-glucosamine and photometric determination of proteoglycans with Alcian Blue, it was demonstrated that the increase in sulfate incorporation reflected enhanced accumulation of extracellular matrix. The effects of DBcAMP were mimicked by 8 Br-cAMP, suggesting they were mediated by the adenylyl cyclase system. cAMP (0.05-0.5 mM), sodium butyrate (0.1-0.5 mM) and hydroxyurea (0.5-5 mM) partially or fully inhibited cell division, but either failed or only slightly enhanced sulfate incorporation. The enhanced sulfated proteoglycan deposition promoted by DBcAMP began 8 to 12 hours after serum stimulation, its onset occurred prior to thymidine incorporation and the effect persisted for 28 hours. Determination of cell volume demonstrated an increase in size of DBcAMP treated chondrocytes between 8 to 12 hours, coincident with the onset of increased sulfate incorporation. These results are consistent with a model where matrix sulfated proteoglycan deposition by chondrocytes is mediated by intracellular cAMP levels and occurs in the G1 phase of the cell cycle.  相似文献   

14.
15.
We examined the effect of the inflammatory mediator interleukin-1alpha (IL-1alpha) on cell proliferation, alkaline phosphatase (ALPase) activity, and the expressions of cartilage matrix proteins, bone morphogenetic protein-2 (BMP-2), and BMP-2 receptors in human chondrosarcoma cell line OUMS-27 (chondrocytes). The cells were cultured with Dulbecco's modified Eagle's medium containing 15% fetal bovine serum with 0, 1, 10, or 100 units/ml of IL-1alpha for up to 14 days. The expressions of cartilage matrix proteins, BMP-2, and BMP-2 receptors were estimated by determining mRNA levels using semiquantitative or real-time PCR and/or by determining protein levels using Enzyme-linked immunosorbent assay. Cell proliferation was decreased after 5 days in culture with IL-1alpha. The ALPase activity was decreased significantly in the presence of IL-1alpha until day 10 of culture. The expression of type II collagen was significantly decreased after 7 days in culture with IL-1alpha. The expressions of aggrecan and link protein were significantly decreased through day 14 of culture with IL-1alpha. The expression of BMP-2 was increased at days 3, 7, and 14 of culture with IL-1alpha, while the expression of type II receptor for BMP-2 was significantly decreased in the samples. These results suggest that IL-1alpha suppresses the expression of cartilage matrix proteins through a suppression of the autocrine action of BMP-2, brought about by the decrease in BMP-2 receptor expression in chondrocytes.  相似文献   

16.
While parathyroid hormone (PTH), calcitonin (CT), and certain prostaglandins (PGs) are known to regulate the metabolism of both osteogenic and osteolytic cells of the adult skeleton through an adenosine 3', 5'-monophosphate-dependent mechanism, little is known about the development of this hormonally mediated response in embryonic skeletal tissues. In the present study, the responsiveness of embryonic skeletal elements to PTH and PGE2 was examined during various stages of development utilizing cAMP concentrations as an indicator of hormone-receptor interaction. The cytology of the limb skeletal system was examined also at each stage tested in order to compare the differentiated cellular phenotypes with their hormonal responsiveness. Prior to differentiation of cartilaginous elements in developing limb buds (stage 20-21), cells were responsive to PGE2 and epinephrine (EPI) but not to PTH. The first consistent response to PTH occurred coincident with the initial differentiation of the cartilage phenotype in limb buds (stage 24-25). A responsiveness to both PTH and PGE2 was progressively increased as maturation of cartilaginous and osteogenic elements occurred (stage 26-35). The initial response to CT was detected within cartilage rods in which osteogenic cells had differentiated (stage 33-35). The results of this study indicate that PGE2-sensitive cells exist within the developing limb prior to cytodifferentiation. The development of PTH responsiveness within embryonic chick limb buds is correlated with the onset of both chondrogenesis and osteogenesis in vivo.  相似文献   

17.
Immunohistochemical studies of the chick columella have shown that the extracellular matrix of this ossicular cartilage template is composed largely of type II collagen. As development proceeds, synthesis of type X collagen, a hypertrophic cartilage-specific molecule, is initiated by endochondral chondrocytes within the zone of cartilage cell hypertrophy. Subsequently, these cells and their surrounding extracellular matrix are removed, resulting in marrow cavity formation. We have examined which of these processes are programmed within the columella chondrocytes themselves, and which require involvement of exogenous factors. Prehypertrophic columella from 12-day chick embryos were grown either in organ culture on Nuclepore filters or as explants on the chorioallantoic membrane of host embryos. Chondrocytes from the same source were grown in monolayer cell cultures. In both organ culture and cell culture, chondrocytes developed to the stage at which some of them entered the hypertrophic program and initiated the production of type X collagen as determined by immunofluorescence histochemistry with a monoclonal antibody specific for that collagen type. The organ cultures, however, did not progress to the next stage, in which detectable removal of the type X collagen-containing matrix occurs. When identical columella were grown on the chorioallantoic membrane of host chicks, the type X collagen-containing matrix which formed was rapidly removed, resulting in the formation of a marrow cavity. Thus, progression of endochondral chondrocytes to the deposition of type X collagen-containing matrix seems to be programmed within the cells themselves. Subsequent removal of this matrix requires the involvement of exogenous factors.  相似文献   

18.
Human monocytes are known to metabolize arachidonic acid (AA) and to release prostaglandins upon stimulation. Previous data indicate that in vitro maturation and differentiation of monocytes result in alteration of this property with greatly diminished response to stimulators of release of prostaglandin E (PGE) and thromboxane B2 (TxB2) occurring after cells have been cultured. To further study the effects of differentiation on human monocyte AA metabolism, a model system was established based upon the human histiocytic cell line U937. Among tested stimulants, which included opsonized zymosan, complement fragment C3b, phorbol myristate acetate (PMA), calcium ionophore A23187, and concanavalin A, it was found that Escherichia coli lipopolysaccharide (LPS) was unique in that it stimulated increased release of TxB2 from U937 cells. The effect of the phorbol ester PMA, a compound commonly used to induce differentiation of U937, on the ability of U937 to respond to LPS was examined. Following 48 hr of treatment with PMA, U937 became capable of releasing both PGE and TxB2 in response to small doses of LPS. As previously observed for human monocytes, the release of PGE was delayed for several hours following stimulation and failed to reach maximal cumulative levels in culture until 24-48 hr following stimulation. In contrast to human monocytes, PMA-induced U937 were capable of maintaining their responsiveness to LPS for several days. Thus, the U937 cell line provides a useful model for study of the effects of differentiation of human mononuclear phagocytes on their ability to metabolize AA, and for the effects of LPS on histiocytic tumor cell prostaglandin release.  相似文献   

19.
Cultivation of phenotypically stable auricular chondrocytes will have applications in autologous chondrocyte transplantation and reconstructive surgery of cartilage. Chondrocytes grown in monolayer culture rapidly dedifferentiate assuming a fibroblast-like morphology and lose their cartilage-specific pattern of gene expression. Three-dimensional high-density culture models mimic more closely the in vivo conditions of cartilage. Therefore, this study was undertaken to test whether the high-density cultures might serve as a suitable model system to acquire phenotypically and functionally differentiated auricular chondrocytes from porcine cartilage. Freshly isolated porcine auricular chondrocytes were cultured for 7 passages in monolayer culture. From each passage (passage 0 and 1-7) cells were introduced to high-density cultures and examined by transmission electron microscopy. Western blotting was used to analyse the expression of cartilage-specific markers, such as collagen type II and cartilage specific proteoglycan, fibronectin, cell adhesion and signal transduction receptor beta1-integrin, matrix metalloproteinases (MMP-9, MMP-13), cyclo-oxygenase (COX)-2 and the apoptosis commitment marker, activated caspase-3. When dedifferentiated auricular chondrocytes from monolayer passages 0-4 were cultured in high-density culture, they recovered their chondrocytic phenotype and formed cartilage nodules surrounded by fibroblast-like cells and synthesised collagen type II, proteoglycans, fibronectin and beta1-integrins. However, chondrocytes from monolayer passages 5-7 did not redifferentiate to chondrocytes even when transferred to high-density culture, and did not synthesize a chondrocyte-specific extracellular matrix. Instead, they produced increasing amounts of MMP-9, MMP-13, COX-2, activated caspase-3 and underwent apoptosis. Three-dimensional high-density cultures may therefore be used to obtain sufficient quantities of fully differentiated auricular chondrocytes for autologous chondrocyte transplantation and reconstructive plastic surgery.  相似文献   

20.
Both mechanical loading and interleukin-1beta (IL-1beta) are known to regulate metabolic processes in articular cartilage through pathways mediated by nitric oxide ((*)NO) and PGE(2). This study uses a well-characterized model system involving isolated chondrocytes cultured in agarose constructs to test the hypothesis that dynamic compression alters the synthesis of (*)NO and PGE(2) by IL-1beta-stimulated articular chondrocytes. The data presented demonstrate for the first time that dynamic compression counteracts the effects of IL-1beta on articular chondrocytes by suppressing both (*)NO and PGE(2) synthesis. Inhibitor experiments indicated that the dynamic compression-induced inhibition of PGE(2) synthesis and stimulation of proteoglycan synthesis were (*)NO mediated, while compression-induced stimulation of cell proliferation was (*)NO independent. The inhibition of (*)NO and PGE(2) by dynamic compression is a finding of major significance that could contribute to the development of novel strategies for the treatment of cartilage-degenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号