首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seed storability is especially important in the tropics due to high temperature and relative humidity of storage environment that cause rapid deterioration of seeds in storage. The objective of this study was to use SSR markers to identify genomic regions associated with quantitative trait loci (QTLs) controlling seed storability based on relative germination rate in the F2:3 population derived from a cross between vegetable soybean line (MJ0004-6) with poor longevity and landrace cultivar from Myanmar (R18500) with good longevity. The F2:4 seeds harvested in 2011 and 2012 were used to investigate seed storability. The F2 population was genotyped with 148 markers and the genetic map consisted of 128 SSR loci which converged into 38 linkage groups covering 1664.3 cM of soybean genome. Single marker analysis revealed that 13 markers from six linkage groups (C1, D2, E, F, J and L) were associated with seed storability. Composite interval mapping identified a total of three QTLs on linkage groups C1, F and L with phenotypic variance explained ranging from 8.79 to 13.43%. The R18500 alleles increased seed storability at all of the detected QTLs. No common QTLs were found for storability of seeds harvested in 2011 and 2012. This study agreed with previous reports in other crops that genotype by environment interaction plays an important role in expression of seed storability.  相似文献   

2.
The efficiency of early generation selection for yield and related characters in safflower (Carthamus tinctorius L.) was studied in the F2, F3 and F4 generations. Twenty-five F2 progenies derived from various crosses were studied. In the F2 generation, number of capitula per plant (CNSP), number of seeds per capitulum (SPSP), test weight (SWSP), and seed yield (SYSP) were the criteria used for single plant selection. The analysis of variance showed significant differences for all of the characters in the F2, F3, and F4 generations. The analysis of variance in each of the selection classes showed highly significant genotypic differences. A large number of selections in the CNSP and SYSP classes showed greater yield than the check variety. In each class the mean for that particular character showed a positive shift. The observed F3 and F4 means for seed yield per plant was higher in SYSP, indicating the effectiveness of single plant selection for yield. Correlated response showed that selection for number of capitula per plant was effective for improvement of yield.  相似文献   

3.
The effects of equilibration under different air relative humidities (RH, 1 – 90 %) and temperatures (35 and 45 °C) on soybean (Glycine max) and wheat (Triticum aestivum) seeds were studied using different techniques. Seed moisture content, electrical conductivity (EC) of seed leachate and per cent seed germination were measured following standard procedures, and compared with nuclear magnetic resonance spin-spin relaxation time (T2) measurements. Moisture contents of soybean and wheat seeds, following the reverse sigmoidal trend, were greater at 35 than at 45 °C at any particular RH. Changes in T2 were related to the changes in germination percentage and leachate EC of both soybean and wheat seeds. Equilibrating soybean seeds at RH 11 % decreased germination percentage with corresponding decrease in T2. On the contrary, EC of seed leachate increased. In wheat seeds equilibrated at 45 °C, T2 was maximal at RH 5.5 %. T2 declined in seeds equilibrated at high RH (> 80 %) together with low germination percentage.  相似文献   

4.
Summary Lysine is a limiting amino acid for optimal nutritional quality in rice grain. In vitro selections using inhibitory levels of lysine plus threonine or s-aminoethylcysteine allow the predictable recovery of variants with elevated levels of lysine and protein. These methods may generate useful starting germplasm for plant breeders. This study was conducted to define the genetics of lysine mutants in progeny from crosses of mutants derived from cells cultured in vitro in the presence of inhibitory levels of lysine plus threonine and s-(2-aminoethyl)-cysteine. In vitro selections produce a wide range of mutants, including endosperm mutants with elevated lysine and protein levels as well as mutants for high and low seed weights. Mutants were analyzed for lysine content by the endosperm half-seed method in which the halves without the embryo were ground and acid hydrolyzed for amino acid determinations. The halves with the embryos were preserved for later germination. In two different F2 populations derived from a cross of a selected mutant x M-101, a parental marker, there was an inverse relationship between seed weight and percent lysine in endosperm protein (R2 0.52 and 0.56). The F2 segregation patterns show that elevated lysine is inherited as a recessive gene and that increased lysine is correlated with decreased seed size. F3 and F4 data provide evidence for the transmission of high lysine genes to advanced germplasm in rice. This work supports our earlier conclusions that high lysine phenotypes can be recovered predictably from in vitro selections. The elevated lysine phenotypes are frequently, but not exclusively, associated with opaque seed. Some segregants from crosses produced increased lysine in plants with near normal seed weight and good fertility.Research done under the auspices of the USDA, ARS, Plant Sciences Institute, Plant Molecular Biology Laboratory, Beltsville, MD 20705, USA  相似文献   

5.

Background and Aims

A fundamental element in the evolution of obligate root-parasitic angiosperms is their ability to germinate only in response to chemical stimulation by roots, to ensure contact with a nearby nourishing host. The aim of this study was to explore inheritance of the unique germination control in this group of plants.

Methods

Analysis was made of the segregation of spontaneous (non-induced) germination that appeared in hybrid progenies derived from crosses between Orobanche cernua and O. cumana, which, like all other Orobanche species, are totally dependent on chemical stimulation for the onset of germination, and show negligible spontaneous germination in their natural seed populations.

Key Results and Conclusions

F1 and F2 seeds did not germinate in the absence of chemical stimulation, but significant spontaneous germination was found in some F3 seed families. This indicates that the prevention of non-induced germination in Orobanche seeds, i.e. dependence on an external chemical stimulation for seed germination, is genetically controlled, that this genetic control is expressed in a seed tissue with maternal origin (presumably the perisperm that originates from the nucellus) and that genetic variation for this trait exists in Orobanche species. Similar segregation results were obtained in reciprocal crosses, suggesting that stimulated germination is controlled by nuclear genes.  相似文献   

6.
Summary AnS 1.1 self-incompatible (SI) petunia plant which showed atypical seed set was found in an I7 population. This plant showed a strong SI reaction when selfed but produced varying amounts of seed when used as the seed parent in crosses with unrelated individuals homozygous for the sameS allele. Reciprocal crosses yielded no seed indicating that the reaction was a stylar response. Self seed obtained by high temperature treatments produced 18 plants, all of which exhibited the parental characteristics, the ability to reject self pollen but accept, to varying degrees, pollen bearing the sameS allele from unrelated plants. Several petunias homozygous forS 1, and exhibiting various levels of PSC as determined by self seed set, progeny tests and temperature treatments, were used as pollen parents. The mean seed set of these crosses produced a ranking of the pollen parents which reflected the PSC levels obtained by other methods. The behavior of the F1 and F2 populations suggests that the pollen discriminating ability may be a simply inherited, dominant character in these plants. The styles of these unusual petunias illustrate the participation of the pollen tube in determining PSC.Scientific Journal Series Paper Number 10.479 of the Minnesota Agricultural Experiment Station  相似文献   

7.
Summary A series of experiments was conducted to determine the inheritance of seed weight in cucumber. Matings between a Cucumis sativus var. sativus (Cs) L. inbred line (USDA WI 1606; P1) and a C. sativus var. hardwickii (Royle) Kitamura (Ch) collection (PI 215589; P2) were made to produce seed of reciprocal F1, F2, and BC1 families. Families were grown under field and greenhouse conditions, and seeds were extracted from fruit 55 to 60 days post-pollination. Seed of F1 and F2 families was obtained using the Cs inbred WI2808 (P12) and the Ch collection LJ 90430 (P10), and seed of F1 families were produced using a North Carolina Design II mating scheme in which three Cs (P3= GY-14; P4=WI 1379; P5=WI 1909) inbreds were used as maternal parents and seven Ch collections (P2; P6= PI462369; P7=486336; P8=LJ91176; P9=273469; P10= 2590430; P11=PI187367) were used as paternal parents. Mean seed weights of F1 progeny reflected the dominance of genes of the C. sativus var. sativus parent. Transformation to number of seeds per unit weight resulted in increased variance homogeneity within generations and a broad-sense heritability ranging between 26% to 56%. Additive and dominance effects were important in the expression of seed weight in P1×P2 progeny produced in the greenhouse and additive effects were important in field grown progeny resulting from P1×P2 and P10×P12 matings. The estimated number of factors or loci involved ranged between 10 to 13, depending on the method of calculation.  相似文献   

8.
Summary Spaced plants of a segregating soybean hybrid population in the F6 generation were scored for fourteen quantitative traits related to yield, foliage development and growth duration. Full-sib relationships were used to estimate the genetic additive components of variation and covariation. All genetic correlations between traits, as well as phenotypic and environmental correlations, were estimated separately. A principal component analysis was further performed in all three cases. Genetic correlations identified four different groups of traits comprised of: (I) seed number per pod; (II) mean seed weight; (III) dry weight and chlorophyll content per unit leaf area; (IV) all the other characters, including seed yield and total plant weight at maturity. Among these traits, stem diameter at ground level appeared to be a good indicator of yield. This distribution remained about the same for the environmental correlations, except that growth duration traits and foliage development traits became independent of yield. The implications of these results are discussed in relation to soybean breeding for climatic adaptation.  相似文献   

9.
The basic prerequisite for an efficient breeding program to improve levels of resistance to pathogens in plants is the identification of genes controlling the resistance character. If the response to pathogens is under the control of a multilocus system, the utilization of molecular markers becomes essential. Stalk and ear rot caused by Gibberella zeae is a widespread disease of corn: resistance to G. zeae is quantitatively inherited. Our experimental approach to understanding the genetic basis of resistance to Gibberella is to estimate the genetic linkage between available molecular markers and the character, measured as the amount of diseased tissue 40 days after inoculation of a suspension of Fusarium graminearum, the conidial form of G. zeae, into the first stalk internode. Sensitive and resistant parental inbreds were crossed to obtain F1 and F2 populations: the analysis of the segregation of 95 RFLP (restriction fragment length polymorphism) clones and 10 RAPD (random amplified polymorphic DNA) markers was performed on a population of 150 F2 individuals. Analysis of resistance was performed on the F3 families obtained by selfing the F2 plants. Quantitative trait loci (QTL) detection was based either on analysis of regression coefficients between family mean value and allele values in the F2 population, or by means of interval mapping, using MAPMAKER-QTL. A linkage map of maize was obtained, in which four to five genomic regions are shown to carry factors involved in the resistance to G. zeae.  相似文献   

10.
The value of intra- and interracial populations in common bean (Phaseolus vulgaris L.) needs to be determined in order to create useful genetic variation for maximizing gains from selection, broadening the genetic base of commercial cultivars, and making efficient use of available resources. Five large-seeded parents of race Nueva Granada (N), two small-seeded race Mesoamerica (M), and one medium-seeded race Durango (D) were hybridized to produce one intraracial (N x N) and three interracial (two N x M and one N x D) populations. Seventy-nine F2-derived F6 lines randomly taken from each population along with their parents were evaluated for agronomic traits and markers at Palmira and Popayán, Colombia, in 1990 and 1991. Variation for agronomic traits and for morphological, protein, and isozyme markers was larger in interracial populations than in the intraracial population. Mean seed yield of all lines as well as yield of the highest yielding line from two interracial populations were significantly higher than that of the intraracial population. The highest ( 0.80±0.15) heritability was recorded for 100-seed weight. Values for seed yield varied from 0.19±0.17 to 0.50±0.16. Gains from selection (at 20% selection pressure) for seed yield ranged from 3.9% to 11.4%. Seed yield was positively associated with biomass yield, pods/m2, and days to maturity, but harvest index showed negative correlations with these traits and a positive value with 100-seed weight. Polymorphism was recorded for phaseolin, lectins, protein Group-1 and protein Group-2 fractions, and six isozyme loci. Lines with indeterminate growth habit had significantly (P < 0.01) higher seed yield than lines with determinate growth habit in a Redkloud x MAM 4 population. Also, 23 other associations of markers with agronomic traits other than seed yield were recorded. Of these associations, lines with T phaseolin, the Diap1 2 allele, and lilac flower color tended to possess greater seed weight.  相似文献   

11.
Summary Nitrogen fixation is generally considered to be a major parameter of productivity in soybean (Glycine max). The aim of the investigations reported here was to analyse the genetic behaviour of this trait in view of its possible use as an indirect criterion of selection for productivity. Divergent selection for nitrogen fixation rate was carried out on F2 populations obtained from crosses between high-yielding cultivars that are well adapted to French climatic conditions. The genetic component of nitrogen fixation and yield was isolated through the analysis of (1) the nitrogen fixation potentials of the genotypes under controlled conditions and (2) the field yields under favourable conditions. Divergent selection resulted in two groups of genotypes whose nitrogen fixation abilities are significantly different. The F6 filial progeny obtained by single seed descent from the two groups displayed significantly different abilities for nitrogen fixation and for field productivity. The gain achieved for the nitrogen fixation activity with respect to the mean value of the parents ranged from 20% to 33% for the positive selection, depending on the crosses. The occurrence of positive and significant correlations between the level of nitrogen fixation activity in F2 plants and N2 fixation or yield in the F6 generation corroborates the relatively high heritability of this trait and suggests its possible use as an indirect selection criterion for yield.  相似文献   

12.
Sucrose is a primary constituent of soybean (Glycine max) seed; however, little information concerning the inheritance of seed sucrose in soybean is available. The objective of this research was to use molecular markers to identify genomic regions significantly associated with quantitative trait loci (QTL) controlling sucrose content in a segregating F2 population. DNA samples from 149 F2 individuals were analyzed with 178 polymorphic genetic markers, including RFLPs, SSRs, and RAPDs. Sucrose content was measured on seed harvested from each of 149 F2:3 lines from replicated field experiments in 1993 and 1995. Seventeen marker loci, mapping to seven different genomic regions, were significantly associated with sucrose variation at P<0.01. Individually, these markers explained from 6.1% to 12.4% of the total phenotypic variation for sucrose content in this population. In a combined analysis these genomic regions; explained 53% of total variation for sucrose content. No significant evidence of epistasis among QTLs was observed. Comparison of our QTL mapping results for sucrose content and those previously reported for protein and oil content (the other major seed constituents in soybean), suggests that seed quality traits are inherited as clusters of linked loci or that `major' QTLs with pleiotropic effects may control all three traits. Of the seven genomic regions having significant effects on sucrose content, three were associated with significant variation for protein content and three were significantly associated with oil content.  相似文献   

13.
Summary Genetical studies on grain yield and its contributing traits were made in a six parent complete diallel in the F1 and F2 generations of one of the most widely grown grain species of grain amaranths (Amaranthus hypochondriacus L.). Graphical analysis indicated that epistasis exists for 1,000-grain weight in the F1. Grain weight/panicle, yield/plant and harvest index indicated absence of non-allelic gene interaction. The harvest index in the F1 and F2 and grain weight/ panicle, 1,000-grain weight, yield/plant in the F2 appeared to be controlled by overdominance effects. Higher grain yield appeared to be associated with dominant genes. Both additive and non-additive gene effects were responsible for the genetic variation in the diallel population. However, dominance variance was more important than additive variance in grain yield/ plant and harvest index in the F1 and F2. For 1,000-grain weight additive genetic variance was more important in the F1 and non-additive in F2. There was overdominance of a consistent nature in the two analyses for harvest index in the F1 and F2, grain weight/ panicle, 1,000-grain weight and yield/plant in the F2 and partial dominance for 1,000-grain weight in the F1.  相似文献   

14.
Summary Selection in the F3 generation for seed yield, fruiting branches/plant, effective pods/plant, and seed index (100-seed weight) was carried out in two chickpea crosses. Sixty F5 lines (15 lines/selection criterion) along with check variety were evaluated for seed yield in three distinct environments. The effects of selection criteria on yield stability was examined using linear regression approach and genotype-grouping technique. There were no differences between selection criteria for linear yield responses of F5 lines to different environments. Within all four selection criteria the lines showed similar linear responses. The non-linear component was relatively higher for lines selected for effective pods and seed index than lines selected for yield and fruiting branches. On the basis of mean yield and coefficient of variation across environments, the seed index was the least effective selection criterion for developing high yielding and stable lines. When the results of stability parameters and genotype-grouping technique were considered together, selection for yield and fruiting branches was highly effective for isolating stable and high yielding lines.  相似文献   

15.
S Volis  I Shulgina  M Zaretsky  O Koren 《Heredity》2011,106(2):300-309
Populations of predominantly selfing plant species often show spatial genetic structure but little is known whether epistatic gene interactions are spatially structured. To detect a possible epistatic effect and a spatial scale at which it operates, we created artificial crosses between plants spanning a range of fixed distances from 1 to 400 m in three populations of wild barley. The self-pollinated and crossed progeny (F1) and two generations of segregated progeny (F2 and F3) were tested in experimentally simulated population environments for relative performance (RP). The measured fitness traits included number of seeds, total seed weight and seed germination. For any of these traits, there was no association between RP of F1, F2 and F3 plants and either pairwise kinship coefficients or crossing distance. In contrast, in all three populations, we found lower seed viability of outcrossed as compared with self-pollinated genotypes in the first generation of segregation. However, in the F3 generation this outbreeding effect disappeared in the two populations and greatly decreased in the third population. For seed production, heterosis in F1 and outbreeding depression in F2 were observed only in the population with unusually high number of heterozygotes. Our findings support the view that in selfing species a spatial mosaic of various locally abundant genotypes represents not randomly fixed combinations of alleles but the co-adapted gene complexes that were sieved by selection, while heterozygotes are characteristic for the transient phase of this process, when segregation and purging of maladaptive genotypes have not yet occurred.  相似文献   

16.
Summary Mean seed weight data were obtained from the F1 and F2 of a six-by-six diallel cross with flax (Linum usita-tissimum L.). Pronounced reciprocal differences appeared in the F1, but had largely disappeared by the F2. The genetic control of mean seed weight was examined using two types of analysis of variance. The models underlying both analyses were fitted to the data by matrix methods supplying weighted least-squares estimates of the parameters in the models. Weights, the use of which dealt with the problem of variation in the reliability of means, were the reciprocals of the variances of individual cell (cross/self) means in the diallel data table. Elimination of redundant parameters supplied the minimum adequate models for each analysis type. Dominance was apparently masked by the large transient maternal effects in the F1, but surfaced in the F2, where dominance was towards larger mean seed weight. This may be coupled with findings elsewhere of possible advantages for larger seed weights to speculate on a role in preserving infrequent hybrid progeny among inbreeding (flax) species. Maternal effects producing larger seed size, plus dominance with the same result might be valuable, in conjunction with growth and competitive advantages conferred by larger seed, in preventing early elimination of rare hybrids.  相似文献   

17.
Correlation and path-coefficient analyses have been successful tools in developing selection criteria. Since increased seed yield is an important goal in our pearl millet x elephantgrass [Pennisetum glaucum (L.) R.Br. x P. purpureum Schum.] hexaploid breeding program, we used correlation and path-coefficient analyses on seed data. This study was conducted to develop appropriate selection criteria by determining the direct and indirect effects of seed-yield components on seed yield plant-1. Number of tillers plant-1, panicles tiller-1, seeds panicle-1, 100-seed weight, and seed yield plant-1, were estimated for individual plants in seven families. Phenotypic (rp) and genetic correlations (rg) were calculated, and path analyses (phenotypic and genetic) were carried out according to predetermined causal relationships. Phenotypic and genetic correlations differed in several cases due to large environmental variance and covariance. Phenotypically, all components were positively and significantly associated with seed yield plant-1. Genotypically, only seeds panicle-1 and 100-seed weight were significantly correlated. These two components were also positively correlated (r p=0.55, r g=0.63), so simultaneous improvement for both components would be feasible. Panicles tiller-1 and seeds panicle-1 were negatively correlated (r g=-0.97). In the path analyses, all direct effects of the components on seed yield plant-1 were positive. Phenotypic indirect effects were not as important as genetic indirect effects. The components seeds panicle-1 and 100-seed weight influenced seed yield plant-1 the greatest, both directly and indirectly.Florida Agricultural Experimental Station Journal Series No. R-03339  相似文献   

18.
The partitioning of genetic variability within and between twelve British populations of the anemophilous aquaticPotamogeton coloratus Hornem. was investigated by isozyme analysis. Low levels of variability as measured by P, A and H were found. Calculation of Wright's F statistics revealed a high mean value of the overall inbreeding coefficient, (FIT = 0.939), which was attributed both to high levels of genetic subdivision among populations (mean FST = 0.702) and to a high frequency of inbreeding or clonal growth within them (mean FIS = 0.796). Only two populations are polymorphic; both inhabit sites with a long post-glacial history as wetlands. Populations of recent origin, as well as some of older vintage, contain only a single multi-locus isozyme genotype, homozygous at all loci except for IDH. A genetic bottleneck following the Devensian glaciation is discussed as a possible cause of the pattern of variation. Evidence for a duplicated IDH locus is presented.  相似文献   

19.
Allozyme variation at eleven loci encoding seven enzyme systems were examined in 20 populations of diploid (genome AA, 2n = 16)Scilla scilloides in China. In comparison with the average species of seed plants studied, populations of this species display a high amount of genetic variation (A = 2.0, P = 58.6%, Ho = 0.172, and He = 0.185). Allozyme variation pattern revealed predominant outcrossing within populations and considerable differentiation (FST = 0.314) among populations as well as between the subtropic and temperate regions. The wide distribution, long existence and outcrossing are presumably the main factors responsible for the high genetic diversity within populations. But the gravity dispersal of seeds and pollination by small insects set limits to the increase of genetic variation within populations and promote differentiation between populations and regions. In addition, allozyme variation does not distinguishS. scilloides var.albo-viridis and suggests that subtropic populations may be considered as a genetic entity.  相似文献   

20.
 In soybean [Glycine max (L.) Merr.] heterosis has been reported for seed yield. Molecular markers may be useful to select diverse parents for the expression of heterosis and yield improvement. The objective of this study was to determine if molecular markers could be used to predict yield heterosis in soybean. From each Maturity Group (MG) II and III, 21 genotypes were selected on the basis of high yield (HY), different geographic origin (GO), and isozyme loci (ISO) and for diversity in restriction fragment length polymorphisms (RFLP), and crosses were made within MGs and selection criteria groups to obtain 6 F1 hybrids per group. The 21 parents and the 24 F1 hybrids of each MG were evaluated for yield in replicated tests at two locations in 2 years, and midparent heterosis (MPH) and high-parent heterosis (HPH) estimates were calculated. On the basis of hybrid performance during the first year, 12 parents (3 per selection criteria group) were chosen in each MG to conduct a second RFLP analysis using 129 probes. Genetic distances (GDM) for pairs of the 12 genotypes were calculated with this RFLP information and correlated with MPH and HPH estimates. Significant MPH averages for seed yield were observed in the combined analysis of variance in each of the four selection criteria groups of MG II, and in the HY, ISO, and GO of MG III. Significant HPH averages were observed only in the ISO and GO groups of MG II. The greatest frequency of F1 hybrids with significant MPH was observed in the ISO and GO groups of both MGs. For HPH, the greatest frequency was observed in the ISO group of both MGs. In both MGs, the ISO group had the largest absolute MPH value; the RFLP group had generally the smallest. The observations indicated that the expression of heterosis in seed yield might be associated with diversity in the isozyme loci present in the parents. For the genotypes included in the second RFLP analysis, correlations of GDMs with MPH and HPH values on an entry-mean basis were low and not significant, indicating that heterosis in yield may not be associated with genetic diversity at the molecular level as determined by RFLPs. The results suggest that in soybean, parent selection on the basis of RFLPs and isozyme loci to exploit heterosis in seed yield may not be feasible. There was no association between genetic distance estimated by the RFLP analysis and seed yield heterosis, and in spite of the observed relationship between isozyme loci and heterosis for yield, the practicality of using the isozyme markers to select parents may be limited because of the reduced number of assayable isozyme loci in soybean. Received: 8 March 1996 / Accepted: 21 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号