首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
BACKGROUND: Sendai virus (SeV) is a new type of cytoplasmic RNA vector, which infects and replicates in most mammalian cells, directs high-level expression of the genes on its genome and is free from genotoxicity. In order to improve this vector, both the matrix (M) and fusion (F) genes were deleted from its genome. METHODS: For the recovery of the M and F genes-deleted SeV (SeV/DeltaMDeltaF), the packaging cell line was established by using a Cre/loxP induction system. SeV/DeltaMDeltaF was characterized and compared with wild-type and F or M gene-deleted SeV vectors in terms of transduction ability, particle formation, transmissible property and cytotoxicity. RESULTS: SeV/DeltaMDeltaF was propagated in high titers from the packaging cell line. When this vector was administered into the lateral ventricle and the respiratory tissue, many of the ependymal and epithelial cells were transduced, respectively, as in the case of wild-type SeV. F gene-deletion made the SeV vector non-transmissible, and M gene-deletion worked well to inhibit formation of the particles from infected cells. Simultaneous deletions of these two genes in the same genome resulted in combining both advantages. That is, both virus maturation into particles and transmissible property were almost completely abolished in cells infected with SeV/DeltaMDeltaF. Further, the cytopathic effect of SeV/DeltaMDeltaF was significantly attenuated rather than that of wild type in vitro and in vivo. CONCLUSIONS: SeV/DeltaMDeltaF is an advanced type of cytoplasmic RNA vector, which retains efficient gene transfer, gains non-transmissible properties and loses particle formation with less cytopathic effect.  相似文献   

2.
Iida A 《Uirusu》2007,57(1):29-36
Sendai virus (SeV) is an enveloped virus with a nonsegmented negative-strand RNA genome and a member of the paramyxovirus family. We have developed SeV vector which has shown a high efficiently of gene transfer and expression of foreign genes to a wide range of dividing and non-dividing mammalian cells and tissues. One of the characteristics of the vector is that the genome is located exclusively in the cytoplasm of infected cells and does not go through a DNA phase; thus there is no concern about unwanted integration of foreign sequences into chromosomal DNA. Therefore, this new class of "cytoplasmic RNA vector", an RNA vector with cytoplasmic expression, is expected to be a safer and more efficient viral vector than existing vectors for application to human therapy in various fields including gene therapy and vaccination. In this review, I describe development of Sendai virus vector, its application in the field of biotechnology and clinical application aiming to treat for a large number of diseases including cancer, cardiovascular disease, infectious diseases and neurologic disorders.  相似文献   

3.
The power to manipulate the genome of negative-strand RNA viruses, including the insertion of additional non-viral genes, has led to the development of a new class of viral vectors for gene transfer approaches. The murine parainfluenza virus type I, or Sendai virus (SeV), has emerged as a prototype virus of this vector group, being employed in numerous in vitro as well as animal studies over the last few years. Extraordinary features of SeV are the remarkably brief contact time that is necessary for cellular uptake, a strong but adjustable expression of foreign genes, efficient infection in the respiratory tract despite a mucus layer, transduction of target cells being independent of the cell cycle, and an exclusively cytoplasmic replication cycle without any risk of chromosomal integration. In this review we describe the current knowledge of Sendai virus vector (SeVV) development as well as the results of first-generation vector applications under both in vitro and in vivo conditions. So far, Sendai virus vectors have been identified to be a highly efficient transduction tool for a broad range of different tissues and applications. Future directions in vector design and development are discussed.  相似文献   

4.
BACKGROUND: Recombinant Sendai virus vectors (rSeV) constitute a new class of cytoplasmic RNA vectors that have shown efficient gene transfer in various organs, including retinal tissue; however, the related immune responses remain to be overcome in view of clinical applications. We recently developed a novel rSeV from which all envelope-related genes were deleted (rSeV/dFdMdHN) and, in the present study, assess host immune responses following retinal gene transfer. METHODS: rSeV/dFdMdHN or conventional F-gene deleted rSeV (rSeV/dF) was injected into subretinal space of adult Wistar rats or C57BL/6 mice. The transgene expression and histopathological findings were assessed at various time points. Immunological assessments, including the expression of proinflammatory cytokines, natural killer (NK)-cell activity, as well as SeV-specific cytotoxic T lymphocytes (CTLs) and antibodies, were performed following vector injection. RESULTS: rSeV/dFdMdHN showed high gene transfer efficiency into the retinal pigment epithelium at an equivalent level to that seen with rSeV/dF. In the early phase, the upregulation of proinflammatory cytokines, local inflammatory cell infiltration and tissue damage that were all prominently seen in rSeV/dF injection were dramatically diminished using rSeV/dFdMdHN. NK cell activity was also decreased, indicating a reduction of the innate immune response. In the later phase, on the other hand, CTL activity and anti-SeV antibodies were similarly induced, even using rSeV/dFdMdHN, and resulted in transient transgene expression in both vector types. CONCLUSIONS: Deletion of envelope-related genes of rSeV dramatically reduces the vector-induced retinal damage and may extend the utility for ocular gene transfer; however, further studies regulating the acquired immune response are required to achieve long-term transgene expression of rSeV.  相似文献   

5.
Recombinant viral vectors are promising vaccine tools for eliciting potent cellular immune responses against immunodeficiency virus infection, but pre-existing anti-vector antibodies can be an obstacle to their clinical use in humans. We have previously vaccinated rhesus macaques with a recombinant Sendai virus (SeV) vector twice at an interval of more than 1 year and have shown efficient antigen-specific T-cell induction by the second as well as the first vaccination. Here, we have established the method for measurement of SeV-specific neutralizing titers and have found efficient SeV-specific neutralizing antibody responses just before the second SeV vaccination in these macaques. This suggests the feasibility of inducing antigen-specific T-cell responses by SeV vaccination even in the host with pre-existing anti-SeV neutralizing antibodies.  相似文献   

6.
Sendai virus (SeV) is an enveloped virus with a negative sense genome RNA of about 15.3 kb. We previously established a system to recover an infectious virus entirely from SeV cDNA and illustrated the feasibility of using SeV as a novel expression vector. Here, we have attempted to insert a series of foreign genes into SeV of different lengths to learn how far SeV can accommodate extra genes and how the length of inserted genes affects viral replication in cells cultured in vitro and in the natural host, mice. We show that a gene up to 3.2 kb can be inserted and efficiently expressed and that the replication speed as well as the final virus titers in cell culture are proportionally reduced as the inserted gene length increases. In vivo, such a size-dependent effect was not very clear but a remarkably attenuated replication and pathogenicity were generally seen. Our data further confirmed reinforcement of foreign gene expression in vitro from the V(-) version of SeV in which the accessory V gene had been knocked out. Based on these results, we discuss the utility of SeV vector in terms of both efficiency and safety.  相似文献   

7.
We describe the development of novel lentivirus vectors based on simian immunodeficiency virus from African green monkey (SIVagm) pseudotyped with Sendai virus (SeV) envelope glycoproteins. SeV fusion (F) and hemagglutinin-neuraminidase (HN) proteins were successfully incorporated into the SIVagm-based vector by truncation of the cytoplasmic tail of the F protein and by addition of the cytoplasmic tail of SIVagm transmembrane envelope protein to the N terminus of the HN protein. As with the vesicular stomatitis virus G glycoprotein-pseudotyped vector, the mutant SeV F- and HN-pseudotyped SIVagm vector was able to transduce various types of animal and human cell lines. Furthermore, the vector was able to transduce an enhanced green fluorescent protein reporter gene into polarized epithelial cells of rat trachea from the apical and basolateral sides. Therefore, SeV F- and HN-pseudotyped SIVagm vectors have considerable potential for effective use in gene therapy for various therapies, including respiratory diseases.  相似文献   

8.
构建一种以分泌型荧光素酶基因(Gluc)作为报告基因的仙台病毒BB1株微小基因组质粒,比较了CMV启动子与T7启动子对仙台病毒微小基因组的拯救效率。首先设计并合成锤头状核酶序列,仙台病毒trailer、L基因非编码区、N基因非编码区和leader序列以及丁型肝炎病毒核酶序列,插入含有CMV和T7双启动子的质粒pVAX1中,获得仙台微小基因组的通用型载体pVAX-miniSeV。将Gluc基因插入pVAX-miniSeV中,分别获得正向插入的仙台病毒微小基因组载体pVAX-miniSeV-Gluc(+)和反向插入的pVAX-miniSeV-Gluc(-)。用pVAX-miniSeV-Gluc(+)转染BHK21细胞能在上清中检测到高水平的Gluc活性,表明其中的CMV启动子具有正常转录功能。将pVAX-miniSeVGluc(-)和仙台病毒N、P、L蛋白表达质粒共转染BSR T7/5细胞(稳定表达T7RNA聚合酶的BHK-21细胞)检测到Gluc的高效表达,表明pVAX-miniSeV-Gluc(-)能够被有效拯救;但在BHK-21细胞中却未检测到Gluc的有效表达,提示该载体中的CMV启动子对仙台病毒微小基因组的拯救效率可能没有明显作用。为了进一步了解CMV与T7启动子各自对于仙台病毒微小基因组拯救的作用,本研究又构建了单独含有CMV或T7启动子的仙台病毒微小基因组载体pCMV-miniSeV-Gluc(-)和pT7-miniSeV-Gluc(-)。将这两种载体和仙台病毒N、P、L蛋白表达质粒分别共转染BSR T7/5细胞,结果pT7-miniSeV-Gluc(-)共转染组检测到了Gluc的高效表达,而pCMV-miniSeV-Gluc(-)共转染组未检测到,证实了通用型载体pVAX-miniSeV中仅T7启动子对仙台病毒微小基因组的拯救起了关键作用,而CMV启动子作用不明显。本研究成功构建了一种通用型双启动子仙台病毒微小基因组载体pVAX-miniSeV,并证明了T7启动子系统对仙台病毒微小基因组拯救的关键作用。本研究为下一步构建仙台病毒全基因感染性克隆打下了基础。  相似文献   

9.
Sendai virus (SeV) vectors can introduce foreign genes efficiently and stably into primate embryonic stem (ES) cells. For the application of these cells, the control of transgene expression is important. Cynomolgus ES cells transduced with a SeV vector expressing the green fluorescent protein (GFP) gene were propagated in Knockout serum replacement (KSR)-supplemented medium, used widely for the serum-free culture of ES cells, and growth and transgene expression were evaluated. The SeV vector-mediated GFP expression was suppressed in the KSR-supplemented medium, although it was stable in regular fetal bovine serum (FBS)-supplemented medium. Propagation in the KSR-supplemented medium eventually resulted in a complete suppression of GFP expression and eradication of the SeV genome. The inhibitory effect of KSR on the transduction was attributable to the positive selection of untransduced ES cells in addition to the removal of the SeV vector from transduced cells. KSR also reduced the efficiency of the transduction. SeV vector-mediated transgene expression in ES cells was suppressed in the KSR-supplemented medium. Although the suppression is limited in specified cells such as ES cells, these findings will help elucidate how to control transgene expression.  相似文献   

10.
We have recovered a virion from defective cDNA of Sendai virus (SeV) that is capable of self-replication but incapable of transmissible-virion production. This virion delivers and expresses foreign genes in infected cells, and this is the first report of a gene expression vector derived from a defective viral genome of the Paramyxoviridae. First, functional ribonucleoprotein complexes (RNPs) were recovered from SeV cloned cDNA defective in the F (envelope fusion protein) gene, in the presence of plasmids expressing nucleocapsid protein and viral RNA polymerase. Then the RNPs were transfected to the cells inducibly expressing F protein. Virion-like particles thus obtained had a titer of 0.5 x 10(8) to 1. 0 x 10(8) cell infectious units/ml and contained F-defective RNA genome. This defective vector amplified specifically in an F-expressing packaging cell line in a trypsin-dependent manner but did not spread to F-nonexpressing cells. This vector infected and expressed an enhanced green fluorescent protein reporter gene in various types of animal and human cells, including nondividing cells, with high efficiency. These results suggest that this vector has great potential for use in human gene therapy and vaccine delivery systems.  相似文献   

11.
Delivery of Ags to dendritic cells (DCs) plays a pivotal role in the induction of efficient immune responses ranging from immunity to tolerance. The observation that certain viral pathogens are able to infect DCs has led to a concept in which applications of recombinant viruses are used for Ag delivery with the potential benefit of inducing potent Ag-specific T cell responses directed against multiple epitopes. As a prerequisite for such an application, the infection of DCs by recombinant viruses should not interfere with their stimulatory capacity. In this context, we could show that an emerging negative-strand RNA viral vector system based on the Sendai virus (SeV) is able to efficiently infect monocyte-derived human DCs (moDCs). However, after infection with SeV wild type, both the response of DCs to bacterial LPS as a powerful mediator of DC maturation and the allostimulatory activity were severely impaired. Interestingly, using various recombinant SeV vectors that were devoid of single viral genes, we were able to identify the SeV matrix (M) protein as a key component in moDC functional impairment after viral infection. Consequently, use of M-deficient SeV vectors preserved the allostimulatory activity in infected moDCs despite an efficient expression of all other virally encoded genes, thereby identifying M-deficient vectors as a highly potent tool for the genetic manipulation of DCs.  相似文献   

12.
In high-capacity adenovirus (HC-Ad) vectors the size and/or composition of the vector genome influences vector stability during production and the expression profile following gene transfer. Typically, an HC-Ad vector will contain both a gene or an expression cassette and stuffer DNA that is required to balance the final vector genome to a size of between 27 and 36 kb. To gain an improved understanding of factors that may influence gene expression from HC-Ad vectors, we have generated a series of vectors that carry different combinations of human alpha-1 antitrypsin (hAAT) expression constructs and stuffer DNAs. Expression in vitro did not predict in vivo performance: all vectors expressed hAAT at similar levels when tested in cell culture. Hepatic expression was evaluated following in vivo gene transfer in C57BL/6J mice. hAAT levels obtained from genomic DNA were significantly higher than levels achieved with small cDNA expression cassettes. Expression was independent of the orientation and only marginally influenced by the location of the expression cassette within the vector genome. The use of lambda stuffer DNA resulted in low-level but stable expression for at least 3 months when higher doses were applied. A potential matrix attachment region element was identified within the hAAT gene and caused a 10-fold increase in expression when introduced in an HC-Ad vector genome carrying a phosphoglycerate kinase (pgk) hAAT cDNA construct. We also illustrate the influence of the promoter on anti-hAAT antibody formation in C57BL/6J mice: a human cytomegalovirus but not a pgk promoter resulted in an anti-hAAT antibody response. Thus, the overall design of HC-Ad vectors may significantly influence amounts and duration of gene expression at different levels.  相似文献   

13.
基于DNA和RNA的双功能Semliki森林病毒复制子载体的构建   总被引:3,自引:0,他引:3  
以semliki森林病毒衍生的复制子载体pSFV1和辅助载体pSFV-helper2为骨架, 用CMV IE和T7启动子替换SP6启动子并在3′ UTR下游插入BGH转录终止子,构建了基于DNA和RNA的复制子表达载体pSMCTA和辅助载体pSHCTA。在DNA和RNA二种递送方式上证实该表达载体可高水平表达外源基因,与辅助载体共转染可制备具有感染能力并能表达外源基因的重组病毒颗粒。构建的基于DNA和RNA的双功能复制子载体显著地提高SFV载体应用范围,在体外可用于高水平表达外源基因及大规模制备重组病毒颗粒,在体内也可用于研制复制子疫苗和基因治疗载体。  相似文献   

14.
C Fraefel  S Song  F Lim  P Lang  L Yu  Y Wang  P Wild    A I Geller 《Journal of virology》1996,70(10):7190-7197
Herpes simplex virus type 1 (HSV-1) plasmid vectors have promise for genetic intervention in the brain, but several problems caused by the helper virus have compromised their utility. To develop a helper virus-free packaging system for these vectors, the DNA cleavage/packaging signals were deleted from a set of cosmids that represents the HSV-1 genome. Following cotransfection into cells, this modified cosmid set supported replication and packaging of vector DNA. However, in the absence of the DNA cleavage/packaging signals, the HSV-1 genome was not packaged, and consequently vector stocks were free of detectable helper virus. In the absence of helper virus, the vectors efficiently infected rat neural cells in culture or in the brain with minimal cytopathic effects. beta-galactosidase-positive cells were observed for at least 1 month in vivo, and vector DNA persisted for this period. This system may facilitate studies on neuronal physiology and potential therapeutic applications.  相似文献   

15.
We have developed a cytoplasmic replicating virus vector of Sendai virus (SeV) that infects and replicates in most mammalian cells, including neurons, and directs high-level gene expression. To investigate the protective effect of SeV vector-mediated gene transfer of glial cell line-derived neurotrophic factor (GDNF) on the delayed neuronal death caused by transient global ischemia in gerbils, SeV vectors carrying either GDNF (SeV/GDNF) or enhanced green fluorescent protein gene (SeV/GFP) were stereotaxically microinjected into the lateral ventricle. Four days after injection, occlusion of the bilateral common carotid arteries for 5 min produced transient global forebrain ischemia. Treatment with SeV/GDNF significantly decreased the delayed neuronal death of the hippocampal CA1 pyramidal neurons observed 6 days after the operation. TUNEL staining demonstrated that SeV/GDNF treatment markedly reduced the number of apoptotic cells in the hippocampal CA1 neurons, indicating that SeV/GDNF treatment prevented apoptosis. Furthermore, delayed neuronal death on the contralateral side of the hippocampal CA1 was also prevented to a similar extent as that on the ipsilateral side. These results suggest that SeV/GDNF prevents the delayed neuronal death induced by ischemia and is potentially useful for gene therapy for stroke.  相似文献   

16.
For protection from HIV-1 infection, a vaccine should elicit both humoral and cell-mediated immune responses. A novel vaccine regimen and adjuvant that induce high levels of HIV-1 Env-specific T cell and antibody (Ab) responses was developed in this study. The prime-boost regimen that used combinations of replication-competent vaccinia LC16m8Δ (m8Δ) and Sendai virus (SeV) vectors expressing HIV-1 Env efficiently produced both Env-specific CD8+ T cells and anti-Env antibodies, including neutralizing antibodies (nAbs). These results sharply contrast with vaccine regimens that prime with an Env expressing plasmid and boost with the m8Δ or SeV vector that mainly elicited cellular immunities. Moreover, co-priming with combinations of m8Δs expressing Env or a membrane-bound human CD40 ligand mutant (CD40Lm) enhanced Env-specific CD8+ T cell production, but not anti-Env antibody production. In contrast, priming with an m8Δ that coexpresses CD40Lm and Env elicited more anti-Env Abs with higher avidity, but did not promote T cell responses. These results suggest that the m8Δ prime/SeV boost regimen in conjunction with CD40Lm expression could be used as an immunization platform for driving both potent cellular and humoral immunities against pathogens such as HIV-1.  相似文献   

17.
Live recombinant vesicular stomatitis viruses (VSVs) expressing foreign antigens are highly effective vaccine vectors. However, these vectors induce high-titer neutralizing antibody directed at the single VSV glycoprotein (G), and this antibody alone can prevent reinfection and boosting with the same vector. To determine if efficient boosting could be achieved by changing the G protein of the vector, we have developed two new recombinant VSV vectors based on the VSV Indiana serotype but with the G protein gene replaced with G genes from two other VSV serotypes, New Jersey and Chandipura. These G protein exchange vectors grew to titers equivalent to wild-type VSV and induced similar neutralizing titers to themselves but no cross-neutralizing antibodies to the other two serotypes. The effectiveness of these recombinant VSV vectors was illustrated in experiments in which sequential boosting of mice with the three vectors, all encoding the same primary human immunodeficiency virus (HIV) envelope protein, gave a fourfold increase in antibody titer to an oligomeric HIV envelope compared with the response in animals receiving the same vector three times. In addition, only the animals boosted with the exchange vectors produced antibodies neutralizing the autologous HIV primary isolate. These VSV envelope exchange vectors have potential as vaccines in immunizations when boosting of immune responses may be essential.  相似文献   

18.
Foot-and-mouth disease virus (FMDV) is highly contagious and responsible for huge outbreaks among cloven hoofed animals. The aim of the present study is to evaluate a plasmid DNA immunization system that expresses the FMDV/O/IRN/2007 VP1 gene and compare it with the conventional inactivated vaccine in an animal model. The VP1 gene was sub-cloned into the unique Kpn I and BamH I cloning sites of the pcDNA3.1+ and pEGFP-N1 vectors to construct the VP1 gene cassettes. The transfected BHKT7 cells with sub-cloned pEGFP-N1-VP1 vector expressed GFP-VP1 fusion protein and displayed more green fluorescence spots than the transfected BHKT7 cells with pEGFP-N1 vector, which solely expressed the GFP protein. Six mice groups were respectively immunized by the sub-cloned pcDNA3.1+-VP1 gene cassette as the DNA vaccine, DNA vaccine and PCMV-SPORT-GMCSF vector (as molecular adjuvant) together, conventional vaccine, PBS (as negative control), pcDNA3.1+ vector (as control group) and PCMV-SPORT vector that contained the GMCSF gene (as control group). Significant neutralizing antibody responses were induced in the mice which were immunized using plasmid vectors expressing the VP1 and GMCSF genes together, the DNA vaccine alone and the conventional inactivated vaccine (P<0.05). Co-administration of DNA vaccine and GMCSF gene improved neutralizing antibody response in comparison with administration of the DNA vaccine alone, but this response was the most for the conventional vaccine group. However, induction of humeral immunity response in the conventional vaccine group was more protective than for the DNA vaccine, but T-cell proliferation and IFN-γ concentration were the most in DNA vaccine with the GMCSF gene. Therefore the group that was vaccinated by DNA vaccine with the GMCSF gene, showed protective neutralizing antibody response and the most Th1 cellular immunity.  相似文献   

19.
Adeno-associated virus (AAV) vectors are associated with relatively mild host immune responses in vivo. Although AAV induces very weak innate immune responses, neutralizing antibodies against the vector capsid and transgene still occur. To understand further the basis of the antiviral immune response to AAV vectors, studies were performed to characterize AAV interactions with macrophages. Primary mouse macrophages and human THP-1 cells transduced in vitro using an AAV serotype 2 (AAV2) vector encoding green fluorescent protein did not result in measurable transgene expression. An assessment of internalized vector genomes showed that AAV2 vector uptake was enhanced in the presence of normal but not heat-inactivated or C3-depleted mouse/human serum. Enhanced uptake in the presence of serum coincided with increased macrophage activation as determined by the expression of NF-κB-dependent genes such as macrophage inflammatory protein 2 (MIP-2), interleukin-1β (IL-1β), IL-8, and MIP-1β. AAV vector serotypes 1 and 8 also activated human and mouse macrophages in a serum-dependent manner. Immunoprecipitation studies demonstrated the binding of iC3b complement protein to the AAV2 capsid in human serum. AAV2 did not activate the alternative pathway of the complement cascade and lacked cofactor activity for factor I-mediated degradation of C3b to iC3b. Instead, our results suggest that the AAV capsid also binds complement regulatory protein factor H. In vivo, complement receptor 1/2- and C3-deficient mice displayed impaired humoral immunity against AAV2 vectors, with a delay in antibody development and significantly lower neutralizing antibody titers. These results show that the complement system is an essential component of the host immune response to AAV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号