首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mannose-binding lectin from snowdrop (Galanthus nivalis agglutinin: GNA), when fed to insects, binds to the gut epithelium and passes into the haemolymph. The potential for GNA to act as a carrier protein to deliver an insect neuropeptide, Manduca sexta allatostatin (Manse-AS), to the haemolymph of lepidopteran larvae has been examined by expressing a GNA/Manse-AS fusion protein (FP) in Escherichia coli, and feeding purified FP to larvae of the tomato moth Lacanobia oleracea. FP, administered at 1.5 or 0.5% of dietary proteins, was found to strongly inhibit feeding and prevent growth of fifth stadium larvae, whereas neither GNA nor Manse-AS alone, nor a mixture of GNA and Manse-AS in control treatments, had deleterious effects at similar levels. Elevated levels of material reacting with anti-Manse-AS antibodies were detected in the haemolymph of insects fed diets containing FP, suggesting that transport of the peptide had occurred. Evidence for the delivery of intact FP to the haemolymph was provided by the co-elution of Manse-AS-like immunoreactivity with standard FP after size exclusion chromatography of haemolymph from FP-fed larvae. GNA/Manse-AS and similar fusion proteins offer a novel and effective strategy for delivering insect neuropeptides by oral administration, which could be used in conjunction with expression in transgenic plants to give crop protection in the field.  相似文献   

2.
Chitinases are vital to moulting in insects, and may also affect gut physiology through their involvement in peritrophic membrane turnover. A cDNA encoding chitinase was cloned from larvae of tomato moth (Lacanobia oleracea), a Lepidopteran pest of crops. The predicted protein contains 553 amino acid residues, with a signal peptide of 20 a.a. Sequence comparison showed 75-80% identity with other Lepidopteran chitinases. L. oleracea chitinase was produced as a functional recombinant enzyme in the yeast Pichia pastoris. A fusion protein containing chitinase joined to the N-terminus of snowdrop lectin (GNA) was also produced, to determine whether GNA could deliver chitinase to the haemolymph of Lepidopteran larvae after oral ingestion. The purified recombinant proteins exhibited similar levels of chitinase activity in vitro. Both proteins were highly toxic to L. oleracea larvae on injection, causing 100% mortality at low dose (2.5 microg/g insect). Injection of chitinase prior to the moult resulted in decreased cuticle thickness. The recombinant proteins caused chronic effects when fed, causing reductions in larval growth and food consumption by up to 60%. The oral toxicity of chitinase was not increased by attaching GNA in the fusion protein, due to degradation in the larval gut, preventing GNA acting as a "carrier".  相似文献   

3.
Plants genetically modified to express Galanthus nivalis agglutinin (GNA) have been found to confer partial resistance to homopteran pests. Laboratory experiments were conducted to investigate direct effects of GNA on larvae of three species of aphid predators that differ in their feeding and digestive physiology, i.e. Chrysoperla carnea, Adalia bipunctata and Coccinella septempunctata. Longevity of all three predator species was directly affected by GNA, when they were fed a sucrose solution containing 1% GNA. However, a difference in sensitivity towards GNA was observed when comparing the first and last larval stage of the three species. In vitro studies revealed that gut enzymes from none of the three species were able to break down GNA. In vivo feed-chase studies demonstrated accumulation of GNA in the larvae. After the larvae had been transferred to a diet devoid of GNA, the protein stayed present in the body of C. carnea, but decreased over time in both ladybirds. Binding studies showed that GNA binds to glycoproteins that can be found in the guts of larvae of all three predator species. Immunoassay by Western blotting of haemolymph samples only occasionally showed the presence of GNA. Fluorescence microscopy confirmed GNA accumulation in the midgut of C. carnea larvae. Implications of these findings for non-target risk assessment of GNA-transgenic crops are discussed.  相似文献   

4.
Fusion proteins have considerable potential as novel insect control agents because they enable the oral delivery of insecticidal peptides to the haemolymph of pests. Transport is achieved via fusion of the toxin to a carrier protein Galanthus nivalis agglutinin (GNA) that, after ingestion, binds to and crosses the insect gut epithelia. A fusion protein comprising a toxin from the South Indian red scorpion (Mesobuthus tamulus) that is fused to a GNA polypeptide (ButaIT/GNA) has a detrimental effect on the development of tomato moth Lacanobia oleracea (L.) (Lepidoptera: Noctuidae) larvae. The present study examines the effects of ButaIT/GNA and GNA, delivered orally or by injection, on the development of L. oleracea larvae, and the subsequent effects on the gregarious ectoparasitoid Eulophus pennicornis (Nees) (Hymenoptera: Eulophidae) developing on ButaIT/GNA‐ and GNA‐treated hosts. The fusion protein, but not GNA, reduces the growth of fifth stadium L. oleracea larvae. The development of E. pennicornis is not affected by the presence of ButaIT/GNA in hosts that ingest the protein, although it is affected when hosts are injected with the protein. This difference is considered to be a result of higher levels of fusion protein being present when the fusion protein is injected. Intact ButaIT/GNA is detected by immunoassay in the haemolymph of L. oleracea larvae after ingestion of the fusion protein. More unexpectedly, negative effects are observed for the growth of E. pennicornis larvae developing on hosts that have either ingested, or been injected with GNA.  相似文献   

5.

Background  

Despite evidence suggesting a role in plant defence, the use of plant lectins in crop protection has been hindered by their low and species-specific insecticidal activity. Snowdrop lectin (Galanthus nivalis agglutinin; GNA) is transported to the haemolymph of insects after oral ingestion, and can be used as a basis for novel insecticides. Recombinant proteins containing GNA expressed as a fusion with a peptide or protein, normally only toxic when injected into the insect haemolymph, have the potential to show oral toxicity as a result of GNA-mediated uptake.  相似文献   

6.
Evidence is accumulating that commonly used pesticides are linked to decline of pollinator populations; adverse effects of three neonicotinoids on bees have led to bans on their use across the European Union. Developing insecticides that pose negligible risks to beneficial organisms such as honeybees is desirable and timely. One strategy is to use recombinant fusion proteins containing neuroactive peptides/proteins linked to a ‘carrier’ protein that confers oral toxicity. Hv1a/GNA (Galanthus nivalis agglutinin), containing an insect-specific spider venom calcium channel blocker (ω-hexatoxin-Hv1a) linked to snowdrop lectin (GNA) as a ‘carrier’, is an effective oral biopesticide towards various insect pests. Effects of Hv1a/GNA towards a non-target species, Apis mellifera, were assessed through a thorough early-tier risk assessment. Following feeding, honeybees internalized Hv1a/GNA, which reached the brain within 1 h after exposure. However, survival was only slightly affected by ingestion (LD50 > 100 µg bee−1) or injection of fusion protein. Bees fed acute (100 µg bee−1) or chronic (0.35 mg ml−1) doses of Hv1a/GNA and trained in an olfactory learning task had similar rates of learning and memory to no-pesticide controls. Larvae were unaffected, being able to degrade Hv1a/GNA. These tests suggest that Hv1a/GNA is unlikely to cause detrimental effects on honeybees, indicating that atracotoxins targeting calcium channels are potential alternatives to conventional pesticides.  相似文献   

7.
In Pieris brassicae, parasitism by Cotesia glomerata and bacterial infection are differentiated with respect to haemolymph protein arrays, and production or suppression of antibacterial agents. Bacteriolytic activity in haemolymph from parasitized larvae was slightly, but significantly, higher 24h post-treatment than that of untreated and wounded controls. Micrococcus lysodeikticus- or lipopolysaccharide-(LPS) injected insects exhibited an 11-fold greater response than those parasitized. At 24h post-treatment, antibacterial activity against Escherichia coli was observed in haemolymph from all but untreated larvae. Injection of Grace's medium, M. lysodeikticus or LPS, caused a greater than threefold response than parasitization or wounding. The protein banding patterns of parasitized hosts did not correspond to those of the other treatments. Two parasitoid-induced proteins (38 and 128 kDa) were examined. Both were found in parasitized insects, not in those wounded, injected with Grace's medium, M. lysodeikticus or LPS. Neither protein was bacteriolytic or bacteriostatic in inhibition zone assays.  相似文献   

8.
Bioassays of insecticidal proteins from Bacillus thuringiensis subsp. israelensis with larvae of the malaria vector mosquito Anophelesalbimanus showed that the cytolytic protein Cyt1Aa was not toxic alone, but it increased the toxicity of the crystalline proteins Cry4Ba and Cry11Aa. Synergism also occurred between Cry4Ba and Cry11Aa toxins. Whereas many previous analyses of synergism have been based on a series of toxin concentrations leading to comparisons between expected and observed values for the concentration killing 50% of insects tested (LC50), we describe and apply a method here that enables testing for synergism based on single concentrations of toxins.  相似文献   

9.
Spider Venom Toxin Protects Plants from Insect Attack   总被引:1,自引:0,他引:1  
Many of the toxin proteins, that have been heterogeneously expressed in agricultural crops to provide resistance to insect pests, are too specific or are only mildly effective against the major insect pests. Spider venoms are a complex cocktail of toxins that have evolved specifically to kill insects. Here we show that the ω-ACTX-Hv1a toxin (Hvt), a component of the venom of the Australian funnel web spider (Hadronyche versuta) that is a calcium channel antagonist, retains its biological activity when expressed in a heterologous system. Expressed as a fusion protein in E. coli, the purified toxin fusion immobilized and killed Helicoverpa armigera and Spodoptera littoralis caterpillars when applied topically. Transgenic expression of Hvt in tobacco effectively protected the plants from H. armigera and S. littoralis larvae, with 100% mortality within 48 h. We conclude that the Hvt is an attractive and effective molecule for the transgenic protection of plants from herbivorous insects which should be evaluated further for possible application in agriculture. The authors Sher Afzal Khan and Zahid Mukhtar contributed equally to this work.  相似文献   

10.
The bite of spiders of the genus Loxosceles can induce a variety of biological effects, including dermonecrosis and complement-dependent haemolysis. The aim of this study was to generate recombinant proteins from the Loxosceles spider gland to facilitate structural and functional studies in the mechanisms of loxoscelism. Using "Expressed Sequencing Tag" strategy of aleatory clones from, L. laeta venom gland cDNA library we have identified clones containing inserts coding for proteins with significant similarity with previously obtained N-terminus of sphingomyelinases from Loxosceles intermedia venom [1]. Clone H17 was expressed as a fusion protein containing a 6x His-tag at its N-terminus and yielded a 33kDa protein. The recombinant protein was endowed with all biological properties ascribed to the whole L. laeta venom and sphingomyelinases from L. intermedia, including dermonecrotic and complement-dependent haemolytic activities. Antiserum raised against the recombinant protein recognised a 32-kDa protein in crude L. laeta venom and was able to block the dermonecrotic reaction caused by whole L. laeta venom. This study demonstrates conclusively that the sphingomyelinase activity in the whole venom is responsible for the major pathological effects of Loxosceles spider envenomation.  相似文献   

11.
The effect of expressing the gene encoding snowdrop lectin (Galanthus nivalis agglutinin, GNA) in transgenic potato plants, on parasitism of the phytophagous insect pest Lacanobia oleracea by the gregarious ectoparasitoid Eulophus pennicornis, was investigated in glasshouse trials. Expression of GNA (approx. 1.0% total soluble protein) by transgenic plants significantly reduced the level of pest damage, thus confirming previous studies. Furthermore, the presence of the parasitoid significantly reduced the levels of damage incurred either by the transgenic or control plants when compared to those plants grown in the absence of the parasitoid. For the GNA expressing plants the presence of the parasitoid resulted in further reductions (ca. 21%) in the level of damage caused by the pest species. The ability of the wasp to parasitise and subsequently develop on the pest larvae was not altered by the presence of GNA in the diet of the host. E. pennicornis progeny that developed on L. oleracea reared on GNA expressing plants showed no significant alteration in fecundity when compared with wasps that had developed on hosts fed on control potato plants, although mean size and longevity of female parasitoids was significantly reduced. The number of F 2 progeny produced by parasitoids derived from hosts fed on GNA-expressing plants was not significantly different to those produced by parasitoids from hosts fed control plants. Results from the present study demonstrate that the use of transgenic plants expressing insecticidal proteins can be compatible with the deployment of beneficial insects and that the two factors may interact in a positive manner.  相似文献   

12.
The bacterium Bacillus thuringiensis produces, at the vegetative stage of its growth, Vip3A proteins with activity against a broad spectrum of lepidopteran insects. The Egyptian cotton leaf worm (Spodoptera littoralis) is an important agricultural pest that is susceptible to the Vip3Aa16 protein of Bacillus thuringiensis kurstaki strain BUPM95. The midgut histopathology of Vip3Aa fed larvae showed vacuolization of the cytoplasm, brush border membrane destruction, vesicle formation in the apical region and cellular disintegration. Biotinylated Vip3Aa toxin bound proteins of 55- and 100-kDa on blots of S. littoralis brush border membrane preparations. These binding proteins differ in molecular size from those recognized by Cry1C, one of the very few Cry proteins active against the polyphagous S. littoralis. This result supports the use of Vip3Aa16 proteins as insecticidal agent, especially in case of Cry-resistance management.  相似文献   

13.
Soluble venom and purified fractions of the theraposid spider Brachypelma albiceps were screened for insecticidal peptides based on toxicity to crickets. Two insecticidal peptides, named Ba1 and Ba2, were obtained after the soluble venom was separated by high performance liquid chromatography and cation exchange chromatography. The two insecticidal peptides contain 39 amino acid residues and three disulfide bonds, and based on their amino acid sequence, they are highly identical to the insecticidal peptides from the theraposid spiders Aphonopelma sp. from the USA and Haplopelma huwenum from China indicating a relationship among these genera. Although Ba1 and Ba2 were not able to modify currents in insect and vertebrate cloned voltage-gated sodium ion channels, they have noteworthy insecticidal activities compared to classical arachnid insecticidal toxins indicating that they might target unknown receptors in insect species. The most abundant insecticidal peptide Ba2 was submitted to NMR spectroscopy to determine its 3-D structure; a remarkable characteristic of Ba2 is a cluster of basic residues, which might be important for receptor recognition.  相似文献   

14.
The precise mechanisms underlying Bacillus thuringiensis-mediated killing of pest insects are not clear. In some cases, death may be due to septicaemia caused by Bt and/or gut bacteria gaining access to the insect haemocoel. Since insects protect themselves from microbes using an array of cellular and humoral immune defences, we aimed to determine if a recombinant immunosuppressive wasp venom protein (rVPr1) could increase the susceptibility of two pest Lepidoptera (Lacanobia oleracea and Mamestra brassicae) to Bt. Bio-assays indicated that injection of 6 μl of rVPr1 into the haemocoel of both larvae caused similar levels of mortality (less than 38%). On the other hand, the LD30-40 of Bt for M. brassicae larvae was approximately 20 times higher than that for L. oleracea larvae. Furthermore, in bio-assays where larvae were injected with rVPr1, then fed Bt, a significant reduction in survival of larvae for both species occurred compared to each treatment on its own (P < 0.001); and for L. oleracea larvae, this effect was more than additive. The results are discussed within the context of insect immunity and protection against Bt.  相似文献   

15.
Red kidney bean, Phaseolus vulgaris, contains a lectin phytohemagglutinin (PHA) with toxicity towards higher animals. PHA exists in the isoforms PHA-E and PHA-L, which agglutinate erythrocytes and lymphocytes, respectively. Lacanobia oleracea larvae were reared from hatch on artificial diets containing PHA-E or PHA-L at 2% (w/w) dietary protein, and on transgenic Arabidopsis plants expressing either lectin at 0.4-0.6% of total soluble proteins. In artificial diet bioassays neither lectin affected larval survival, development, growth nor consumption. In transgenic plant bioassays both PHA-E and PHA-L promoted larval growth and development. This effect was greatest for PHA-E. Mean larval biomass of insects fed on plants expressing PHA-E was significantly greater (up to two-fold) than controls during the final two instars and the insects developed at a significantly greater rate so that after 26 days 83% of PHA-E exposed insects were in the final instar compared to 44% for control insects. PHA-E and PHA-L were detected by Western blotting in haemolymph, sampled from insects fed diets or plant material containing the lectins. However, despite the demonstrated potential for both isolectins to bind to gut glycopolypeptides in vitro neither was found to accumulate in vivo in the guts of exposed insects. Since lectin binding to gut polypeptides is thought to be necessary for insecticidal activity the failure of PHA-E and PHA-L to bind in vivo may account for their lack of toxicity to L. oleracea.  相似文献   

16.
We developed a protocol for obtaining high yields (10-15 mg per 1100 ml of culture supernatant) of highly purified (up to 95%) Vip3Aa protein from HD-1 cultures. The protocol is based on acetone precipitation of supernatant protein, followed by HPLC fractionation (DEAE-5PW column) and several concentration steps. Our protocol resulted in higher yields and purity of Vip3Aa than a previously published method [Estruch, J.J., Warren, G.W., Mullins, M.A., Nye, G.J., Craig, J.A., Koziel, M.G., 1996. Vip3A, a 353 novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of 354 activities against lepidopteran insects. Proc. Nat. Acad. Sci. USA 93, 5389-5394.]. This was achieved by using acetone rather than ammonium sulfate for precipitation of proteins from culture supernatants, and a shallow rather than a steep NaCl gradient for elution of the toxin, and by conducting all the purification steps at low temperature to prevent toxin degradation. In bioassays of the purified protein, Choristoneura fumiferana and Lymantria dispar larvae were less susceptible than Spodopteraexigua (10- and ∼100-fold, respectively). A B. thuringiensis var. kurstaki strain HD-1 from which the vip3Aa gene had been deleted (EG12414) showed reduced toxicity to S. exigua relative to the unmodified parental strain (EG2001), but not to L. dispar or C. fumiferana. We interpret these results as indicating that the Vip3Aa toxin does not contribute measurably to pathogenicity of HD-1 in these species.  相似文献   

17.
Plants synthesize a variety of molecules to defend themselves against an attack by insects. Talisin is a reserve protein from Talisia esculenta seeds, the first to be characterized from the family Sapindaceae. In this study, the insecticidal activity of Talisin was tested by incorporating the reserve protein into an artificial diet fed to the velvetbean caterpillar Anticarsia gemmatalis, the major pest of soybean crops in Brazil. At 1.5% (w/w) of the dietary protein, Talisin affected larval growth, pupal weight, development and mortality, adult fertility and longevity, and produced malformations in pupae and adult insects. Talisin inhibited the trypsin-like activity of larval midgut homogenates. The trypsin activity in Talisin-fed larvae was sensitive to Talisin, indicating that no novel protease-resistant to Talisin was induced in Talisin-fed larvae. Affinity chromatography showed that Talisin bound to midgut proteinases of the insect A. gemmatalis, but was resistant to enzymatic digestion by these larval proteinases. The transformation of genes coding for this reserve protein could be useful for developing insect resistant crops.  相似文献   

18.
Physalins are seco-steroids obtained from plants of the family Solanaceae. Herein, we tested Physalis angulata L purified physalin B as an immunomodulatory compound in 5th-instar larvae of Rhodnius prolixus, which were systemically infected with the H14 Trypanosoma rangeli strain protozoan. In uninfected insects, the effective concentration of physalin B, which inhibited 50% of the blood ingested (ED(50)) volume, was 15.2+/-1.6 microg/ml of the meal. Ecdysis processes and mortality in uninfected larvae, treated orally with physalin B in concentrations ranging from 1 to 10 microg/ml, was similar to that observed in insects not treated with physalin B. However, R. prolixus larvae previously fed on blood containing 1.0, 0.1, and 0.01 microg of physalin B/ml exhibited mortality rates of 78.1, 54.3, and 12.7%, respectively, 6 days after inoculation of T. rangeli (1 x 10(3) parasites/insect), whereas only 7.2% mortality was observed in the control group, injected with sterile culture medium. The insects treated with physalin B (0.1 microg/ml) and inoculated with T. rangeli did not modify the phenoloxidase (PO) activity and total hemocyte count in the hemolymph. However, physalin B treatment caused a reduction in hemocyte micro-aggregation and nitric oxide production and enhanced the parasitemia in the hemolymph. These results demonstrate that physalin B from P. angulata is a potent immunomodulatory substance for the bloodsucking insect, R. prolixus.  相似文献   

19.
When fed in semi-artificial diet the lectins from snowdrop (Galanthus nivalis: GNA: mannose-specific) and jackbean (Canavalia ensiformis: Con A: specific for glucose and mannose) were shown to accumulate in vivo in the guts, malpighian tubules and haemolymph of Lacanobia oleracea (tomato moth) larvae. Con A, but not GNA, also accumulated in the fat bodies of lectin-fed larvae. The presence of glycoproteins which bind to both lectins in vitro was confirmed using labelled lectins to probe blots of polypeptides extracted from larval tissues. Immunolocalisation studies revealed a similar pattern of GNA and Con A binding along the digestive tract with binding concentrated in midgut sections. Binding of lectins to microvilli appeared to lead to transport of the proteins into cells of the gut and malpighian tubules. These results suggested that both lectins are able to exert systemic effects via transport from the gut contents to the haemolymph across the gut epithelium. The delivery of GNA and Con A to the haemolymph was shown to be dependent on their functional integrity by feeding larvae diets containing denatured lectins. Con A, but not GNA, was shown to persist in gut and fat body tissue of lectin-fed larvae chased with control diet for three days. Con A also shows more extensive binding to larval tissues in vitro than GNA, and these two factors are suggested to contribute to the higher levels of toxicity shown by Con A, relative to GNA, in previous long term bioassays.  相似文献   

20.
The susceptibilities of the major pests of cotton in Australia, Helicoverpa armigera and Helicoverpa punctigera, to some insecticidal proteins from Bacillus thuringiensis were tested by bioassay. A commercial formulation, DiPel, and individual purified insecticidal proteins were tested. H. armigera was consistently more tolerant to B. thuringiensis insecticidal proteins than was H. punctigera, although both were susceptible to only a limited range of these proteins. Only Cry1Ab, Cry1Ac, Cry2Aa, Cry2Ab, and Vip3A killed H. armigera at dosages that could be considered acceptable. There was no significant difference in the toxicities of Cry1Fa and Cry1Ac for H. punctigera but Cry1Fa had little toxicity for H. armigera. The five instars of H. armigera did not differ significantly in their susceptibility to DiPel on the basis of LC(50). However, there were significant differences in the susceptibility to Cry1Ac and Cry2Aa of three strains of H. armigera. Bioassays conducted with Cry1Ac and Cry2Aa showed that there was a small but significant negative interaction between these delta-endotoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号