首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Enzyme activities of the tricarboxylic acid (TCA) cycle and the anaplerotic pathways, as well as the cell cytology of two C. lipolytica mutants with the modified glyoxylate cycle and their parent strain were studied during the exponential growth phase on glucose or hexadecane.Among the TCA cycle enzymes, the key enzyme citrate synthase had the highest activity in all three strains grown on both substrates. NAD-dependent isocitrate dehydrogenase had the minimum activity. All strains had well-developed mitochondria.Pyruvate carboxylation was active in the wild strain and mutant 2 grown on glucose, where this reaction is the basic anaplerotic pathway for oxal-acetate synthesis; mutant 1 had actively functioning enzymes for both anaplerotic pathways — pyruvate carboxylase, isocitrate lyase and malate synthase.During hexadecane assimilation, the number of peroxisomes in all strains increased sharply, accompanied by a simultaneous increase in isocitrate lyase activity.The low activities of both isocitrate lyase and pyruvate carboxylase in mutant 2 give reason to believe that this strain has an additional pathway for oxalacetic acid synthesis during the assimilation of n-alkane.  相似文献   

2.
Candida tropicalis isolated from acclimated activated sludge was used in this study. Cell suspensions with 5 x 10(7) cells ml(-1) were irradiated by using a He-Ne laser. After mutagenesis, the irradiated cell suspension was diluted and plated on yeast extract-peptone-dextrose (YEPD) medium. Plates with approximately 20 individual colonies were selected, and all individual colonies were harvested for phenol biodegradation. The phenol biodegradation stabilities for 70 phenol biodegradation-positive mutants, mutant strains CTM 1 to 70, ranked according to their original phenol biodegradation potentials, were tested continuously during transfers. Finally, mutant strain CTM 2, which degraded 2,600 mg liter(-1) phenol within 70.5 h, was obtained on the basis of its capacity and hereditary stability for phenol biodegradation. The phenol hydroxylase gene sequences were cloned in wild and mutant strains. The results showed that four amino acids were mutated by irradiation with a laser. In order to compare the activity of phenol hydroxylase in wild and mutant strains, their genes were expressed in Escherichia coli BL21(DE3) and enzyme activities were spectrophotometrically determined. It was clear that the activity of phenol hydroxylase was promoted after irradiation with a He-Ne laser. In addition, the cell growth and intrinsic phenol biodegradation kinetics of mutant strain CTM 2 in batch cultures were also described by Haldane's kinetic equation with a wide range of initial phenol concentrations from 0 to 2,600 mg liter(-1). The specific growth and degradation rates further demonstrated that the CTM 2 mutant strain possessed a higher capacity to resist phenol toxicity than wild C. tropicalis did.  相似文献   

3.
Cell wall turnover was examined in parent and mutant strains of Staphylococcus aureus. Peptidoglycan and teichoic acid were observed to undergo turnover in the wild-type strain during exponential growth; however, the rate of turnover did not decrease when the growth rate slowed, as the culture entered stationary phase. Isolated native cell walls and crude soluble autolytic enzyme were prepared from cells harvested during exponential and postexponential phases of growth. Native cell walls from both phases of growth autolyzed in buffer at identical rates; similarily, crude soluble enzyme from both preparations degraded radioactive cell walls at the same rate. Therefore, the activity of the autolysin in both exponential and postexponential cells was similar. The autolysis of whole cells of a mutant tar-1 was enhanced by 1.0 M NaCl. When 1.0 M NaCl was present under growing conditions, the rate of cell wall turnover was greatly increased. The presence of chloramphenicol, which inhibits whole-cell autolysis, also inhibited turnover. Analysis of the cell wall material recovered from spent medium revealed products consistent with the known mode of action of the endogenous autolysin. It is concluded that cell wall turnover in S. aureus is independent of the stage of culture growth but is dependent instead on the activity of the autolysin.  相似文献   

4.
Summary Heme-deficient mutants of Saccharomyces cerevisiae have been isolated from two isogenic strains with the use of an enrichment method based on photodynamic properties of Zn-protoporphyrin. They defined seven non-overlapping complementation groups. A mutant representative of each group was further analysed. Genetic analysis showed that each mutant carried a single nuclear recessive mutation. Biochemical studies showed that the observed accumulation and/or excretion of the different heme synthesis precursors by the mutant cells correlated well with the enzymatic deficiencies measured in acellular extracts. Six of the seven mutants were blocked in a different enzyme activity: 5-aminolevulinate synthase, porphobilinogen synthase, uroporphyrinogen I synthase, uroporphyrinogen decarboxylase, coproporphyrinogen III oxidase and ferrochelatase. The other mutant had the same phenotype as the mutant deficient in ferrochelatase activity. However, it possessed a normal ferrochelatase activity when measured in vitro, so this mutant was assumed to be deficient in protoporphyrinogen oxidase activity or in the transport and/or reduction of iron.The absence of PBG synthesis led to a total lack of uroporphyrinogen I synthase activity. The absence of heme, the end product, led to an important increase of coproporphyrinogen III oxidase activity, while the activity of 5-aminolevulinate synthase, the first enzyme of the pathway, was not changed. These results are discussed in terms of possible modes of regulation of heme synthesis pathway in yeast.  相似文献   

5.
In this work, we evaluated the effects of cadmium (Cd) on the antioxidant defense system responses and the role of nitrate reductase (NR) in the redox balance maintenance in Bradyrhizobium japonicum strains. For that, B. japonicum USDA110 and its NR defective mutant strain (GRPA1) were used. Results showed that the addition of 10 μM Cd did not modify the aerobic growth of the wild type strain while the mutant strain was strongly affected. Anaerobic growth revealed that only the parental strain was able to grow under this condition. Cd reduced drastically the NR activity in B. japonicum USDA110 and increased lipid peroxide content in both strains. Cd decreased reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio in B. japonicum USDA110 although, a significant increased was observed in the mutant GRPA1. GSH-related enzymes were induced by Cd, being more evident the increase in the mutant strain. This different behavior observed between strains suggests that NR enzyme plays an important role in the redox balance maintenance in B. japonicum USDA 110 exposed to Cd.  相似文献   

6.
A mechanism for the biosynthesis of uroporphyrinogen III, consistent with recent experimental results is proposed as follows: Four porphobilinogen (PBG) units form a chain by a succession of rearrangements of a methylene group derived from the unit which ultimately becomes ring D. Three PBG units (rings A, B, C) are incorporated intact. The methylene group is anchored to the enzyme during three condensations and rearrangements until cyclization of the tetrapyrrole chain produces uroporphyrinogen III.  相似文献   

7.
The role of hydrogenase on the reduction of 2,4,6-trinitrotoluene (TNT) in Clostridium acetobutylicum was evaluated. An Fe-only hydrogenase was isolated and identified by using TNT reduction activity as the selection basis. The formation of hydroxylamino intermediates by the purified enzyme corresponded to expected products for this reaction, and saturation kinetics were determined with a K(m) of 152 micro M. Comparisons between the wild type and a mutant strain lacking the region encoding an alternative Fe-Ni hydrogenase determined that Fe-Ni hydrogenase activity did not significantly contribute to TNT reduction. Hydrogenase expression levels were altered in various strains, allowing study of the role of the enzyme in TNT reduction rates. The level of hydrogenase activity in a cell system correlated (R(2) = 0.89) with the organism's ability to reduce TNT. A strain that overexpressed the hydrogenase activity resulted in maintained TNT reduction during late growth phases, which it is not typically observed in wild type strains. Strains exhibiting underexpression of hydrogenase produced slower TNT rates of reduction correlating with the determined level of expression. The isolated Fe-only hydrogenase is the primary catalyst for reducing TNT nitro substituents to the corresponding hydroxylamines in C. acetobutylicum in whole-cell systems. A mechanism for the reaction is proposed. Due to the prevalence of hydrogenase in soil microbes, this research may enhance the understanding of nitroaromatic compound transformation by common microbial communities.  相似文献   

8.
A simpler method for purifying human red cell deaminase, using a mixture of n-butanol and chloroform, which denatures hemoglobin, followed by ammonium sulphate fractionation, heat treatment, Sephadex G-100 and DEAE-cellulose chromatography, yielding a 3400 fold purified enzyme is described. Some properties of purified deaminase were studied. The enzyme seems to have a strict requirement for oxygen, neither PBG consumption nor uroporphyrinogens formation were measured under anaerobiosis. Uroporphyrinogens formation was linear with both protein and time over a wide range of enzyme concentration and up to 2 h. The optimum pH was 7.4 and the mol. wt was 40,000 +/- 4000. The enzyme was heat-stable and increased its activity by heating. Ammonium and hydroxylamine ions inhibited the reaction. K+ and Na+ ions did not greatly affect activity, while most divalent cations tested significantly diminished uroporphyrinogen formation and to a lesser degree PBG consumption. Direct plots of velocity against PBG concentration were hyperbolic, however double-reciprocal plots were non-linear, Hill plots gave an n value of 2 and Eadie plots were bell-shaped, indicating the existence of weakly positive cooperative effect between 2 binding sites for PBG per molecule of deaminase.  相似文献   

9.
The genes coding for enzymes involved in butanol or butyrate formation were subcloned into a novel Escherichia coli-Clostridium acetobutylicum shuttle vector constructed from pIMP1 and a chloramphenicol acetyl transferase gene. The resulting replicative plasmids, referred to as pTHAAD (aldehyde/alcohol dehydrogenase) and pTHBUT (butyrate operon), were used to complement C. acetobutylicum mutant strains, in which genes encoding aldehyde/alcohol dehydrogenase (aad) or butyrate kinase (buk) had been inactivated by recombination with Emr constructs. Complementation of strain PJC4BK (buk mutant) with pTHBUT restored butyrate kinase activity and butyrate production during exponential growth. Complementation of strain PJC4AAD (aad mutant) with pTHAAD restored NAD(H)-dependent butanol dehydrogenase activity, NAD(H)-dependent butyraldehyde dehydrogenase activity and butanol production during solventogenic growth. The development of an alternative selectable marker makes it is possible to overexpress genes, via replicative plasmids, in mutant strains that lack specific enzyme activities, thereby expanding the number of possible genetic manipulations that can be performed in C. acetobutylicum. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

10.
Candida tropicalis isolated from acclimated activated sludge was used in this study. Cell suspensions with 5 × 107 cells ml−1 were irradiated by using a He-Ne laser. After mutagenesis, the irradiated cell suspension was diluted and plated on yeast extract-peptone-dextrose (YEPD) medium. Plates with approximately 20 individual colonies were selected, and all individual colonies were harvested for phenol biodegradation. The phenol biodegradation stabilities for 70 phenol biodegradation-positive mutants, mutant strains CTM 1 to 70, ranked according to their original phenol biodegradation potentials, were tested continuously during transfers. Finally, mutant strain CTM 2, which degraded 2,600 mg liter−1 phenol within 70.5 h, was obtained on the basis of its capacity and hereditary stability for phenol biodegradation. The phenol hydroxylase gene sequences were cloned in wild and mutant strains. The results showed that four amino acids were mutated by irradiation with a laser. In order to compare the activity of phenol hydroxylase in wild and mutant strains, their genes were expressed in Escherichia coli BL21(DE3) and enzyme activities were spectrophotometrically determined. It was clear that the activity of phenol hydroxylase was promoted after irradiation with a He-Ne laser. In addition, the cell growth and intrinsic phenol biodegradation kinetics of mutant strain CTM 2 in batch cultures were also described by Haldane's kinetic equation with a wide range of initial phenol concentrations from 0 to 2,600 mg liter−1. The specific growth and degradation rates further demonstrated that the CTM 2 mutant strain possessed a higher capacity to resist phenol toxicity than wild C. tropicalis did.  相似文献   

11.
12.
A number of deoxyribonucleoside-requiring mutants (dns) of Bacillus subtilis were isolated and their growth characteristics and ribonucleotide reductase activities were compared with those of the wild type and of a dna mutant (tsA13). Both tsA13 and dns mutants required the presence of a mixture of deoxyribonucleosides for growth at 45 degrees C but not at 25 degrees C. All the mutant strains tested contained ribonucleotide reductase activity which showed heat sensitivity similar to that of the enzyme from a wild-type strain. The reductase in B. subtilis seemed to reduce ribonucleoside triphosphates in a similar manner to the enzyme in Lactobacillus leichmannii.  相似文献   

13.
The physiological function of cyclic AMP (cAMP) phosphodiesterase in Salmonella typhimurium was investigated with strains which were isogenic except for the cpd locus. In crude broken-cell extracts the properties of the enzyme were found to be similar to those reported for Escherichia coli. The specific activity in the mutant was less than 1% that in the wild type. Rates of cAMP production in the mutant were as much as twice those observed in the wild type. The amount of cAMP accumulated when cells grew overnight with limiting glucose was 4.5-fold greater in the mutant than in the wild type. The intracellular concentration of cAMP in the two strains was measured directly, using four different techniques to wash the cells to remove extracellular cAMP. The cAMP level in the cpd strain was only 25% greater than in the wild type. The functional concentration of the cAMP receptor protein-cAMP complex was estimated indirectly from the specific activity of beta-galactosidase in the two strains after introducing F'lac. When cells were grown with carbon sources permitting synthesis of different levels of cAMP, the specific activity of the enzyme was at most 25% greater in the cpd strain. The cpd strain was more sensitive to the effects of exogenous cAMP. Exogenous cAMP relieved both permanent and transient catabolite repression of the lac operon at lower concentrations in the cpd strain than in the wild type. When cells grew with glucose, glycerol, or ribose, exogenous cAMP inhibited growth of the mutant strain more than the wild type.  相似文献   

14.
The role of hydrogenase on the reduction of 2,4,6-trinitrotoluene (TNT) in Clostridium acetobutylicum was evaluated. An Fe-only hydrogenase was isolated and identified by using TNT reduction activity as the selection basis. The formation of hydroxylamino intermediates by the purified enzyme corresponded to expected products for this reaction, and saturation kinetics were determined with a Km of 152 μM. Comparisons between the wild type and a mutant strain lacking the region encoding an alternative Fe-Ni hydrogenase determined that Fe-Ni hydrogenase activity did not significantly contribute to TNT reduction. Hydrogenase expression levels were altered in various strains, allowing study of the role of the enzyme in TNT reduction rates. The level of hydrogenase activity in a cell system correlated (R2 = 0.89) with the organism's ability to reduce TNT. A strain that overexpressed the hydrogenase activity resulted in maintained TNT reduction during late growth phases, which it is not typically observed in wild type strains. Strains exhibiting underexpression of hydrogenase produced slower TNT rates of reduction correlating with the determined level of expression. The isolated Fe-only hydrogenase is the primary catalyst for reducing TNT nitro substituents to the corresponding hydroxylamines in C. acetobutylicum in whole-cell systems. A mechanism for the reaction is proposed. Due to the prevalence of hydrogenase in soil microbes, this research may enhance the understanding of nitroaromatic compound transformation by common microbial communities.  相似文献   

15.
Strains with greater ability to dissimilate m-toluate were obtained from the wild-type Pseudomonas putida (arvilla) mt-2 that harbors the TOL plasmid. Increased growth of a mutant strain on aromatic substrates was coupled with simultaneous increase in the activity of metapyrocatechase, an enzyme coded by the TOL plasmid, without changing its catalytic properties. In the mutant and the wild-type strains, the inducer specificity and the induction kinetics of metapyrocatechase synthesis were the same, and a half-maximal effect of m-toluate on the enzyme synthesis was observed at 0.25 mM. Thus, the increased utilizability seen in a mutant strain appeared to be due to an increased quantity of the enzymes coded by the TOL plasmid. The properties of the mutant strain were dependent upon the mutation on the TOL plasmid but not on the chromosome mutation. Transfer experiments with a strain carrying the mutant TOL (TOL-H) or the wild-type TOL plasmid revealed that the TOL-H transfer was 1,000 times greater than that of the wild type.  相似文献   

16.
The phenylalanine-activating and/or-racemizing enzyme, i.e., the light enzyme, of gramicidin S synthetase was purified to a homogenous state by D-phenylalanine-Sepharose 4B chromatography from a wild and some gramicidin S-lacking mutant strains of Bacillus brevis. The light enzyme obtained from a mutant strain E-1 could activate phenylalanine but not racemize it, and had no phenylalanine-dependent ATP-[14C]AMP exchange activity, whereas the same enzyme obtained from other mutants and the wild strain had all three activities. Furthermore, the light enzyme of the mutant E-1 could form only acid-labile enzyme-bound phenylalanine, while the same fraction of the wild strain carried half of the enzyme-bound phenylalanine as acid-labile adenylate and half as a acid-stable thioester. These results suggest that the thiol site of the light enzyme of mutant E-1 might be damaged.  相似文献   

17.
The genus Propionibacterium has a wide range of probiotic activities that are exploited in dairy and fermentation systems such as cheeses, propionic acid, and tetrapyrrole compounds. In order to improve production of tetrapyrrole compounds, we expressed the hemA gene, which encodes delta-aminolevulinic acid (ALA) synthase from Rhodobacter sphaeroides, and the hemB gene, which encodes porphobilinogen (PBG) synthase from Propionibacterium freudenreichii subsp. shermanii IFO12424, either monocistronically or polycistronically in strain IFO12426. The recombinant strains accumulated larger amounts of ALA and PBG, with resultant 28- to 33-fold-higher production of porphyrinogens, such as uroporphyrinogen and coproporphyrinogen, than those observed in strain IFO12426, which harbored the shuttle vector pPK705.  相似文献   

18.
The biosynthesis of uroporphyrinogen III, the precursor of hemes, chlorophylls, corrins and related structures, is catalyzed by the porphobilinogenase system (PBGase), a complex of two enzymes, PBG-Deaminase (PBG-D) and Isomerase. Although the separate enzymes have been studied in some detail less work has been performed on the properties of the complex.In this study the kinetic behaviour of the enzyme PBGase in a normal yeast strain, D273-10B, and its derivative B231 has been investigated. Uroporphyrinogen formation was linear with time up to 2 hr at 37°C. The enzyme complex shows classical Michaelis-Menten kinetics. From the double reciprocal plots kinetic parameters were estimated for PBGase and PBG-D.Porphyrins were found to be competitive inhibitors with respect to porphobilinogen (PBG) and these compounds appeared to act as inhibitors by forming dead-end complexes with the free enzyme. 5-Aminolevulinic acid (ALA) also inhibited PBGase and this inhibition was overcome by addition of levulinic acid (2μM). These results indicate that ALA, is not an inhibitor but acts through its conversion into porphyrins which are the true inhibitors.  相似文献   

19.
Aerobacter (Enterobacter) aerogenes wild type and three mutants deficient in the formation of acetoin and 2,3-butanediol were grown in a glucose minimal medium. Culture densities, pH, and diacetyl, acetoin, and 2,3-butanediol levels were recorded. The pH in wild-type cultures dropped from 7.0 to 5.8, remained constant while acetoin and 2,3-butanediol were formed, and increased to pH 6.5 after exhaustion of the carbon source. More 2,3-butanediol than acetoin was formed initially, but after glucose exhaustion reoxidation to acetoin occurred. The three mutants differed from the wild type in yielding acid cultures (pH below 4.5). The wild type and one of the mutants were grown exponentially under aerobic and anaerobic conditions with the pH fixed at 7.0, 5.8, and 5.0, respectively. Growth rates decreased with decreasing pH values. Aerobically, this effect was weak, and the two strains were affected to the same degree. Under anaerobic conditions, the growth rates were markedly inhibited at a low pH, and the mutant was slightly more affected than the wild type. Levels of alcohol dehydrogenase were low under all conditions, indicating that the enzyme plays no role during exponential growth. The levels of diacetyl (acetoin) reductase, lactate dehydrogenase, and phosphotransacetylase were independent of the pH during aerobic growth of the two strains. Under anaerobic conditions, the formation of diacetyl (acetoin) reductase was pH dependent, with much higher levels of the enzyme at pH 5.0 than at pH 7.0. Lactate dehydrogenase and phosphotransacetylase revealed the same pattern of pH-dependent formation in the mutant, but not in the wild type.  相似文献   

20.
Phytases catalyze the release of phosphate from phytate (myo-inositol hexakisphosphate) to inositol polyphosphates. Raoultella terrigena comb.nov. phytase activity is known to increase markedly after cells reach the stationary phase. In this study, phytase activity measurements made on single batch cultures indicated that specific enzyme activity was subject to catabolite repression. Cyclic AMP (cAMP) showed a positive effect in expression during exponential growth and a negative effect during stationary phase. RpoS exhibited the opposite effect during both growth phases; the induction to stationary phase decreased twofold in the rpoS::Tn10 mutant, but the effect of RpoS was not clearly determined. Two phy::MudI1734 mutants, MW49 and MW52, were isolated. These formed small colonies in comparison with the MW25 parent strain when plated on Luria-Bertani (LB) or LB supplemented with glucose. They did not grow in minimal media or under anaerobiosis, but did grow aerobically on LB and LB glucose at a lower rate than did MW25. The beta-galactosidase activity level in these mutants increased three to four fold during stationary growth in LB glucose and during anaerobiosis. Addition of cAMP during the exponential growth of MW52 on LB glucose provoked a decrease in beta-galactosidase activity during the stationary phase, confirming its negative effect on phytase expression during stationary growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号