首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aspartic proteases are a relatively small group of proteolytic enzymes that are active in acidic environments and are found across all forms of life. Certain microorganisms secrete such proteases as virulence agents and/or in order to break down proteins thereby liberating assimilable sources of nitrogen. Some of the earlier applications of these proteolytic enzymes are found in the manufacturing of cheese where they are used as milk-clotting agents. Over the last decade, they have received tremendous research interest because of their involvement in human diseases. Furthermore, there has also been a growing interest on these enzymes for their applications in several other industries. Recent research suggests in particular that they could be used in the wine industry to prevent the formation of protein haze while preserving the wines’ organoleptic properties. In this mini-review, the properties and mechanisms of action of aspartic proteases are summarized. Thereafter, a brief overview of the industrial applications of this specific class of proteases is provided. The use of aspartic proteases as alternatives to clarifying agents in various beverage industries is mentioned, and the potential applications in the wine industry are thoroughly discussed.  相似文献   

2.
Protease signalling in cell death: caspases versus cysteine cathepsins   总被引:3,自引:0,他引:3  
Turk B  Stoka V 《FEBS letters》2007,581(15):2761-2767
Proteases were, for a long time, mainly considered as protein degrading enzymes. However, in the last decade this view has changed dramatically, and the focus is now on proteases as signalling molecules. One of the best examples is apoptosis, the major mechanism used by eukaryotes to remove superfluous, damaged and potentially dangerous cells, in which a number of proteases have been found to play a central role. Of these the caspases have been considered to be the major players. However, more recently, other proteases have been increasingly suggested as being important in apoptosis, in particular the cysteine cathepsins. In this review the roles of caspases and cysteine cathepsins in apoptosis signalling are compared and discussed.  相似文献   

3.
In the latest two decades, the interest received by plant proteases has increased significantly. Plant enzymes such as proteases are widely used in medicine and the food industry. Some proteases, like papain, bromelain and ficin are used in various processes such as brewing, meat softening, milk-clotting, cancer treatment, digestion and viral disorders. These enzymes can be obtained from their natural source or through in vitro cultures, in order to ensure a continuous source of plant enzymes. The focus of this review will be the production of plant proteases both in vivo and in vitro, with particular emphasis on the different types of commercially important plant proteases that have been isolated and characterized from naturally grown plants. In vitro approaches for the production of these proteases is also explored, focusing on the techniques that do not involve genetic transformation of the plants and the attempts that have been made in order to enhance the yield of the desired proteases.  相似文献   

4.
植物酸性转化酶基因及其表达调控   总被引:8,自引:0,他引:8  
酸性转化酶是蔗糖代谢的关键酶,在植物体中具有重要的生理作用.近十几年来,许多植物酸性转化酶基因已经克隆,其基因表达调控的研究也取得了很大的进展.本文综述了植物酸性转化酶基因及其蛋白结构、基因表达的器官和发育特异性以及糖、受伤、病原、胁迫和激素对基因表达的调节和蛋白抑制因子对酶活性的影响,并讨论了当前在该研究领域存在的问题.  相似文献   

5.
潘秋红  张大鹏 《植物学报》2005,22(2):129-137
酸性转化酶是蔗糖代谢的关键酶,在植物体中具有重要的生理作用。近十几年来,许多植物酸性转化酶基因已经克隆,其基因表达调控的研究也取得了很大的进展。本文综述了植物酸性转化酶﹑ 基因及其蛋白结构、基因表达的器官和发育特异性以及糖、受伤、病原胁迫和激素对基因表达的调节和蛋白抑制因子对酶活性的影响,并讨论了当前在该研究领域存在的问题。  相似文献   

6.
Protease signalling: the cutting edge   总被引:1,自引:0,他引:1  
Turk B  Turk du SA  Turk V 《The EMBO journal》2012,31(7):1630-1643
Protease research has undergone a major expansion in the last decade, largely due to the extremely rapid development of new technologies, such as quantitative proteomics and in-vivo imaging, as well as an extensive use of in-vivo models. These have led to identification of physiological substrates and resulted in a paradigm shift from the concept of proteases as protein-degrading enzymes to proteases as key signalling molecules. However, we are still at the beginning of an understanding of protease signalling pathways. We have only identified a minor subset of true physiological substrates for a limited number of proteases, and their physiological regulation is still not well understood. Similarly, links with other signalling systems are not well established. Herein, we will highlight current challenges in protease research.  相似文献   

7.
The plant proteolytic machinery and its role in defence   总被引:9,自引:0,他引:9  
The diverse roles of plant proteases in defence responses that are triggered by pathogens or pests are becoming clearer. Some proteases, such as papain in latex, execute the attack on the invading organism. Other proteases seem to be part of a signalling cascade, as indicated by protease inhibitor studies. Such a role has also been suggested for the recently discovered metacaspases and CDR1. Some proteases, such as RCR3, even act in perceiving the invader. These exciting recent reports are probably just the first examples of what lies beneath. More roles for plant proteases in defence, as well as the regulation and substrates of these enzymes, are waiting to be discovered.  相似文献   

8.
Detection of enzymatic activity on gel electrophoresis, namely zymography, is a technique that has received increasing attention in the last 10 years, according to the number of articles published. A growing amount of enzymes, mainly proteases, are now routinely detected by zymography. Detailed analytical studies are beginning to be published, as well as new patents have been developed. This new article updates the information covered in our last review, condensing the recent publications dealing with the identification of proteolytic enzymes in electrophoretic gel supports and its variations. The new advances of this method are basically focused towards two dimensional zymography and transfer zymography. Though comparatively fewer patents have been published, they basically coincide in the study of matrix metalloproteases. The tendency is foreseen to be very productive in the area of zymoproteomics, combining electrophoresis and mass spectrometry for the analysis of proteases.  相似文献   

9.
The original notion that matrix metalloproteinases (MMPs) act as tumour and metastasis-promoting enzymes by clearing a path for tumour cells to invade and metastasize has been challenged in the last decade. It has become clear that MMPs are involved in numerous steps of tumour progression and metastasis, and hence are now considered to be multifaceted proteases. Moreover, more recent experimental evidence indicates that some members of the MMP family behave as tumour-suppressor enzymes and should therefore be regarded as anti-targets in cancer therapy. The complexity of the pro- and anti-tumorigenic and -metastatic functions might partly explain why broad-spectrum MMP inhibitors failed in phase III clinical trials. This review will provide a focussed overview of the published data on the tumour-suppressive behaviour of MMPs.  相似文献   

10.
The family of Deg/HtrA proteases: from Escherichia coli to Arabidopsis   总被引:3,自引:0,他引:3  
In the genomic era, an increasing number of protease genes have been identified in various organisms. During the last few years, many of these proteases have been characterized using biochemical as well as molecular biological techniques. However, neither the precise location nor the physiological substrates of these enzymes has been identified in many cases, including the Deg/HtrA proteases, a family of serine-type ATP-independent proteases. This family has become especially interesting for many researchers following the determination of the crystal structures of an Escherichia coli and a human Deg/HtrA protease. A breakthrough in photosynthesis research has revealed that a Deg/HtrA protease of Arabidopsis thaliana is involved in the degradation of the D1 protein of photosystem II following photoinhibition. In this review, the available data on Deg/HtrAs of different organisms are compared with those from the photoautotroph cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana .  相似文献   

11.
The catalytic mechanism of protein tyrosine phosphatases revisited.   总被引:4,自引:0,他引:4  
K Kolmodin  J Aqvist 《FEBS letters》2001,498(2-3):208-213
Experimental and theoretical studies of the catalytic mechanism in protein tyrosine phosphatases and dual specific phosphatases are reviewed. The structural properties of these enzymes contributing to the efficient rate enhancement of phosphate monoester hydrolysis have been established during the last decade. There are, however, uncertainties in the interpretation of available experimental data that make the commonly assumed reaction mechanism somewhat doubtful. Theoretical calculations as well as analysis of crystal structures point towards an alternative interpretation of the ionisation state in the reactive complex.  相似文献   

12.
The range of antibiotic therapy for the control of bacterial infections is becoming increasingly limited because of the rapid rise in multidrug resistance in clinical bacterial isolates. A few diseases, such as tuberculosis, which were once thought to be under control, have re-emerged as serious health threats. These problems have resulted in intensified research to look for new inhibitors for bacterial pathogens. Of late, the peptidoglycan (PG) layer, the most important component of the bacterial cell wall has been the subject of drug targeting because, first, it is essential for the survivability of eubacteria and secondly, it is absent in humans. The last decade has seen tremendous inputs in deciphering the 3-D structures of the PG biosynthetic enzymes. Many inhibitors against these enzymes have been developed using virtual and high throughput screening techniques. This review discusses the mechanistic and structural properties of the PG biosynthetic enzymes and inhibitors developed in the last decade.  相似文献   

13.
Structures and properties of the recently found aspartate-specific cell death-related plant proteases called phytaspases are reviewed and compared to those of caspases, animal apoptotic proteases. Caspases (cysteine-dependent proteases) and phytaspases (serine-dependent proteases) dramatically differ in structure, although manifest a similar substrate specificity and a play a similar role in the programmed cell death. Distinctions in the structural organization of animal and plant death proteases were shown to define differences in the regulation strategies of functioning of these proteolytic enzymes in the two kingdoms.  相似文献   

14.
Lon-, Clp- and FtsH-like proteases, members of three families of ATP-dependent proteases derived from bacterial ancestors, have been identified in plant mitochondria. Classifications of mitochondrial-specific paralogues of plant ATP-dependent proteases, based on targeting prediction programs and different experimental methods, are compared. Accumulating evidence points to similarities in the structure and the mechanisms of action used by various ATP-dependent proteases. Therefore, before focusing on plant mitochondrial ATP-dependent proteases, the paper discusses general features of ATP-dependent proteases. To date, information about structure and function of plant mitochondrial Lon-like, Clp-like and FtsH-like proteases is rather scarce, but indicates that these enzymes, like their bacterial and eukaryotic homologues, combine proteolytic and chaperone-like activities to form mitochondrial protein quantity and quality control system in plants.  相似文献   

15.
Over the last few decades several enzymatic processes to improve properties of wool fabrics like felting tendency, shrink resistance, dyeing ability and handling characteristics have been described. Previous investigations into the use of proteases to hydrolyse the cuticles at the surface of wool fibres, resulted in high strength and weight losses. Therefore restriction of the enzyme activity to the wool surface or control of enzyme diffusion to the cortex cells is required.

To change the diffusion behaviour of proteases in wool fibres, the soluble polymer PEG was covalently attached to a protease from Bacillus lentus. Modified enzymes with different molecular weights were compared. These modified enzymes retained up to 80% of their activity in the standard assay while hydrolysis of wool fibres was successfully restricted to cuticles, resulting in a 90% decrease in weight losses compared to non-modified enzymes.  相似文献   

16.
Over the last few decades several enzymatic processes to improve properties of wool fabrics like felting tendency, shrink resistance, dyeing ability and handling characteristics have been described. Previous investigations into the use of proteases to hydrolyse the cuticles at the surface of wool fibres, resulted in high strength and weight losses. Therefore restriction of the enzyme activity to the wool surface or control of enzyme diffusion to the cortex cells is required.

To change the diffusion behaviour of proteases in wool fibres, the soluble polymer PEG was covalently attached to a protease from Bacillus lentus. Modified enzymes with different molecular weights were compared. These modified enzymes retained up to 80% of their activity in the standard assay while hydrolysis of wool fibres was successfully restricted to cuticles, resulting in a 90% decrease in weight losses compared to non-modified enzymes.  相似文献   

17.
Nitrogen metabolism and remobilization during senescence   总被引:36,自引:0,他引:36  
Senescence is a highly organized and well-regulated process. As much as 75% of total cellular nitrogen may be located in mesophyll chloroplasts of C(3)-plants. Proteolysis of chloroplast proteins begins in an early phase of senescence and the liberated amino acids can be exported to growing parts of the plant (e.g. maturing fruits). Rubisco and other stromal enzymes can be degraded in isolated chloroplasts, implying the involvement of plastidial peptide hydrolases. Whether or not ATP is required and if stromal proteins are modified (e.g. by reactive oxygen species) prior to their degradation are questions still under debate. Several proteins, in particular cysteine proteases, have been demonstrated to be specifically expressed during senescence. Their contribution to the general degradation of chloroplast proteins is unclear. The accumulation in intact cells of peptide fragments and inhibitor studies suggest that multiple degradation pathways may exist for stromal proteins and that vacuolar endopeptidases might also be involved under certain conditions. The breakdown of chlorophyll-binding proteins associated with the thylakoid membrane is less well investigated. The degradation of these proteins requires the simultaneous catabolism of chlorophylls. The breakdown of chlorophylls has been elucidated during the last decade. Interestingly, nitrogen present in chlorophyll is not exported from senescencing leaves, but remains within the cells in the form of linear tetrapyrrolic catabolites that accumulate in the vacuole. The degradation pathways for chlorophylls and chloroplast proteins are partially interconnected.  相似文献   

18.
Proteases have a broad range of applications in industrial processes and products and are representative of most worldwide enzyme sales. The genus Bacillus is probably the most important bacterial source of proteases and is capable of producing high yields of neutral and alkaline proteolytic enzymes with remarkable properties, such as high stability towards extreme temperatures, pH, organic solvents, detergents and oxidizing compounds. Therefore, several strategies have been developed for the cost-effective production of Bacillus proteases, including optimization of the fermentation parameters. Moreover, there are many studies on the use of low-cost substrates for submerged and solid state fermentation. Other alternatives include genetic tools such as protein engineering in order to obtain more active and stable proteases and strain engineering to better secrete recombinant proteases from Bacillus through homologous and heterologous protein expression. There has been extensive research on proteases because of the broad number of applications for these enzymes, such as in detergent formulations for the removal of blood stains from fabrics, production of bioactive peptides, food processing, enantioselective reactions, and dehairing of skins. Moreover, many commercial proteases have been characterized and purified from different Bacillus species. Therefore, this review highlights the production, purification, characterization, and application of proteases from a number of Bacillus species.  相似文献   

19.
Plant proteases, characterized by the reduced sulphydryl group required for catalysis, can be produced from tropical plants. Crude or partially refined mixtures, including minor quantities of other enzymes, are used in a variety of food industries. Enzymes extracted from edible fruit should prove acceptable. In terms of value or volume papain is the major enzyme used, though stem bromelain and ficin also appear in commerce. Other enzymes such as fruit bromelain or calotropain are either less well known or not commercially available. Meat tenderization and beer chill-proofing, mostly with papain, are reviewed and the effects of plant proteases on flavour in foods noted. Fish waste and oilseed processing, especially to produce proteins or polypeptides with functional properties, are amongst the currently minor or potential uses considered. Immobilization on a solid support merits further investigation. Development has been slow because of problems arising from the macromolecular nature of the substrate, namely protein, which is actually attacked in foods. Competition from microbial and other enzymes necessitates more attention being given to production methods if usage is to be maintained or increased.  相似文献   

20.
Papain from Carica papaya, an easily available cysteine protease, is the best-studied representative of this family of enzymes. The three dimensional structure of papain is very similar to that of other cysteine proteases of either plant (actinidin, caricain, papaya protease IV) or animal (cathepsins B, K, L, H) origin. As abnormalities in the activities of mammalian cysteine proteases accompany a variety of diseases, there has been a long-lasting interest in the development of potent and selective inhibitors for these enzymes. A covalent inhibitor of cysteine proteases, designed as a combination of epoxysuccinyl and peptide moieties, has been modeled in the catalytic pocket of papain. A number of its configurations have been generated and relaxed by constrained simulated annealing-molecular dynamics in water. A clear conformational variability of this inhibitor is discussed in the context of a conspicuous conformational diversity observed earlier in several solid-state structures of other complexes between cysteine proteases and covalent inhibitors. The catalytic pockets S2 and even more so S3, as defined by the pioneering studies on the papain-ZPACK, papain-E64c and papain-leupeptin complexes, appear elusive in view of the evident flexibility of the present inhibitor and in confrontation with the obvious conformational scatter seen in other examples. This predicts limited chances for the development of selective structure-based inhibitors of thiol proteases, designed to exploit the minute differences in the catalytic pockets of various members of this family. A simultaneous comparison of the three published proenzyme structures suggests the enzyme's prosegment binding loop-prosegment interface as a new potential target for selective inhibitors of papain-related thiol proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号