首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rhizobium leguminosarum biovar viciae nodulation protein NodO is partially homologous to haemolysin of Escherichia coli and, like haemolysin, is secreted into the growth medium. The NodO protein can be secreted by a strain of E. coli carrying the cloned nodO gene plus the haemolysin secretion genes hlyBD, in a process that also requires the outer membrane protein encoded by tolC. The related protease secretion genes, prtDEF, from Erwinia chrysanthemi also enable E. coli to secrete NodO. The Rhizobium genes encoding the proteins required for NodO secretion are unlinked to nodO and are unlike other nod genes, since they do not require flavonoids or NodO for their expression. Although proteins similar to NodO were not found in rhizobia other than R. leguminosarum bv. viciae, several rhizobia and an Agrobacterium strain containing the cloned nodO gene were found to have the ability to secrete NodO. These observations indicate that a wide range of the Rhizobiaceae have a protein secretion mechanism analogous to that which secretes haemolysin and related toxins and proteases in the ENterobacteriaceae.  相似文献   

2.
3.
4.
NodO is a secreted protein from Rhizobium leguminosarum bv. viciae with a role in signalling during legume nodulation. A Tn5-induced mutant was identified that was defective in NodO secretion. As predicted, the secretion defect decreased pea and vetch nodulation but only when the nodE gene was also mutated. This confirms earlier observations that NodO plays a particularly important role in nodulation when Nod factors carrying C18:1 (but not C18:4) acyl groups are the primary signalling molecules. In addition to NodO secretion and nodulation, the secretion mutant had a number of other characteristics. Several additional proteins including at least three Ca2+-binding proteins were not secreted by the mutant and this is thought to have caused the pleiotropic phenotype. The nodules formed by the secretion mutant were unable to fix nitrogen efficiently; this was not due to a defect in invasion because the nodule structures appeared normal and nodule cells contained many bacteroids. The mutant formed sticky colonies and viscous liquid cultures; analysis of the acidic exopolysaccharide revealed a decrease in the ratio of reducing sugars to total sugar content, indicating a longer chain length. The use of a plate assay showed that the mutant was defective in an extracellular glycanase activity. DNA sequencing identified the prsDE genes, which are homologous to genes encoding protease export systems in Erwinia chrysanthemi and Pseudomonas aeruginosa. An endoglycanase (Egl) from Azorhizobium caulinodans may be secreted from R. leguminosarum bv. viciae in a prsD-dependent manner. We conclude that the prsDE genes encode a Type I secretion complex that is required for the secretion of NodO, a glycanase and probably a number of other proteins, at least one of which is necessary for symbiotic nitrogen fixation.  相似文献   

5.
Regulation of Syrm and Nodd3 in Rhizobium Meliloti   总被引:4,自引:0,他引:4       下载免费PDF全文
J. A. Swanson  J. T. Mulligan    S. R. Long 《Genetics》1993,134(2):435-444
The early steps of symbiotic nodule formation by Rhizobium on plants require coordinate expression of several nod gene operons, which is accomplished by the activating protein NodD. Three different NodD proteins are encoded by Sym plasmid genes in Rhizobium meliloti, the alfalfa symbiont. NodD1 and NodD2 activate nod operons when Rhizobium is exposed to host plant inducers. The third, NodD3, is an inducer-independent activator of nod operons. We previously observed that nodD3 carried on a multicopy plasmid required another closely linked gene, syrM, for constitutive nod operon expression. Here, we show that syrM activates expression of the nodD3 gene, and that nodD3 activates expression of syrM. The two genes constitute a self-amplifying positive regulatory circuit in both cultured Rhizobium and cells within the symbiotic nodule. We find little effect of plant inducers on the circuit or on expression of nodD3 carried on pSyma. This regulatory circuit may be important for regulation of nod genes within the developing nodule.  相似文献   

6.
Human and mouse LSP1 genes code for highly conserved phosphoproteins   总被引:4,自引:0,他引:4  
With use of the mouse LSP1 cDNA we isolated a human homologue of the mouse LSP1 gene from a human CTL cDNA library. The predicted protein sequence of human LSP1 is compared with the predicted mouse LSP1 protein sequence and regions of homology are identified in order to predict structural features of the LSP1 protein that might be important for its function. Both the human and mouse LSP1 proteins consist of two domains, an N-terminal acidic domain and a C-terminal basic domain. The C-terminal domains of the mouse and human LSP1 proteins are highly conserved and include several conserved, putative serine/threonine phosphorylation sites. Immunoprecipitation of LSP1 protein from 32P-orthophosphate-loaded cells show that both the mouse and human LSP1 proteins are phosphoproteins. The sequences of the putative Ca2(+)-binding sites present in the N-terminal domain of the mouse LSP1 protein are not conserved in the human LSP1 protein; however, a different Ca2(+)-binding site may exist in the human protein, indicating a functional conservation rather than a strict sequence conservation of the two proteins. The expression of the human LSP1 gene follows the same pattern as the expression of the mouse LSP1 gene. Southern analysis of human genomic DNA shows multiple LSP1-related fragments of varying intensity in contrast to the simple pattern found after similar analysis of mouse genomic DNA. By using different parts of the human LSP1 cDNA as a probe, we show that most of these multiple bands contain sequences homologous to the conserved C-terminal region of the LSP1 cDNA. This suggests that there are several LSP1-related genes present in the human genome.  相似文献   

7.
A short motif termed Plasmodium export element (PEXEL) or vacuolar targeting signal (VTS) characterizes Plasmodium proteins exported into the host cell. These proteins mediate host cell modifications essential for parasite survival and virulence. However, several PEXEL-negative exported proteins indicate that the currently predicted malaria exportome is not complete and it is unknown whether and how these proteins relate to PEXEL-positive export. Here we show that the N-terminal 10 amino acids of the PEXEL-negative exported protein REX2 (ring-exported protein 2) are necessary for its targeting and that a single-point mutation in this region abolishes export. Furthermore we show that the REX2 transmembrane domain is also essential for export and that together with the N-terminal region it is sufficient to promote export of another protein. An N-terminal region and the transmembrane domain of the unrelated PEXEL-negative exported protein SBP1 (skeleton-binding protein 1) can functionally replace the corresponding regions in REX2, suggesting that these sequence features are also present in other PEXEL-negative exported proteins. Similar to PEXEL proteins we find that REX2 is processed, but in contrast, detect no evidence for N-terminal acetylation.  相似文献   

8.
The manganese/iron-type superoxide dismutase (SodA) of Rhizobium leguminosarum bv. viciae 3841 is exported to the periplasm of R. l. bv. viciae and Escherichia coli. However, it does not possess a hydrophobic cleaved N-terminal signal peptide typically present in soluble proteins exported by the Sec-dependent (Sec) pathway or the twin-arginine translocation (TAT) pathway. A tatC mutant of R. l. bv. viciae exported SodA to the periplasm, ruling out export of SodA as a complex with a TAT substrate as a chaperone. The export of SodA was unaffected in a secB mutant of E. coli, but its export from R. l. bv. viciae was inhibited by azide, an inhibitor of SecA ATPase activity. A temperature-sensitive secA mutant of E. coli was strongly reduced for SodA export. The 10 N-terminal amino acid residues of SodA were sufficient to target the reporter protein alkaline phosphatase to the periplasm. Our results demonstrate the export of a protein lacking a classical signal peptide to the periplasm by a SecA-dependent, but SecB-independent targeting mechanism. Export of the R. l. bv. viciae SodA to the periplasm was not limited to the genus Rhizobium, but was also observed in other proteobacteria.  相似文献   

9.
A CryV-type protein (CGCryV) has been isolated from supernatant fluids of Bacillus thuringiensis AB88 cultures. Previous reports have suggested the cryptic nature of the cryV-type genes on the basis of the absence of CryV-type proteins in parasporal crystals. The CryV-type protein reported here is expressed early in stationary phase, and evidence indicates that it is an exported protein. Analysis of the deduced protein sequence from this gene reveals the presence of an N-terminal domain that likely acts as a signal peptide. The CGCryV protein is the first reported case of a delta-endotoxin being a secreted protein, which may influence the biological relevance of these proteins.  相似文献   

10.
11.
Calcium transport by the Ca2(+)-pumping ATPase in rat duodenal basolateral-enriched membrane vesicles was stimulated by synthetic calbindin-D9k in a similar fashion to the purified natural protein. In order to elucidate the mechanism of this effect, various synthetic mutant proteins were studied. Proteins with modifications to the N-terminal Ca2(+)-binding domain, or to a cluster of negatively-charged surface residues had altered Ca2(+)-binding but these changes did not affect the stimulation of vesicular Ca2+ transport. It appears that these domains are not essential for the interaction between calbindin-D9k and the intestinal basolateral Ca2(+)-pump.  相似文献   

12.
The Rhizobium meliloti nod region IIb is involved in host-range determination: (i) the presence of region IIb is necessary for transfer of alfalfa root hair curling ability to Rhizobium leguminosarum biovar trifolii; (ii) a mutation in region IIb extends the R. meliloti infection host range to Vicia sativa nigra; (iii) dominance of R. meliloti nod genes over R. leguminosarum biovar viciae nod genes is abolished by mutations in region IIb. The nucleotide sequence of this region has been determined. Genes corresponding to the two open reading frames identified are designated nodP and nodQ. The predicted amino acid sequence of the NodQ protein shows homology with translation initiation and elongation factors. The consensus sequence involved in the GTP-binding domain is conserved.  相似文献   

13.
The nifA gene has been identified between the fixX and nifB genes in the clover microsymbiont Rhizobium leguminosarum biovar trifolii (R.I. bv. trifolii) strain ANU843. Expression of the nifA gene is induced in the symbiotic state and site-directed mutagenesis experiments indicate that nifA expression is essential for symbiotic nitrogen fixation. Interestingly, the predicted R.I. bv. trifolii NifA protein lacks an N-terminal domain that is present in the homologous proteins from R.I. bv. viciae, Rhizobium meliloti, Bradyrhizobium japonicum, Klebsiella pneumoniae and all other documented NifA proteins. This indicates that this N-terminal domain is not essential for NifA function in R.I. bv. trifolii.  相似文献   

14.
Abstract Actinobacillus pleuropneumoniae serotype 2 secretes type II haemolysin and pleurotoxin activities. Here, the genes for type II haemolysin were cloned in Escherichia coli , but type II haemolysin antigen and haemolysin activity were only detected intracellularly and not exported to culture supernatant. It has been reported that the genes for type II haemolysin are not linked to functional secretion genes, while those for pleurotoxin are. In this report the means of secretion of type II haemolysis was examined by constructing a hybrid plasmid carrying the genes required for type II haemolysin expression, together with determinants which allow secretion of pleurotoxin and are linked to the pleurotoxin toxin genes. These genes facilitated the export of type II haemolysin from E. coli , and may perform this function in A. pleuropneumoniae .  相似文献   

15.
16.
Annexin A2 (AnxA2) is a Ca(2+)- and acidic phospholipid-binding protein involved in many cellular processes. It undergoes Ca(2+)-mediated membrane bridging at neutral pH and has been demonstrated to be involved in an H(+)-mediated mechanism leading to a novel AnxA2-membrane complex structure. We used fluorescence techniques to characterize this H(+)-dependent mechanism at the molecular level; in particular, the involvement of the AnxA2 N-terminal domain. This domain was labeled at Cys-8 either with acrylodan or pyrene-maleimide fluorescent probes. Steady-state and time-resolved fluorescence analysis for acrylodan and fluorescence quenching by doxyl-labeled phospholipids revealed direct interaction between the N-terminal domain and the membrane. The absence of pyrene excimer suggested that interactions between N termini are not involved in the H(+)-mediated mechanism. These findings differ from those previously observed for the Ca(2+)-mediated mechanism. Protein titration experiments showed that the protein concentration for half-maximal membrane aggregation was twice for Ca(2+)-mediated compared with H(+)-mediated aggregation, suggesting that AnxA2 was able to bridge membranes either as a dimer or as a monomer, respectively. An N-terminally deleted AnxA2 was 2-3 times less efficient than the wild-type protein for H(+)-mediated membrane aggregation. We propose a model of AnxA2-membrane assemblies, highlighting the different roles of the N-terminal domain in the H(+)- and Ca(2+)-mediated membrane bridging mechanisms.  相似文献   

17.
The nod  C genes from rhizobia encode an N -acetylglucosaminyl transferase (chitin synthase) involved in the formation of lipo-chito-oligosaccharide Nod factors that initiate root nodule morphogenesis in legume plants. NodC proteins have two hydrophobic domains, one of about 21 residues at the N-terminus and a longer one, which could consist of two or three transmembrane spans, near the C-terminus. These two hydrophobic domains flank a large hydrophilic region that shows extensive homology with other β-glycosyl transferases. The topology of NodC in the inner membrane of Rhizobium leguminosarum biovar viciae was analysed using a series of gene fusions encoding proteins in which NodC was fused to alkaline phosphatase (PhoA) lacking an N-terminal transit sequence or to β-galactosidase (LacZ). Our data support a model in which the N-terminal hydrophobic domain spans the membrane in a Nout–Cin orientation, with the adjacent large hydrophilic domain being exposed to the cytoplasm. This orientation appears to depend upon the presence of the hydrophobic region near the C-terminus. We propose that this hydrophobic region contains three transmembrane spans, such that the C-terminus of NodC is located in the periplasm. A short region of about 40 amino acids, encompassing the last transmembrane span, is essential for the function of NodC. Our model for NodC topology suggests that most of NodC, including the region showing most similarity to other β-glycosyl transferases, is exposed to the cytoplasm, where it is likely that polymerization of N -acetyl glucoasamine occurs. Such a model is incompatible with previous reports suggesting that NodC spans both inner and outer membranes.  相似文献   

18.
The membrane topology of the Rhizobium meliloti 2011 ExoP protein involved in polymerization and export of succinoglycan was analysed by translational fusions of lacZ and phoA reporter genes to the exoP gene. Based on this analysis, the ExoP protein could be divided into an N-terminal domain mainly located in the periplasmic space and a C-terminal domain located in the cytoplasm. Whereas the C-terminal domain of ExoP is characterized by a potential nucleotide-binding motif, the N-terminal ExoP domain contains the sequence motif‘PX2pX4SPKX11GXMXG1′, which is also present in proteins involved in the determination of O-antigen chain length. R. meliloti strains carrying mutated exoP* genes, exclusively encoding the N-terminal ExoP domain, produced a reduced amount of succinoglycan. This reduction could be suppressed by a mutation in the regulatory gene exoR. The ratio of low-molecular-weight to high-molecular-weight succinoglycan was significantly increased in the exoP* mutant strain. In the exoP*lexoR mutant strain only low-molecular-weight succinoglycan could be detected. Based on sequence homologies and similar hydropathic profiles, the N-terminal domain of ExoP was proposed to be a member of a protein family thought to be involved in polysaccharide chain-length determination.  相似文献   

19.
HL-60 cells possess a 60 kDa Ca2(+)-binding protein that is contained in a discrete subcellular compartment, referred to as calciosomes. Subcellular fractionation studies have suggested that, in HL-60 cells, this intracellular compartment is an Ins(1,4,5)P3-sensitive Ca2+ store. In order to investigate the structural relationship of the 60 kDa Ca2(+)-binding protein of HL-60 cells to other Ca2(+)-binding proteins, we have purified the protein by ammonium sulphate extraction, acid precipitation, and DEAE-cellulose and phenyl-Sepharose column chromatography. The N-terminal sequence of the protein shows 93% identity with rabbit muscle calreticulin, a recently cloned sarcoplasmic reticulum Ca2(+)-binding protein. No amino acid sequence similarity with calsequestrin was found, although the purified protein cross-reacted with anti-calsequestrin antibodies. The calreticulin-related protein of HL-60 cells might play a role as an intravesicular Ca2(+)-binding protein of an Ins(1,4,5)P3-sensitive Ca2+ store.  相似文献   

20.
Escherichia coli hemolysin (HlyA) is a membrane-permeabilizing protein belonging to the family of RTX-toxins. Lytic activity depends on binding of Ca2(+) to the C-terminus of the molecule. The N-terminus of HlyA harbors hydrophobic sequences that are believed to constitute the membrane-inserting domain. In this study, 13 HlyA cysteine-replacement mutants were constructed and labeled with the polarity-sensitive fluorescent probe 6-bromoacetyl-2-dimethylaminonaphthalene (badan). The fluorescence emission of the label was examined in soluble and membrane-bound toxin. Binding effected a major blue shift in the emission of six residues within the N-terminal hydrophobic domain, indicating insertion of this domain into the lipid bilayer. The emission shifts occurred both in the presence and absence of Ca2(+), suggesting that Ca2(+) is not required for the toxin to enter membranes. However, binding of Ca2(+) to HlyA in solution effected conformational changes in both the C-terminal and N-terminal domain that paralleled activation. Our data indicate that binding of Ca2(+) to the toxin in solution effects a conformational change that is relayed to the N-terminal domain, rendering it capable of adopting the structure of a functional pore upon membrane binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号