首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the role of the U14 small nucleolar RNA (snoRNA) in pre-rRNA methylation and processing in Xenopus oocytes. Depletion of U14 in Xenopus oocytes was achieved by co-injecting two nonoverlapping antisense oligonucleotides. Focusing on the earliest precursor, depletion experiments revealed that the U14 snoRNA is essential for 2'-O-ribose methylation at nt 427 of the 18S rRNA. Injection of U14-depleted oocytes with specific U14 mutant snoRNAs indicated that conserved domain B, but not domain A, of U14 is required for the methylation reaction. When the effect of U14 on pre-rRNA processing is assayed, we find only modest effects on 18S rRNA levels, and no effect on the type or accumulation of 18S precursors, suggesting a role for U14 in a step in ribosome biogenesis other than cleavage of the pre-rRNA. Xenopus U14 is, therefore, a Box C/D fibrillarin-associated snoRNA that is required for site-specific 2'-O-ribose methylation of pre-rRNA.  相似文献   

2.
The sequences and structural features of Xenopus laevis U3 small nucleolar RNA (snoRNA) necessary for pre-rRNA cleavage at sites 1 and 2 to form 18 S rRNA were assayed by depletion/rescue experiments in Xenopus oocytes. Mutagenesis results demonstrated that the putative stem of U3 domain I is unnecessary for 18 S rRNA processing. A model consistent with earlier experimental data is proposed for the structure of domain I when U3 is not yet bound to pre-rRNA. For its function in rRNA processing, a newly discovered element (5' hinge) was revealed to be important but not as critical as the 3' hinge region in Xenopus U3 snoRNA for 18 S rRNA formation. Base-pairing is proposed to occur between the U3 5' hinge and 3' hinge and complementary regions in the external transcribed spacer (ETS); these interactions are phylogenetically conserved, and are homologous to those previously described in yeast (5' hinge-ETS) and trypanosomes (3' hinge-ETS). A model is presented where the base-pairing of the 5' hinge and 3' hinge of U3 snoRNA with the ETS of pre-rRNA helps to correctly position U3 boxes A'+A for their function in rRNA processing. Like an earlier proposal for yeast, boxes A' and A of Xenopus may base-pair with 18 S sequences in pre-rRNA. We present the first direct experimental evidence in any system that box A' is essential for U3 snoRNA function in 18 S rRNA formation. The analysis of insertions and deletions indicated that the spacing between the U3 elements is important, suggesting that they base-pair with the ETS and 18 S regions of pre-rRNA at the same time.  相似文献   

3.
4.
5.
Forzani C  Lobréaux S  Mari S  Briat JF  Lebrun M 《Gene》2002,292(1-2):199-204
A novel 72 nt small nucleolar RNA (snoRNA) called U87 was found in rat liver cells. This RNA possesses the features of C/D box snoRNA family: boxes C, D', C', D, and 11 nt antisense element complementary to 28S ribosomal RNA (rRNA). The vast majority of C/D box snoRNAs direct site-specific 2'-O-ribose methylation of rRNAs. U87 RNA is suggested to be involved in 2'-O-methylation of a G(3468) residue in 28S rRNA. U87 RNA was detected in different mammalian species with slight length variability. Rat and mouse U87 RNA gene was characterized. Unlike the majority of C/D box snoRNAs U87 RNA lacks the terminal stem required for snoRNA processing. However, U87 gene is flanked by 7 bp inverted repeats potentially able to form a terminal stem in U87 RNA precursor.  相似文献   

6.
Eukaryotic nucleoli contain a large family of box C+D small nucleolar RNA (snoRNA) species, all of which are associated with a common protein Nop1p/fibrillarin. Nop58p was identified in a screen for synthetic lethality with Nop1p and shown to be an essential nucleolar protein. Here we report that a Protein A-tagged version of Nop58p coprecipitates all tested box C+D snoRNAs and that genetic depletion of Nop58p leads to the loss of all tested box C+D snoRNAs. The box H+ACA class of snoRNAs are not coprecipitated with Nop58p, and are not codepleted. The yeast box C+D snoRNAs include two species, U3 and U14, that are required for the early cleavages in pre-rRNA processing. Consistent with this, Nop58p depletion leads to a strong inhibition of pre-rRNA processing and 18S rRNA synthesis. Unexpectedly, depletion of Nop58p leads to the accumulation of 3' extended forms of U3 and U24, showing that the protein is also involved in snoRNA synthesis. Nop58p is the second common component of the box C+D snoRNPs to be identified and the first to be shown to be required for the stability and for the synthesis of these snoRNAs.  相似文献   

7.
8.
The U3 snoRNA is required for 18S rRNA processing and small subunit ribosome formation in eukaryotes. Different from other box C/D snoRNAs, U3 contains an extra 5′ domain that pairs with pre-rRNA and a unique B/C motif essential for recruitment of the U3-specific Rrp9 protein. Here, we analyze the structure and function of Rrp9 with crystallographic, biochemical, and cellular approaches. Rrp9 is composed of a WD repeat domain and an N-terminal region. The crystal structures of the WD domain of yeast Rrp9 and its human ortholog U3-55K were determined, revealing a typical seven-bladed propeller fold. Several conserved surface patches on the WD domain were identified, and their function in RNP assembly and yeast growth were analyzed by mutagenesis. Prior association of Snu13 with the B/C motif was found to enhance the specific binding of the WD domain. We show that a conserved 7bc loop is crucial for specific recognition of U3, nucleolar localization of Rrp9, and yeast growth. In addition, we show that the N-terminal region of Rrp9 contains a bipartite nuclear localization signal that is dispensable for nucleolar localization. Our results provide insight into the functional sites of Rrp9.  相似文献   

9.
The phylogenetically conserved U14 small nucleolar RNA is required for processing of rRNA, and this function involves base pairing with conserved complementary sequences in 18S RNA. With a view to identifying other important U14 interactions, a stem-loop domain required for activity of Saccharomyces cerevisiae U14 RNAs (the Y domain) was first subjected to detailed mutational analysis. The mapping results showed that most nucleotides of the Y domain can be replaced without affecting function, except for loop nucleotides conserved among five different yeast species. Defective variants were then used to identify both intragenic and extragenic suppressor mutations. All of the intragenic mutations mapped within six nucleotides of the primary mutation, suggesting that suppression involves a change in conformation and that the loop element is involved in an essential intermolecular interaction rather than intramolecular base pairing. A high-copy extragenic suppressor gene, designated DBP4 (DEAD box protein 4), encodes an essential, putative RNA helicase of the DEAD-DEXH box family. Suppression by DBP4 (initially CA4 [T.-H. Chang, J. Arenas, and J. Abelson, Proc. Natl. Acad. Sci. USA 87:1571-1575, 1990]) restores the level of 18S rRNA and is specific for the Y domain but is not allele specific. DBP4 is predicted to function either in assembly of the U14 small nucleolar RNP or, more likely, in its interaction with other components of the rRNA processing apparatus. Mediating the interaction of U14 with precursor 18S RNA is an especially attractive possibility.  相似文献   

10.
The C and D box-containing (box C/D) small nucleolar RNAs (snoRNAs) function in the nucleolytic processing and 2'-O-methylation of precursor rRNA. In vertebrates, most box C/D snoRNAs are processed from debranched pre-mRNA introns by exonucleolytic activities. Elements directing accurate snoRNA excision are located within the snoRNA itself; they comprise the conserved C and D boxes and an adjoining 5',3'-terminal stem. Although the terminal stem has been demonstrated to be essential for snoRNA accumulation, many snoRNAs lack a terminal helix. To identify the cis-acting elements supporting the accumulation of intron-encoded box C/D snoRNAs devoid of a terminal stem, we have investigated the in vivo processing of the human U46 snoRNA and an artificial snoRNA from the human beta-globin pre-mRNA. We demonstrate that internal and/or external stem structures located within the snoRNA or in the intronic flanking sequences support the accumulation of mammalian box C/D snoRNAs lacking a canonical terminal stem. In the intronic precursor RNA, transiently formed external and/or stable internal base-pairing interactions fold the C and D boxes together and therefore facilitate the binding of snoRNP proteins. Since the external intronic stems are degraded during snoRNA processing, we propose that the C and D boxes alone can provide metabolic stability for the mature snoRNA.  相似文献   

11.
12.
Sequences necessary for nucleolar targeting were identified in Box C/D small nucleolar RNAs (snoRNAs) by fluorescence microscopy. Nucleolar preparations were examined after injecting fluorescein-labelled wild-type and mutated U14 or U8 snoRNA into Xenopus oocyte nuclei. Regions in U14 snoRNA that are complementary to 18S rRNA and necessary for rRNA processing and methylation are not required for nucleolar localization. Truncated U14 molecules containing Boxes C and D with or without the terminal stem localized efficiently. Nucleolar localization was abolished upon mutating just one or two nucleotides within Boxes C and D. Moreover, the spatial position of Boxes C or D in the molecule is essential. Mutations in Box C/D of U8 snoRNA also impaired nucleolar localization, suggesting the general importance of Boxes C and D as nucleolar localization sequences for Box C/D snoRNAs. U14 snoRNA is shown to be required for 18S rRNA production in vertebrates.  相似文献   

13.
Mutations in the 5' portion of Xenopus U3 snoRNA were tested for function in oocytes. The results revealed a new cleavage site (A0) in the 3' region of vertebrate external transcribed spacer sequences. In addition, U3 mutagenesis uncoupled cleavage at sites 1 and 2, flanking the 5' and 3' ends of 18S rRNA, and generated novel intermediates: 19S and 18.5S pre-rRNAs. Furthermore, specific nucleotides in Xenopus U3 snoRNA that are required for cleavages in pre-rRNA were identified: box A is essential for site A0 cleavage, the GAC-box A' region is necessary for site 1 cleavage, and the 3' end of box A' and flanking nucleotides are required for site 2 cleavage. Differences between metazoan and yeast U3 snoRNA-mediated rRNA processing are enumerated. The data support a model where metazoan U3 snoRNA acts as a bridge to draw together the 5' and 3' ends of the 18S rRNA coding region within pre-rRNA to coordinate their cleavage.  相似文献   

14.
15.
U3 small nucleolar RNA (snoRNA) is essential for rRNA processing to form 18S ribosomal RNA (rRNA). Previously, it has been shown that nucleolin is needed to load U3 snoRNA on pre-rRNA. However, as documented here, this is not sufficient. We present data that base-pairing between the U3 hinges and the external transcribed spacer (ETS) is critical for functional alignment of U3 on its pre-rRNA substrate. Additionally, the interaction between the U3 hinges and the ETS is proposed to serve as an anchor to hold U3 on the pre-rRNA substrate, while box A at the 5' end of U3 snoRNA swivels from ETS contacts to 18S rRNA contacts. Compensatory base changes revealed base-pairing between the 3' hinge of U3 snoRNA and region E1 of the ETS in Xenopus pre-rRNA; this novel interaction is required for 18S rRNA production. In contrast, base-pairing between the 5' hinge of U3 snoRNA and region E2 of the ETS is auxiliary, unlike the case in yeast where it is required. Thus, higher and lower eukaryotes use different interactions for functional association of U3 with pre-rRNA. The U3 hinge sequence varies between species, but covariation in the ETS retains complementarity. This species-specific U3-pre-rRNA interaction offers a potential target for a new class of antibiotics to prevent ribosome biogenesis in eukaryotic pathogens.  相似文献   

16.
U8 small nucleolar RNA (snoRNA) is essential for metazoan ribosomal RNA (rRNA) processing in nucleoli. The sequences and structural features in Xenopus U8 snoRNA that are required for its nucleolar localization were analyzed. Fluorescein-labeled U8 snoRNA was injected into Xenopus oocyte nuclei, and fluorescence microscopy of nucleolar preparations revealed that wild-type Xenopus U8 snoRNA localized to nucleoli, regardless of the presence or nature of the 5' cap on the injected U8 snoRNA. Nucleolar localization was observed when loops or stems in the 5' portion of U8 that are critical for U8 snoRNA function in rRNA processing were mutated. Therefore, sites of interaction in U8 snoRNA that potentially tether it to pre-rRNA are not essential for nucleolar localization of U8. Boxes C and D are known to be nucleolar localization elements (NoLEs) for U8 snoRNA and other snoRNAs of the Box C/D family. However, the spatial relationship of Box C to Box D was not crucial for U8 nucleolar localization, as demonstrated here by deletion of sequences in the two stems that separate them. These U8 mutants can localize to nucleoli and function in rRNA processing as well. The single-stranded Cup region in U8, adjacent to evolutionarily conserved Box C, functions as a NoLE in addition to Boxes C and D. Cup is unique to U8 snoRNA and may help bind putative protein(s) needed for nucleolar localization. Alternatively, Cup may help to retain U8 snoRNA within the nucleolus.  相似文献   

17.
U3 small nucleolar RNA (snoRNA) is one of the members of the box C/D class of snoRNA and is essential for ribosomal RNA (rRNA) processing to generate 18S rRNA in the nucleolus. Although U3 snoRNA is abundant, and is well conserved from yeast to mammals, the genes encoding U3 snoRNA in C. elegans have long remained unidentified. A recent RNomics study in C. elegans predicted five distinct U3 snoRNA genes. However, characterization of these candidates for U3 snoRNA has yet to be performed. In this study, we isolated and characterized four candidate RNAs for U3 snoRNA from the immunoprecipitated RNAs of C. elegans using an antibody against the 2,2,7-trimethylguanosine (TMG) cap. The sequences were identical to the predicted U3 sequences in the RNomics study. Here, we show the several lines of evidence that the isolated RNAs are the true U3 snoRNAs of C. elegans. Moreover, we report the novel expression pattern of U3 snoRNA and fibrillarin, which is an essential component of U3 small nucleolar ribonucleoprotein complex, during early embryo development of C. elegans. To our knowledge, this is the first observation of the inconsistent localization U3 snoRNA and fibrillarin during early embryogenesis, providing novel insight into the mechanisms of nucleologenesis and ribosome production during early embryogenesis.  相似文献   

18.
U14 is a small nucleolar RNA (snoRNA) required for early cleavages of eukaryotic precursor rRNA. The U14 RNA from Saccharomyces cerevisiae is distinguished from its vertebrate homologues by the presence of a stem-loop domain that is essential for function. This element, known as the Y-domain, is located in the U14 sequence between two universal sequences that base pair with 18S rRNA. Sequence data obtained for the U14 homologues from four additional phylogenetically distinct yeasts showed the Y-domain is not unique to S.cerevisiae. Comparison of the five Y-domain sequences revealed a common stem-loop structure with a conserved loop sequence that includes eight invariant nucleotides. Conservation of these features suggests that the Y-domain is a recognition signal for an essential interaction. Several plant U14 RNAs were found to contain similar structures, though with an unrelated consensus sequence in the loop portion. The U14 gene from the most distantly related yeast, Schizosaccharomyces pombe, was found to be active in S.cerevisiae, showing that Y-domain function is conserved and that U14 function can be provided by variants in which the essential elements are embedded in dissimilar flanking sequences. This last result suggests that U14 function may be determined solely by the essential elements.  相似文献   

19.
Following a search of sequence data bases for intronic sequences exhibiting structural features typical of snoRNAs, we have positively identified by Northern assays and sequence analysis another intron-encoded snoRNA, termed U21. U21 RNA is a 93 nt. long, metabolically stable RNA, present at about 10(4) molecules per HeLa cell. It is encoded in intron 5 of the ribosomal protein L5 gene, both in chicken and in the two mammals studied so far, human and mouse. U21 RNA is devoid of a 5'-trimethyl-cap and is likely to result from processing of intronic RNA. The nucleolar localization of U21 has been established by fluorescence microscopy after in situ hybridization with digoxigenin-labeled oligonucleotide probes. Like most other snoRNAs U21 contains the box C and box D motifs and is precipitated by anti-fibrillarin antibodies. By the presence of a typical 5'-3' terminal stem, U21 appears more particularly related to U14, U15, U16 and U20 intron-encoded snoRNAs. Remarkably, U21 contains a long stretch (13 nt.) of complementarity to a highly conserved sequence in 28S rRNA. Sequence comparisons between chicken and mammals, together with Northern hybridizations with antisense oligonucleotides on cellular RNAs from more distant vertebrates, point to the preferential preservation of this segment of U21 sequence during evolution. Accordingly, this complementarity, which overlaps the complementarity of 28S rRNA to another snoRNA, U18, could reflect an important role of U21 snoRNA in the biogenesis of large ribosomal subunit.  相似文献   

20.
Essential elements for intronic U14 processing have been analyzed by microinjecting various mutant hsc70/Ul4 pre-mRNA precursors into Xenopus oocyte nuclei. Initial truncation experiments revealed that elements sufficient for U14 processing are located within the mature snoRNA sequence itself. Subsequent deletions within the U14 coding region demonstrated that only the terminal regions of the folded U14 molecule containing con- served nucleotide boxes C and D are required for processing. Mutagenesis of either box C or box D completely blocked U14 processing. The importance of boxes C and D was confirmed with the excision of appropriately sized U3 and U8 fragments containing boxes C and D from an hsc7O pre-mRNA intron. Competition studies indicate that a trans-acting factor (protein?) is binding this terminal motif and is essential for U14 processing. Competition studies also revealed that this factor is common to both intronic and non-intronic snoRNAs possessing nucleotide boxes C and D. Immunoprecipitation of full-length and internally deleted U14 snoRNA molecules demonstrated that the terminal region containing boxes C and D does not bind fibrillarin. Collectively, our results indicate that a trans-acting factor (different from fibrillarin) binds to the box C- and D-containing terminal motif of U14 snoRNA, thereby stabilizing the intronic snoRNA sequence in an RNP complex during processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号