首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self-compatible cultivars of Japanese apricot ( Prunus mume Shieb. et Zucc.), a tree species that normally shows S-RNase-based self-incompatiblity, have a horticultural advantage over self-incompatible cultivars. Inheritance of self-compatibility and a common S(f)-RNase allele that is observed in self-compatible cultivars was investigated using progenies from controlled crosses. Total DNAs were isolated from the parents and progenies of seven crosses that included at least one self-compatible cultivar as a parent. These DNAs were PCR-amplified with the Pru-C2 and PCE-R primer pair to determine S-haplotypes of the parents and progenies. A novel S-haplotype, S(8), was found. In all crosses examined, the S(f)-RNase gene was inherited from either the seed or pollen parent as a pistil S-allele in a non-functional S-haplotype. Self-compatibility of about 20 trees each from reciprocal crosses of 'Benisashi ( S(7) S(f))' and 'Shinpeidayu ( S(3) S(f))', and 26 selections from 16 different crosses was tested by pollination and pollen-tube growth studies. Cosegregation of the S(f)-RNase allele and self-compatibility was confirmed with all but selection 1K0-26 ( S(3) S(7)). Selection 1K0-26 ( S(3) S(7)) that originated from 'Benisashi ( S(7) S(f))' x 'Koshinoume ( S(3) S(f))' appeared to be self-compatible even without the S(f)-RNase allele. The possible role of pollen- S, a presumably existing pollen component of gametophytic self-incompatibility, is discussed.  相似文献   

2.
Chondroitin sulfate K (CS-K) from king crab cartilage rich in rare 3-O-sulfated glucuronic acid (GlcUA(3S)) displayed neuritogenic activity and affinity toward various growth factors like CS-E from squid cartilage. CS-K-mediated neuritogenesis of mouse hippocampal neurons in culture was abolished by digestion with chondroitinase (CSase) ABC, indicating the possible involvement of GlcUA(3S). However, identification of GlcUA(3S) in CS chains by conventional high performance liquid chromatography has been hampered by its CSase ABC-mediated degradation. To investigate the degradation process, an authentic CS-E tetrasaccharide, Delta4,5HexUA-GalNAc(4S)-GlcUA(3S)-GalNAc(4S), was digested with CSase ABC, and the end product was identified as GalNAc(4S) by electrospray ionization mass spectrometry (ESI-MS). Putative GalNAc(6S) and GalNAc(4S,6S), derived presumably from GlcUA(3S)-GalNAc(6S) and GlcUA(3S)-GalNAc(4S,6S), respectively, were also detected by ESI-MS in the CSase ABC digest of a CS-E oligosaccharide fraction resistant to CSases AC-I and AC-II. Intermediates during the CSase ABC-mediated degradation of Delta4,5HexUA(3S)-GalNAc(4S) to GalNAc(4S) were identified through ESI-MS of a partial CSase ABC digest of a CS-K tetrasaccharide, GlcUA(3S)-GalNAc(4S)-GlcUA(3S)-GalNAc(4S), and the conceivable mechanism behind the degradation of the GlcUA(3S) moiety was elucidated. Although a fucose branch was also identified in CS-K, defucosylated CS-K exhibited greater neuritogenic activity than the native CS-K, excluding the possibility of the involvement of fucose in the activity. Rather, (3S)-containing disaccharides are likely involved. These findings will enable us to detect GlcUA(3S)-containing disaccharides in CS chains to better understand CS-mediated biological processes.  相似文献   

3.
Liu Z  Qin J  Gao C  Hua D  Ma C  Li L  Wang Y  Xu P 《Bioresource technology》2011,102(22):10741-10744
Production of highly pure (2S,3S)-2,3-butanediol ((2S,3S)-2,3-BD) and (3S)-acetoin ((3S)-AC) in high concentrations is desirable but difficult to achieve. In the present study, glucose was first transformed to a mixture of (2S,3S)-2,3-BD and meso-2,3-BD by resting cells of Klebsiella pneumoniae CICC 10011, followed by biocatalytic resolution of the mixture by resting cells of Bacillus subtilis 168. meso-2,3-BD was transformed to (3S)-AC, leaving (2S,3S)-2,3-BD in the reaction medium. Using this approach, 12.5 g l(-1) (2S,3S)-2,3-BD and 56.7 g l(-1) (3S)-AC were produced. Stereoisomeric purity of (2S,3S)-2,3-BD and enantiomeric excess of (3S)-AC was 96.9 and 96.2%, respectively.  相似文献   

4.
MalphaNP acid (+/-)-1, 2-methoxy-2-(1-naphthyl)propionic acid, was enantioresolved by the use of phenylalaninol (S)-(-)-4; a diastereomeric mixture of amides formed from acid (+/-)-1 and amine (S)-(-)-4 was easily separated by fractional recrystallization and/or HPLC on silica gel, yielding amides (R;S)-(-)-5a and (S;S)-(+)-5b. Their absolute configurations were determined by X-ray crystallography by reference to the S configuration of the phenylalaninol moiety. Amide (R;S)-(-)-5a was converted to oxazoline (R;S)-(+)-8a, from which enantiopure MalphaNP acid (R)-(-)-1 was recovered. In a similar way, enantiopure MalphaNP acid (S)-(+)-1 was obtained from amide (S;S)-(+)-5b. These reactions provide a new route for the large-scale preparation of enantiopure MalphaNP acid, a powerful chiral reagent for the enantioresolution of alcohols and simultaneous determination of their absolute configurations by (1)H NMR anisotropy.  相似文献   

5.
Abstract: The present study demonstrates that S (-)-nornicotine evoked a concentration-dependent increase in dopamine (DA) release from superfused rat striatal slices. The increase in DA release was indicated by an S (-)-nornicotine-induced overflow of endogenous 3,4-dihydroxyphenyl-acetic acid (DOPAC) in the striatal superfusate and by an S (-)-nornicotine-induced increase in tritium overflow from striatal slices preloaded with [3H]DA. Low concentrations (0.01–1.0 μ M ) of S (-)-nornicotine, which did not evoke endogenous DOPAC overflow, also were unable to modulate electrically evoked DOPAC overflow. The increase in DOPAC overflow induced by S (-)-nornicotine was compared with that produced by S (-)-nicotine. Comparing equimolar concentrations (0.1-100 μ M ) of S (-)-nornicotine and S (-)-nicotine, superfusion with S (-)-nornicotine resulted in a significantly greater DOPAC overflow. In contrast to the effect of S (-)-nicotine, S (-)-nornicotine evoked a sustained increase in DOPAC over-flow for the entire period of S (-)-nornicotine exposure. Furthermore, DOPAC overflow evoked by S (-)-nornicotine in control Krebs buffer was inhibited by superfusion with a low-calcium buffer. Moreover, in the low-calcium buffer, DOPAC overflow induced by 30 and 100 μ M S (-)-nornicotine was not different from that with no S (-)-nornicotine. The results indicate that S (-)-nornicotine, a constituent of tobacco products and a known metabolite of S (-)-nicotine, increases DA release in a calcium-dependent manner in superfused rat striatal slices. It is interesting that unlike S (-)-nicotine, there does not appear to be desensitization to this effect of S (-)-nornicotine.  相似文献   

6.
An attempt was made to use a simple procedure to obtain (R)- and (S)-2-aminobutanoic acids [(R)- and (S)-1] which are non-proteinogenic alpha-amino acids and are useful as chiral reagents in asymmetric syntheses. Compound (RS)-1 p-toluenesulfonate [(RS)-2], which is known to exist as a conglomerate, was optically resolved by replacing crystallization with (R)- and (S)-methionine p-toluenesulfonate [(R)- and (S)-3] as optically active co-solutes. When (S)-3 was employed as the co-solute, (R)-2 was preferentially crystallized from a supersaturated solution of (RS)-2 in 1-propanol, as was (S)-2 in the presence of (R)-3. (R)- and (S)-2 recrystallized from 1-propanol were treated with triethylamine in methanol to give (R)- and (S)-1 in optically pure forms.  相似文献   

7.
Sphingosine 1-phosphate (S1P), a bioactive lipid mediator, stimulates proliferation and contractility in hepatic stellate cells, the principal matrix-producing cells in the liver, and inhibits proliferation via S1P receptor 2 (S1P(2)) in hepatocytes in rats in vitro. A potential role of S1P and S1P(2) in liver regeneration and fibrosis was examined in S1P(2)-deficient mice. Nuclear 5-bromo-2'-deoxy-uridine labeling, proliferating cell nuclear antigen (PCNA) staining in hepatocytes, and the ratio of liver weight to body weight were enhanced at 48 h in S1P(2)-deficient mice after a single carbon tetrachloride (CCl(4)) injection. After dimethylnitrosamine (DMN) administration with a lethal dose, PCNA staining in hepatocytes was enhanced at 48 h and survival rate was higher in S1P(2)-deficient mice. Serum aminotransferase level was unaltered in those mice compared with wild-type mice in both CCl(4)- and DMN-induced liver injury, suggesting that S1P(2) inactivation accelerated regeneration not as a response to enhanced liver damage. After chronic CCl(4) administration, fibrosis was less apparent, with reduced expression of smooth-muscle alpha-actin-positive cells in the livers of S1P(2)-deficient mice, suggesting that S1P(2) inactivation ameliorated CCl(4)-induced fibrosis due to the decreased accumulation of hepatic stellate cells. Thus, S1P plays a significant role in regeneration and fibrosis after liver injury via S1P(2).  相似文献   

8.
During aerobic oxidation of docosahexaenoic acid (DHA), soybean lipoxygenase (sLOX) has been shown to form 7,17(S)-dihydro(pero)xydocosahexaenoic acid [7,17(S)-diH(P)DHA] along with its previously described positional isomer, 10,17(S)-dihydro(pero)xydocosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid. 7,17(S)-diH(P)DHA was also obtained via sLOX-catalyzed oxidation of either 17(S)-hydroperoxydocosahexaenoic acid [17(S)-HPDHA] or 17(S)-hydroxydocosahexaenoic acid [17(S)-HDHA]. The structures of the products were elucidated by normal-phase, reverse-phase, and chiral-phase HPLC analyses and by ultraviolet, NMR, and tandem mass spectroscopy and GC-MS. 7,17(S)-diH(P)DHA was shown to have 4Z,8E,10Z,13Z,15E,19Z geometry of the double bonds. In addition, a compound apparently identical to the sLOX-derived 7,17(S)-diH(P)DHA was produced by another enzyme, potato tuber LOX, in the reactions of oxygenation of either 17(S)-HPDHA or 17(S)-HDHA. All of the dihydroxydocosahexaenoic acids (diHDHAs) formed by either of the enzymes were clearly produced through double lipoxygenation of the corresponding substrate. 7,17(S)-diHDHA inhibited human recombinant 5-lipoxygenase in the reaction of arachidonic acid (AA) oxidation. In standard conditions with 100 microM AA as substrate, the IC(50) value for 7,17(S)-diHDHA was found to be 7 microM, whereas IC(50) for 10,17(S)-DiHDHA was 15 microM. Similar inhibition by the diHDHAs was observed with sLOX, a quintessential 15LOX, although the strongest inhibition was produced by 10,17(S)-diHDHA (IC(50) = 4 microM). Inhibition of sLOX by 7,17(S)-diHDHA was slightly less potent, with an IC(50) value of 9 microM. These findings suggest that 7,17(S)-diHDHA along with its 10,17(S) counterpart might have anti-inflammatory and anticancer activities, which could be exerted, at least in part, through direct inhibition of 5LOX and 15LOX.  相似文献   

9.
Using the transglycosylation reaction of testicular hyaluronidase, reconstructions of hybrid glycosaminoglycans (GAGs) containing 6-sulfated (GalNAc6S), 4-sulfated (GalNAcS) and unsulfated N-acetylgalactosamine (GalNAc) were investigated. First, chondroitin 4-sulfate (Ch4S) as a donor containing GalNAc4S and the pyridylaminated (PA) chondroitin 6-sulfate (Ch6S) hexasaccharide as an acceptor containing GalNAc6S were subjected to transglycosylation reaction. Second, when the resulting PA-Ch6S(hexa-)-Ch4S(di-)octasaccharide and chondroitin (Ch) were used as an acceptor and as a donor containing GalNAc, respectively, a new decasaccharide having a hybrid structure composed of disaccharide units derived from Ch6S, Ch4S and Ch was reconstructed. Using a systematic combination of each donor and acceptor molecule, it was possible to reconstruct various types of hybrid GAGs.  相似文献   

10.
The stability of the S(3) and S(2) states of the oxygen evolving complex in photosystem II (PSII) was directly probed by EPR spectroscopy in PSII membrane preparations from spinach in the presence of the exogenous electron acceptor PpBQ at 1, 10, and 20 °C. The decay of the S(3) state was followed in samples exposed to two flashes by measuring the split S(3) EPR signal induced by near-infrared illumination at 5 K. The decay of the S(2) state was followed in samples exposed to one flash by measuring the S(2) state multiline EPR signal. During the decay of the S(3) state, the S(2) state multiline EPR signal first increased and then decreased in amplitude. This shows that the decay of the S(3) state to the S(1) state occurs via the S(2) state. The decay of the S(3) state was biexponential with a fast kinetic phase with a few seconds decay half-time. This occurred in 10-20% of the PSII centers. The slow kinetic phase ranged from a decay half-time of 700 s (at 1 °C) to ~100 s (at 20 °C) in the remaining 80-90% of the centers. The decay of the S(2) state was also biphasic and showed quite similar kinetics to the decay of the S(3) state. Our experiments show that the auxiliary electron donor Y(D) was oxidized during the entire experiment. Thus, the reduced form of Y(D) does not participate to the fast decay of the S(2) and S(3) states we describe here. Instead, we suggest that the decay of the S(3) and S(2) states reflects electron transfer from the acceptor side of PSII to the donor side of PSII starting in the corresponding S state. It is proposed that this exists in equilibrium with Y(Z) according to S(3)Y(Z) ? S(2)Y(Z)(?) in the case of the S(3) state decay and S(2)Y(Z) ? S(1)Y(Z)(?) in the case of the S(2) state decay. Two kinetic models are discussed, both developed with the assumption that the slow decay of the S(3) and S(2) states occurs in PSII centers where Y(Z) is also a fast donor to P(680)(+) working in the nanosecond time regime and that the fast decay of the S(3) and S(2) states occurs in centers where Y(Z) reduces P(680)(+) with slower microsecond kinetics. Our measurements also demonstrate that the split S(3) EPR signal can be used as a direct probe to the S(3) state and that it can provide important information about the redox properties of the S(3) state.  相似文献   

11.
The Genic Nature of Gamete Eliminator in Rice   总被引:12,自引:3,他引:9       下载免费PDF全文
Y. Sano 《Genetics》1990,125(1):183-191
The two cultivated rice species, Oryza sativa and Oryza glaberrima, are morphologically alike but are reproductively isolated from each other by hybrid sterility. The hybrid is male sterile but partially female fertile. Backcross experiments were conducted to introduce an alien factor controlling hybrid sterility from O. glaberrima (W025) into O. sativa (T65wx) and examine the genetic basis. An extracted sterility factor, closely linked to the wx locus, induced gametic abortion due to allelic interaction and was tentatively designated as S(t). The segregation patterns for infertility was explained by assuming that W025 and T65wx carried S(t) and S(t)a, respectively, and gametes with S(t)a aborted only in the heterozygote (S(t)/S(t)a) although the elimination of female gametes was incomplete. Thus, S(t) seemed to be intermediate between a gamete eliminator and pollen killer. However, S(t) was proven to be likely the same as S1 which was formerly reported as gamete eliminator in a different genetic background of O. sativa. In addition, a chromosomal segment containing S1 (or S(t] caused a marked suppression of crossing over around it, suggesting the presence of an inversion. Further, female transmission of S1a increased as the segment containing S1 became small by recombination. After S1 was further purified by successive backcrosses up to the BC15 generation, it became pollen killer. The present results give evidence that a profound sterility gene such as gamete eliminator can be made from accumulation of pollen killer and its modifier(s) when pollen killer and modifier(s) are linked, they behave as a gene complex in the hybrid.  相似文献   

12.
We have previously shown that 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE)-enrichment primed human peripheral blood mononuclear cells for phospholipase D activation by mitogens. Given that 12(S)-HETE-enriched cells stimulated with concanavalin A released free 12(S)-HETE in the extracellular medium, and that the priming effect of 12(S)-HETE on phospholipase D was suppressed by the non-permeant drug, suramin, we hypothesized an extracellular mechanism for 12(S)-HETE-induced PLD activation. Using [3H]12(S)-HETE as a ligand and a rapid filtration technique, we have pointed out the presence of specific low-affinity 12(S)-HETE binding sites on intact human mononuclear cells and lymphocytes. [3H]12(S)-HETE binding was efficiently displaced by other monohydroxylated and n-3 fatty acids but not by oleate and arachidonate, and was also significantly inhibited by suramin and pertussis toxin. Furthermore, 12(S)-HETE-induced PLD activation was strongly inhibited by pertussis toxin and genistein, but was not PKC-dependent. In addition, 12(S)-HETE also potentiated the ConA-induced tyrosine phosphorylation of a 46-50 kDa protein, which was inhibited by genistein. Collectively, these results suggest that 12(S)-HETE binding sites on human lymphocytes may be coupled to phospholipase D through pertussis toxin sensitive G-proteins and tyrosine kinases.  相似文献   

13.
Although Petunia axillaris subsp. axillaris is described as a self-incompatible taxon, some of the natural populations we have identified in Uruguay are composed of both self-incompatible and self-compatible plants. Here, we studied the self-incompatibility (SI) behavior of 50 plants derived from such a mixed population, designated U83, and examined the cause of the breakdown of SI. Thirteen plants were found to be self-incompatible, and the other 37 were found to be self-compatible. A total of 14 S-haplotypes were represented in these 50 plants, including two that we had previously identified from another mixed population, designated U1. All the 37 self-compatible plants carried either an S(C1)- or an S(C2)-haplotype. S(C1)S(C1) and S(C2)S(C2) homozygotes were generated by self-pollination of two of the self-compatible plants, and they were reciprocally crossed with 40 self-incompatible S-homozygotes (S(1)S(1) through S(40)S(40)) generated from plants identified from three mixed populations, including U83. The S(C1)S(C1) homozygote was reciprocally compatible with all the genotypes examined. The S(C2)S(C2) homozygote accepted pollen from all but the S(17)S(17) homozygote (identified from the U1 population), but the S(17)S(17) homozygote accepted pollen from the S(C2)S(C2) homozygote. cDNAs encoding S(C2)- and S(17)-RNases were cloned and sequenced, and their nucleotide sequences were completely identical. Analysis of bud-selfed progeny of heterozygotes carrying S(C1) or S(C2) showed that the SI behavior of S(C1) and S(C2) was identical to that of S(C1) and S(C2) homozygotes, respectively. All these results taken together suggested that the S(C2)-haplotype was a mutant form of the S(17)-haplotype, with the defect lying in the pollen function. The possible nature of the mutation is discussed.  相似文献   

14.
15.
The enantiomers of formoterol (R;R and S;S) and their diastereomers (R;S and S;R) were synthesized and purified using a new procedure which required the preparation of the (R;R)- and (S;S)-forms of N-(1-phenylethyl)-N-(1-(p-methoxyphenyl)-2-propyl)-amine as important intermediates. The enantiomeric purity obtained was greater than 99.3%, usually greater than 99.7%. The four stereoisomers were examined with respect to their ability to interact in vitro with beta-adrenoceptors in tissues isolated from guinea pig. The effects measured were (1) relaxation of the tracheal smooth muscle (mostly beta 2), (2) depression of subtetanic contractions of the soleus muscle (beta 2), and (3) increase in the force of the papillary muscle of the left ventricle of the heart (beta 1). All enantiomers caused a concentration-dependent and complete relaxation of the tracheal smooth muscle which was inhibited by propranolol. The order of potency was (R;R) much greater than (R;S) = (S;R) greater than (S;S). There was a 1,000-fold difference in potency between the most and the least potent isomer. The presence of the (S;S)-isomer did not affect the activity of the (R;R)-isomer on the tracheal smooth muscle. Also on the skeletal and cardiac muscles (R;R)-formoterol was more potent than its (R;S)-isomer. The selectivity for beta 2-adrenoceptors appeared to be slightly higher for the (R;R)-isomer than for the (R;S)-isomer. The potency of the (S;R)- and (S;S)-isomers on the papillary muscle was too low to be determined accurately.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor   总被引:1,自引:0,他引:1  
A biotechnological process is described to remove hydrogen sulfide (H(2)S) from high-pressure natural gas and sour gases produced in the petrochemical industry. The process operates at halo-alkaline conditions and combines an aerobic sulfide-oxidizing reactor with an anaerobic sulfate (SO(4) (2-)) and thiosulfate (S(2)O(3) (2-)) reducing reactor. The feasibility of biological H(2)S oxidation at pH around 10 and total sodium concentration of 2 mol L(-1) was studied in gas-lift bioreactors, using halo-alkaliphilic sulfur-oxidizing bacteria (HA-SOB). Reactor operation at different oxygen to sulfide (O(2):H(2)S) supply ratios resulted in a stable low redox potential that was directly related with the polysulfide (S(x) (2-)) and total sulfide concentration in the bioreactor. Selectivity for SO(4) (2-) formation decreased with increasing S(x) (2-) and total sulfide concentrations. At total sulfide concentrations above 0.25 mmol L(-1), selectivity for SO(4) (2-) formation approached zero and the end products of H(2)S oxidation were elemental sulfur (S(0)) and S(2)O(3) (2-). Maximum selectivity for S(0) formation (83.3+/-0.7%) during stable reactor operation was obtained at a molar O(2):H(2)S supply ratio of 0.65. Under these conditions, intermediary S(x) (2-) plays a major role in the process. Instead of dissolved sulfide (HS(-)), S(x) (2-) seemed to be the most important electron donor for HA-SOB under S(0) producing conditions. In addition, abiotic oxidation of S(x) (2-) was the main cause of undesirable formation of S(2)O(3) (2-). The observed biomass growth yield under SO(4) (2-) producing conditions was 0.86 g N mol(-1) H(2)S. When selectivity for SO(4) (2-) formation was below 5%, almost no biomass growth was observed.  相似文献   

17.
As a result of screening of microorganisms, Mucor ambiguus IFO 6742 was found to reduce methyl 2-chloro-3-(4-methoxyphenyl)-3-oxopropionate (2) to give methyl (2S,3R)-2-chloro-3-hydroxy-3-(4-methoxyphenyl)propionate [(2S,3R)-3] in good yield with high enantioselectivity. The resulting (2S, 3R)-3 was converted into methyl (2S,3R)-3-(4-methoxyphenyl)glycidate [(2S,3R)-4] by treatment with sodium methoxide. On the other hand, its enantiomer, (2R,3S)-4 was obtained by the Mitsunobu esterification of (2S,3R)-3 and subsequent treatment with sodium methoxide. Also (2R,3S)-4 was obtained by the treatment of (2RS,3S)-3, which was obtained from 2 by Trichoderma viride OUT 4642, with sodium methoxide.  相似文献   

18.
In order to synthesize four stereoisomers of 1,4-thiazane-3-carboxylic acid 1-oxide (TCA SO), (S)-1,4thiazane-3-carboxylic acid [(S)-TCA], which is one of the precursors, was prepared by the asymmetric transformation (combined isomerization-preferential crystallization) of (RS)-TCA. This asymmetric transformation was used (2R, 3R)-tartaric acid [(R)-TA] as a resolving agent and salicylaldehyde as the epimerization catalyst in propanoic acid at 110 degrees C to afford a salt of (S)-TCA with (R)-TA in 100% de with a yield of over 90%. Optically pure (S)-TCA was obtained by treating the salt with triethylamine in methanol in a yield of over 80%, based on (RS)-TCA as the starting material. In addition, asymmetric transformation of (R)-TCA gave (S)-TCA in a yield of 60-70%. (S)-TCA was oxidized by hydrogen peroxide in dilute hydrochloric acid to selectively crystallize (1S, 3S)-TCA.SO. (1R, 3S)-TCA SO of 70% de from the filtrate was allowed to form a salt with (R)-TA after a treatment with triethylamine to give (1R, 3S)-TCA SO as a single diastereoisomer. (1R, 3R)- and (1S, 3R)-TCA.SO were also prepared by starting from (R)-TCA that had been synthesized from L-cysteine.  相似文献   

19.
[35S]Thiosulphate oxidation by Thiobacillus strain C   总被引:4,自引:1,他引:3  
1. Thiobacillus strain C oxidized [(35)S]thiosulphate completely to sulphate. 2. During thiosulphate oxidation [(35)S]sulphate was formed more rapidly from (S.(35)SO(3))(2-) than from ((35)S.SO(3))(2-). (35)S disappeared less rapidly from thiosulphate with ((35)S.SO(3))(2-) as substrate than with (S.(35)SO(3))(2-). 3. Thiosulphate labelled in both atoms was produced during ((35)S.SO(3))(2-) oxidation, but not during (S.(35)SO(3))(2-) oxidation. 4. No (35)S was precipitated as elementary sulphur either in the presence or absence of exogenous unlabelled sulphur. 5. During [(35)S]thiosulphate oxidation, appreciable quantities of [(35)S]trithionate accumulated and later disappeared. Other polythionates did not accumulate consistently. 6. [(35)S]Trithionate was formed initially at a greater rate from (S.(35)SO(3))(2-) than from ((35)S.SO(3))(2-), but subsequently at a similar rate from each. 7. Trithionate formed from (S.(35)SO(3))(2-) was labelled only in the oxidized sulphur atoms, but that formed from ((35)S.SO(3))(2-) was labelled in both oxidized and reduced atoms. The proportion of (35)S in the oxidized atoms increased as more trithionate accumulated. 8. The results eliminate some mechanisms of trithionate formation but are consistent both with a mechanism of thiosulphate oxidation based on an initial reductive cleavage of the molecule and with a mechanism in which thiosulphate undergoes an initial oxidative reaction.  相似文献   

20.
The absolute configuration of 2-sec-butyl-4,5-dihydrothiazole (DHT) in urine of adult male mice was determined through chiral trifluoroacetyl derivative capillary chromatography by comparing the retention time with synthetic standards. (S)-DHT was extracted from fresh urine, while neither (R)-DHT nor the racemization of (S)-DHT were detected. We can conclude that DHT in urine possesses the S configuration, although we cannot exclude a minor component in the R configuration. (S)-DHT was then characterized for binding to the complex of major urinary proteins of male mouse urine (MUP) and for a behavioral response, the competitive scent marking behavior (countermarking). The binding constant of (S)-DHT to MUP (determined by competitive displacement) was 8.2 +/- 0.6 microM (mean +/- SD) and was 10.5 +/- 0.6 microM for R-DHT, thus excluding a relevant difference in binding. (S)-DHT modified countermarking in a peculiar way. Male mice were slow in countermarking urinary spots streaked 2 days earlier and on top of which (S)-DHT was added shortly before the test. This response was not seen when adding (S)-DHT to freshly streaked urinary spots or to clean paper. Unlike (S)-DHT, (R)-DHT prompted countermarking rather than delaying it. We can further conclude that (S)-DHT in male mouse urine is an aversive chemosignal for countermarking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号