首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DHDPS (dihydrodipicolinate synthase) catalyses the branch point in lysine biosynthesis in bacteria and plants and is feedback inhibited by lysine. DHDPS from the thermophilic bacterium Thermotoga maritima shows a high level of heat and chemical stability. When incubated at 90 degrees C or in 8 M urea, the enzyme showed little or no loss of activity, unlike the Escherichia coli enzyme. The active site is very similar to that of the E. coli enzyme, and at mesophilic temperatures the two enzymes have similar kinetic constants. Like other forms of the enzyme, T. maritima DHDPS is a tetramer in solution, with a sedimentation coefficient of 7.2 S and molar mass of 133 kDa. However, the residues involved in the interface between different subunits in the tetramer differ from those of E. coli and include two cysteine residues poised to form a disulfide bond. Thus the increased heat and chemical stability of the T. maritima DHDPS enzyme is, at least in part, explained by an increased number of inter-subunit contacts. Unlike the plant or E. coli enzyme, the thermophilic DHDPS enzyme is not inhibited by (S)-lysine, suggesting that feedback control of the lysine biosynthetic pathway evolved later in the bacterial lineage.  相似文献   

2.
Morar M  Hoskins AA  Stubbe J  Ealick SE 《Biochemistry》2008,47(30):7816-7830
In the fourth step of the purine biosynthetic pathway, formyl glycinamide ribonucleotide (FGAR) amidotransferase, also known as PurL, catalyzes the conversion of FGAR, ATP, and glutamine to formyl glycinamidine ribonucleotide (FGAM), ADP, P i, and glutamate. Two forms of PurL have been characterized, large and small. Large PurL, present in most Gram-negative bacteria and eukaryotes, consists of a single polypeptide chain and contains three major domains: the N-terminal domain, the FGAM synthetase domain, and the glutaminase domain, with a putative ammonia channel located between the active sites of the latter two. Small PurL, present in Gram-positive bacteria and archaea, is structurally homologous to the FGAM synthetase domain of large PurL, and forms a complex with two additional gene products, PurQ and PurS. The structure of the PurS dimer is homologous with the N-terminal domain of large PurL, while PurQ, whose structure has not been reported, contains the glutaminase activity. In Bacillus subtilis, the formation of the PurLQS complex is dependent on glutamine and ADP and has been demonstrated by size-exclusion chromatography. In this work, a structure of the PurLQS complex from Thermotoga maritima is described revealing a 2:1:1 stoichiometry of PurS:Q:L, respectively. The conformational changes observed in TmPurL upon complex formation elucidate the mechanism of metabolite-mediated recruitment of PurQ and PurS. The flexibility of the PurS dimer is proposed to play a role in the activation of the complex and the formation of the ammonia channel. A potential path for the ammonia channel is identified.  相似文献   

3.
Acetohydroxyacid synthase (AHAS) is the key enzyme in branched chain amino acid biosynthesis pathway. The enzyme activity and properties of a highly thermostable AHAS from the hyperthermophilic bacterium Thermotoga maritima is being reported. The catalytic and regulatory subunits of AHAS from T. maritima were over-expressed in Escherichia coli. The recombinant subunits were purified using a simplified procedure including a heat-treatment step followed by chromatography. A discontinuous colorimetric assay method was optimized and used to determine the kinetic parameters. AHAS activity was determined to be present in several Thermotogales including T. maritima. The catalytic subunit of T. maritima AHAS was purified approximately 30-fold, with an AHAS activity of approximately 160±27 U/mg and native molecular mass of 156±6 kDa. The regulatory subunit was purified to homogeneity and showed no catalytic activity as expected. The optimum pH and temperature for AHAS activity were 7.0 and 85 °C, respectively. The apparent Km and Vmax for pyruvate were 16.4±2 mM and 246±7 U/mg, respectively. Reconstitution of the catalytic and regulatory subunits led to increased AHAS activity. This is the first report on characterization of an isoleucine, leucine, and valine operon (ilv operon) enzyme from a hyperthermophilic microorganism and may contribute to our understanding of the physiological pathways in Thermotogales. The enzyme represents the most active and thermostable AHAS reported so far.  相似文献   

4.
Acetohydroxyacid synthase (AHAS) catalyzes the production of acetolactate from pyruvate. The enzyme from the hyperthermophilic bacterium Thermotoga maritima has been purified and characterized (kcat ~100 s?1). It was found that the same enzyme also had the ability to catalyze the production of acetaldehyde and CO2 from pyruvate, an activity of pyruvate decarboxylase (PDC) at a rate approximately 10% of its AHAS activity. Compared to the catalytic subunit, reconstitution of the individually expressed and purified catalytic and regulatory subunits of the AHAS stimulated both activities of PDC and AHAS. Both activities had similar pH and temperature profiles with an optimal pH of 7.0 and temperature of 85 °C. The enzyme kinetic parameters were determined, however, it showed a non-Michaelis-Menten kinetics for pyruvate only. This is the first report on the PDC activity of an AHAS and the second bifunctional enzyme that might be involved in the production of ethanol from pyruvate in hyperthermophilic microorganisms.  相似文献   

5.
Molybdenum cofactor biosynthesis is an evolutionarily conserved pathway present in eubacteria, archaea, and eukaryotes, including humans. Genetic deficiencies of enzymes involved in cofactor biosynthesis in humans lead to a severe and usually fatal disease. The molybdenum cofactor contains a tricyclic pyranopterin, termed molybdopterin, that bears the cis-dithiolene group responsible for molybdenum ligation. The dithiolene group of molybdopterin is generated by molybdopterin synthase, which consists of a large (MoaE) and small (MoaD) subunit. The crystal structure of molybdopterin synthase revealed a heterotetrameric enzyme in which the C terminus of each MoaD subunit is deeply inserted into a MoaE subunit to form the active site. In the activated form of the enzyme, the MoaD C terminus is present as a thiocarboxylate. The present study identified the position of the thiocarboxylate sulfur by exploiting the anomalous signal originating from the sulfur atom. The structure of molybdopterin synthase in a novel crystal form revealed a binding pocket for the terminal phosphate of molybdopterin, the product of the enzyme, and suggested a binding site for the pterin moiety present in precursor Z and molybdopterin. Finally, the crystal structure of the MoaE homodimer provides insights into the conformational changes accompanying binding of the MoaD subunit.  相似文献   

6.
The alpha-L-fucosidase from Thermotoga maritima (Tm alpha fuc) was converted into alpha-L-transfucosidase variants by directed evolution. The wild-type enzyme catalyzes oligosaccharide synthesis by transfer of a fucosyl residue from a pNP-fucoside donor to pNP-fucoside (self-condensation) with alpha-(1-->3) regioselectivity or pNP-galactoside (transglycosylation) with alpha-(1-->2) regioselectivity at low yields (7%). The wild-type enzyme was submitted to one cycle of mutagenesis, followed by rational recombination of the selected mutations, which allowed identification of variants with improved transferase activity. The transferase and hydrolytic kinetics of all the mutants were assessed by NMR methods and capillary electrophoresis. It was shown that the best mutant exhibited a dramatic 32-fold increase in the transferase/hydrolytic kinetic ratio, while keeping 60% of the overall wild-type enzyme activity. Accordingly, the maximum yield of a specific transglycosylation product [pNP-Gal-alpha-(1-->2)-Fuc] reached more than 60% compared to 7% with WT enzyme at equimolar and low concentrations of donor and acceptor (10 mM). Such an improvement was obtained with only three mutations (T264A, Y267F, L322P), which were all located in the second amino acid shell of the fucosidase active site. Molecular modeling suggested that some of these mutations (T264A, Y267F) cause a reorientation of the amino acids that are in direct contact with the substrates, resulting in a better docking energy. Such mutants with high transglycosidase activity may constitute novel enzymatic tools for the synthesis of fucooligosaccharides.  相似文献   

7.
Octaprenyl pyrophosphate synthase (OPPs) catalyzes consecutive condensation reactions of farnesyl pyrophosphate (FPP) with isopentenyl pyrophosphate (IPP) to generate C40 octaprenyl pyrophosphate (OPP), which constitutes the side chain of bacterial ubiquinone or menaquinone. In this study, the first structure of long chain C40-OPPs from Thermotoga maritima has been determined to 2.28-A resolution. OPPs is composed entirely of alpha-helices joined by connecting loops and is arranged with nine core helices around a large central cavity. An elongated hydrophobic tunnel between D and F alpha-helices contains two DDXXD motifs on the top for substrate binding and is occupied at the bottom with two large residues Phe-52 and Phe-132. The products of the mutant F132A OPPs are predominantly C50, longer than the C40 synthesized by the wild-type and F52A mutant OPPs, suggesting that Phe-132 is the key residue for determining the product chain length. Ala-76 and Ser-77 located close to the FPP binding site and Val-73 positioned further down the tunnel were individually mutated to larger amino acids. A76Y and S77F mainly produce C20 indicating that the mutated large residues in the vicinity of the FPP site limit the substrate chain elongation. Ala-76 is the fifth amino acid upstream from the first DDXXD motif on helix D of OPPs, and its corresponding amino acid in FPPs is Tyr. In contrast, V73Y mutation led to additional accumulation of C30 intermediate. The new structure of the trans-type OPPs, together with the recently determined cis-type UPPs, significantly extends our understanding on the biosynthesis of long chain polyprenyl molecules.  相似文献   

8.
Eukaryotic cells distribute materials among intracellular organelles and secrete into the extracellular space through cargo-loaded vesicles. A concluding step during vesicular transport is the fusion of a transport vesicle with a target membrane. SNARE proteins are essential for all vesicular fusion steps, thus they possibly comprise a conserved membrane fusion machinery. According to the "zipper" model, they assemble into stable membrane-bridging complexes that gradually bring membranes in juxtaposition. Hence, complex formation may provide the necessary energy for overcoming the repulsive forces between two membranes. During the last years, detailed structural and functional studies have extended the evidence that SNAREs are mostly in accord with the zipper model. Nevertheless, it remains unclear whether SNARE assembly between membranes directly leads to the merger of lipid bilayers.  相似文献   

9.
This study describes the structure of the putative ABC-type 2 transporter TM0543 from Thermotoga maritima MSB8 determined at a resolution of 2.3 Å. In comparative sequence-clustering analysis, TM0543 displays similarity to NatAB-like proteins, which are components of the ABC-type Na+ efflux pump permease. However, the overall structure fold of the predicted nucleotide-binding domain reveals that it is different from any known structure of ABC-type efflux transporters solved to date. The structure of the putative TM0543 domain also exhibits different dimer architecture and topology of its presumed ATP binding pocket, which may indicate that it does not bind nucleotide at all. Structural analysis of calcium ion binding sites found at the interface between TM0543 dimer subunits suggests that protein may be involved in ion-transporting activity. A detailed analysis of the protein sequence and structure is presented and discussed.  相似文献   

10.
In most eubacteria, fungi, apicomplexa, plants and some metazoans, the active form of vitamin B6, PLP (pyridoxal 5-phosphate), is de novo synthesized from three substrates, R5P (ribose 5-phosphate), DHAP (dihydroxyacetone phosphate) and ammonia hydrolysed from glutamine by a complexed glutaminase. Of the three active sites of DXP (deoxyxylulose 5-phosphate)independent PLP synthase (Pdx1), the R5P isomerization site has been assigned, but the sites for DHAP isomerization and PLP formation remain unknown. In the present study, we present the crystal structures of yeast Pdx1/Snz1, in apo-, G3P (glyceraldehyde 3-phosphate)- and PLP-bound forms, at 2.3, 1.8 and 2.2 ? (1 ?=0.1 nm) respectively. Structural and biochemical analysis enabled us to assign the PLP-formation site, a G3P-binding site and a G3P-transfer site. We propose a putative catalytic mechanism for Pdx1/Snz1 in which R5P and DHAP are isomerized at two distinct sites and transferred along well-defined routes to a final destination for PLP synthesis.  相似文献   

11.
Imidazole glycerol phosphate synthase, which links histidine and de novo purine biosynthesis, is a member of the glutamine amidotransferase family. In bacteria, imidazole glycerol phosphate synthase constitutes a bienzyme complex of the glutaminase subunit HisH and the synthase subunit HisF. Nascent ammonia produced by HisH reacts at the active site of HisF with N'-((5'-phosphoribulosyl)formimino)-5-aminoimidazole-4-carboxamide-ribonucleotide to yield the products imidazole glycerol phosphate and 5-aminoimidazole-4-carboxamide ribotide. In order to elucidate the interactions between HisH and HisF and the catalytic mechanism of the HisF reaction, the enzymes tHisH and tHisF from Thermotoga maritima were produced in Escherichia coli, purified, and characterized. Isolated tHisH showed no detectable glutaminase activity but was stimulated by complex formation with tHisF to which either the product imidazole glycerol phosphate or a substrate analogue were bound. Eight conserved amino acids at the putative active site of tHisF were exchanged by site-directed mutagenesis, and the purified variants were investigated by steady-state kinetics. Aspartate 11 appeared to be essential for the synthase activity both in vitro and in vivo, and aspartate 130 could be partially replaced only by glutamate. The carboxylate groups of these residues could provide general acid/base catalysis in the proposed catalytic mechanism of the synthase reaction.  相似文献   

12.
Ribosomal protein L7/L12, the only multicopy component of the ribosome, is involved in translation factor binding and in the ribosomal GTPase center. The gene for L7/L12 from Thermotoga maritima was cloned and the protein expressed at high levels in Escherichia coli. Purification of L7/L12 was achieved under non-denaturing conditions via heat treatment and two chromatographic steps. Circular dichroism melting profiles were monitored at 222 nm, showing the melting temperature of the protein at pH 7.5 around 110 degrees C, compared to approximately 60 degrees C for the highly homologous Escherichia coli protein. The unfolding was reversible and renaturation closely followed the path of the thermal melting. Dynamic light scattering, gel filtration chromatography, and crosslinking experiments suggested that under physiological buffer conditions Thermotoga maritima L7/L12 exists as a tetramer. The protein was crystallized under two conditions, yielding an orthorhombic (C222(1)) and a cubic (12(1)3) space group with an estimated two and three to four L7/L12 molecules per asymmetric unit, respectively. The crystals contained the full-length protein, and cryogenic buffers were developed which improved the mosaic spreads and the resolution limits. For the structure solution isoleucine was mutated to methionine at two separate positions, the mutant forms expressed as selenomethionine variants and crystallized.  相似文献   

13.
Structural insights into ABC transporter mechanism   总被引:1,自引:0,他引:1  
ATP-binding cassette (ABC) transporters utilize the energy from ATP hydrolysis to transport substances across the membrane. In recent years, crystal structures of several ABC transporters have become available. These structures show that both importers and exporters oscillate between two conformations: an inward-facing conformation with the substrate translocation pathway open to the cytoplasm and an outward-facing conformation with the translocation pathway facing the opposite side of the membrane. In this review, conformational differences found in the structures of homologous ABC transporters are analyzed to understand how alternating-access is achieved. It appears that rigid-body rotations of the transmembrane subunits, coinciding with the opening and closing of the nucleotide-binding subunits, couples ATP hydrolysis to substrate translocation.  相似文献   

14.
The protein subunit of RNase P from a thermophilic bacterium, Thermotoga maritima, was overexpressed in and purified from Escherichia coli. The cloned protein was reconstituted with the RNA subunit transcribed in vitro. The temperature optimum of the holoenzyme is near 50°C, with no enzymatic activity at 65°C or above. This finding is in sharp contrast to the optimal growth temperature of T.maritima, which is near 80°C. However, in heterologous reconstitution experiments in vitro with RNase P subunits from other species, we found that the protein subunit from T.maritima was responsible for the comparative thermal stability of such complexes.  相似文献   

15.
Holyoak T  Sullivan SM  Nowak T 《Biochemistry》2006,45(27):8254-8263
Phosphoenolpyruvate carboxykinase catalyzes the reversible decarboxylation of oxaloacetic acid with the concomitant transfer of the gamma-phosphate of GTP to form PEP and GDP as the first committed step of gluconeogenesis and glyceroneogenesis. The three structures of the mitochondrial isoform of PEPCK reported are complexed with Mn2+, Mn2+-PEP, or Mn2+-malonate-Mn2+ GDP and provide the first observations of the structure of the mitochondrial isoform and insight into the mechanism of catalysis mediated by this enzyme. The structures show the involvement of the hyper-reactive cysteine (C307) in the coordination of the active site Mn2+. Upon formation of the PEPCK-Mn2+-PEP or PEPCK-Mn2+-malonate-Mn2+ GDP complexes, C307 coordination is lost as the P-loop in which it resides adopts a different conformation. The structures suggest that stabilization of the cysteine-coordinated metal geometry holds the enzyme as a catalytically incompetent metal complex and may represent a previously unappreciated mechanism of regulation. A third conformation of the mobile P-loop in the PEPCK-Mn2+-malonate-Mn2+ GDP complex demonstrates the participation of a previously unrecognized, conserved serine residue (S305) in mediating phosphoryl transfer. The ordering of the mobile active site lid in the PEPCK-Mn2+-malonate-Mn2+ GDP complex yields the first observation of this structural feature and provides additional insight into the mechanism of phosphoryl transfer.  相似文献   

16.
Protein O-fucosylation is an essential post-translational modification, involved in the folding of target proteins and in the role of these target proteins during embryonic development and adult tissue homeostasis, among other things. Two different enzymes are responsible for this modification, Protein O-fucosyltransferase 1 and 2 (POFUT1 and POFUT2, respectively). Both proteins have been characterised biologically and enzymatically but nothing is known at the molecular or structural level. Here we describe the first crystal structure of a catalytically functional POFUT1 in an apo-form and in complex with GDP-fucose and GDP. The enzyme belongs to the GT-B family and is not dependent on manganese for activity. GDP-fucose/GDP is localised in a conserved cavity connected to a large solvent exposed pocket, which we show is the binding site of epidermal growth factor (EGF) repeats in the extracellular domain of the Notch Receptor. Through both mutational and kinetic studies we have identified which residues are involved in binding and catalysis and have determined that the Arg240 residue is a key catalytic residue. We also propose a novel S(N)1-like catalytic mechanism with formation of an intimate ion pair, in which the glycosidic bond is cleaved before the nucleophilic attack; and theoretical calculations at a DFT (B3LYP/6-31+G(d,p) support this mechanism. Thus, the crystal structure together with our mutagenesis studies explain the molecular mechanism of POFUT1 and provide a new starting point for the design of functional inhibitors to this critical enzyme in the future.  相似文献   

17.
IGPS is a 51 kDa heterodimeric enzyme comprised of two proteins, HisH and HisF, that catalyze the hydrolysis of glutamine to produce NH3 in the HisH active site and the cyclization of ammonia with N′-[(5′-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) in HisF to produce imidazole glycerol phosphate (IGP) and 5-aminoimidazole-4-carboxamide ribotide (AICAR). Binding of PRFAR and IGP stimulates glutaminase activity in the HisH enzyme over 5,000 and 100-fold, respectively, despite the active sites being >25 Å apart. The details of this long-range protein communication process were investigated by solution NMR spectroscopy and CPMG relaxation dispersion experiments. Formation of the heterodimer enzyme results in a reduction in millisecond motions in HisF that extend throughout the protein. Binding of lGP results in an increase in protein-wide millisecond dynamics evidenced as severe NMR line broadening and elevated R ex values. Together, these data demonstrate a grouping of flexible residues that link the HisF active site with the protein interface to which HisH binds and provide a model for the path of communication between the IGPS active sites.  相似文献   

18.
Huang J  Lu J  Barany F  Cao W 《Biochemistry》2002,41(26):8342-8350
Endonuclease V nicks damaged DNA at the second phosphodiester bond 3' to inosine, uracil, mismatched bases, or abasic (AP) sites. Alanine scanning mutagenesis was performed in nine conserved positions of Thermotoga maritima endonuclease V to identify amino acid residues involved in recognition or endonucleolytic cleavage of these diverse substrates. Alanine substitution at D43, E89, and D110 either abolishes or substantially reduces inosine cleavage activity. These three mutants gain binding affinity for binding to double-stranded or single-stranded inosine substrates in the absence of a metal ion, suggesting that these residues may be involved in coordinating catalytic metal ion(s). Y80A, H116A, and, to a lesser extent, R88A demonstrate reduced affinities for double-stranded or single-stranded inosine substrates or nicked products. The lack of tight binding to a nicked inosine product accounts for the increased rate of turnover of inosine substrate since the product release is less rate-limiting. Y80A, R88A, and H116A fail to cleave AP site substrates. Their activities toward uracil substrates are in the following order: H116A > R88A > Y80A. These residues may play a role in substrate recognition. K139A maintains wild-type binding affinity for binding to double-stranded and single-stranded inosine substrate, but fails to cleave AP site and uracil substrate efficiently, suggesting that K139 may play a role in facilitating non-inosine substrate cleavage.  相似文献   

19.
ATIC encompasses both AICAR transformylase and IMP cyclohydrolase activities that are responsible for the catalysis of the penultimate and final steps of the purine de novo synthesis pathway. The formyl transfer reaction catalyzed by the AICAR Tfase domain is substantially more demanding than that catalyzed by the other folate-dependent enzyme of the purine biosynthesis pathway, GAR transformylase. Identification of the AICAR Tfase active site and key catalytic residues is essential to elucidate how the non-nucleophilic AICAR amino group is activated for formyl transfer. Hence, the crystal structure of dimeric avian ATIC was determined as a complex with the AICAR Tfase substrate AICAR, as well as with an IMP cyclohydrolase inhibitor, XMP, to 1.93 A resolution. AICAR is bound at the dimer interface of the transformylase domains and forms an extensive hydrogen bonding network with a multitude of active site residues. The crystal structure suggests that the conformation of the 4-carboxamide of AICAR is poised to increase the nucleophilicity of the C5 amine, while proton abstraction occurs via His(268) concomitant with formyl transfer. Lys(267) is likely to be involved in the stabilization of the anionic formyl transfer transition state and in subsequent protonation of the THF leaving group.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号