首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Alu repetitive family of short interspersed elements (SINEs) in primates can be subdivided into distinct subfamilies by specific diagnostic nucleotide changes. The older subfamilies are generally very abundant, while the younger subfamilies have fewer copies. Some of the youngest Alu elements are absent in the orthologous loci of nonhuman primates, indicative of recent retroposition events, the primary mode of SINE evolution. PCR analysis of one young Alu subfamily (Sb2) member found in the low-density lipoprotein receptor gene apparently revealed the presence of this element in the green monkey, orangutan, gorilla, and chimpanzee genomes, as well as the human genome. However, sequence analysis of these genomes revealed a highly mutated, older, primate-specific Alu element was present at this position in the nonhuman primates. Comparison of the flanking DNA sequences upstream of this Alu insertion corresponded to evolution expected for standard primate phylogeny, but comparison of the Alu repeat sequences revealed that the human element departed from this phylogeny. The change in the human sequence apparently occurred by a gene conversion event only within the Alu element itself, converting it from one of the oldest to one of the youngest Alu subfamilies. Although gene conversions of Alu elements are clearly very rare, this finding shows that such events can occur and contribute to specific cases of SINE subfamily evolution.  相似文献   

2.
The stability of elements of three different dispersed repeated gene families in the genome of Drosophila tissue culture cells has been examined. Different amounts of sequences homologous to elements of 412, copia and 297 dispersed repeated gene families are found in the genomes of D. melanogaster embryonic and tissue culture cells. In general the amount of these sequences is increased in the cell lines. The additional sequences homologous to 412, copia and 297 occur as intact elements and are dispersed to new sites in the cell culture genome. It appears that these elements can insert at many alternative sites. We also describe a DNA sequence arrangement found in the D. melanogaster embryo genome which appears to result from a transposition of an element of the copia dispersed repeated gene family into a new chromosomal site. The mechanism of insertion of this copia element is precise to within 90 bp and may involve a region of weak sequence homology between the site of insertion and the direct terminal repeats of the copia element.  相似文献   

3.
4.
Alu sequences carry periodical pattern with CG dinucleotides (CpG) repeating every 31-32 bases. Similar distances are observed in distribution of DNA curvature in crystallized nucleosomes, at positions +/-1.5 and +/-4.5 periods of DNA from nucleosome DNA dyad. Since CG elements are also found to impart to nucleosomes higher stability when positioned at +/-1.5 sites, it suggests that CG dinucleotides may play a role in modulation of the nucleosome strength when the CG elements are methylated. Thus, Alu sequences may harbor special epigenetic nucleosomes with methylation-dependent regulatory functions. Nucleosome DNA sequence probe is suggested to detect locations of such regulatory nucleosomes in the sequences.  相似文献   

5.
T Shimada  M J Chen  A W Nienhuis 《Gene》1984,31(1-3):1-8
A dihydrofolate reductase (DHFR) pseudogene, hDHFR-psi 3 has been isolated from a human genomic DNA fragment library. Sequence analysis of this gene revealed a lack of introns and the presence of a tract of nine adenines, 90 bp downstream from the end of the coding sequence. These features suggest that hDHFR-psi 3 was derived from a processed RNA molecule that has been converted into DNA and inserted into a chromosome, analogous to the origin of three intronless human DHFR genes previously described. An interesting feature of hDHFR-psi 3 is the presence of a member of the Alu moderately repetitive DNA sequence family within the DHFR coding region. This Alu element is flanked by a 16 bp directly repeated DNA segment derived from DHFR coding sequences. The Alu element apparently has been inserted into the intronless DHFR pseudogene and thus, there have been two insertions at a single chromosomal locus. The hDHFR-psi 3 contains only the 3' half of the DHFR coding sequence. Immediately upstream from the directly repeated sequence before the Alu element is an adenine-rich tract. The DNA farther upstream is moderately repetitive and is related to neither DHFR nor Alu DNA sequence. Therefore, it seems possible that a third insertion has occurred at the same site further disrupting the hDHFR coding sequences.  相似文献   

6.
V Babich  N Aksenov  V Alexeenko  S L Oei  G Buchlow  N Tomilin 《Gene》1999,239(2):341-349
Short interspersed repeats of the Alu family located in promoters of some human genes contain high-affinity binding sites for thyroid hormone receptor, retinoic acid receptor and estrogen receptor. The standard binding sites for the receptors represent variants of duplicated AGGTCA motif with different spacing and orientation (direct, DR, or inverted, IR), and Alu sequences were found to have functional DR-4, DR-2 or variant IR-3/IR-17 elements. In this study we analyzed distribution and abundance of the elements in a set of human genomic sequences from GenBank and their association with Alu repeats. Our results indicate that a major fraction of potentially active DR-4, DR-2 and variant IR-3/IR-17 elements in the genes is located within Alu repeats. Alu-associated DR-2 elements are conserved in primate evolution. However, very few Alu have potential DR-3 glucocorticoid-response elements. Gel-shift experiments with the probe (AUB) corresponding to the consensus Alu sequence just upstream of the RNA polymerase III promoter B-box and containing duplicated AGGTCA motif indicate that the probe interacts in a sequence-specific manner with human nuclear proteins which bind to standard IR-0, DR-1, DR-4 or DR-5 elements. The AUB sequence was also able to promote thyroid hormone-dependent trans-activation of a reporter gene. The results support the view that Alu retroposons played an important role in evolution of regulation of the primate gene expression by nuclear hormone receptors.  相似文献   

7.
8.
The gene encoding brain-specific dendritic BC200 small non-messenger RNA is limited to the primate order and arose from a monomeric Alu element. It is present and neuronally expressed in all Anthropoidea examined. By comparing the human sequence of about 13.2 kb with each of the prosimian (lemur 14.6 kb, galago 12 kb, and tarsier 13.8 kb) orthologous loci, we could establish that the BC200 RNA gene is absent from the prosimian lineages. In Strepsirhini (lemurs and lorises), a dimeric AluJ-like element integrated very close to the BC200 insertion point, while the corresponding tarsier region is devoid of any repetitive element. Consequently, insertion of the Alu monomer that gave rise to the BC200 RNA gene must have occurred after the anthropoid lineage diverged from the prosimian lineage(s). Shared insertions of other repetitive elements favor proximity of simians and tarsiers in support of their grouping into Haplorhini and the omomyid hypothesis. On the other hand, the nucleotide sequences in the segment that is available for comparison in all four species reveal less exchanges between Strepsirhini (lemur and galago) and human than between tarsier and human. Our data imply that the early activity of dimeric Alu sequences must have been concurrent with the activity of monomeric Alu elements that persisted longer than is usually thought. As BC200 RNA gave rise to more than 200 pseudogenes, we used their consensus sequence variations as a molecular archive recording the BC200 RNA sequence changes in the anthropoid lineage leading to Homo sapiens and timed these alterations over the past 35-55 million years.  相似文献   

9.
Alu elements are a class of repetitive DNA sequences found throughout the human genome that are thought to be duplicated via an RNA intermediate in a process termed retroposition. Recently inserted Alu elements are closely related, suggesting that they are derived from a single source gene or closely related source genes. Analysis of the type III collagen gene (COL3A1) revealed a polymorphic Alu insertion in intron 8 of the gene. The Alu insertion in the COL3A1 gene had a high degree of nucleotide identity to the Sb family of Alu elements, a family of older Alu elements. The Alu sequence was less similar to the consensus sequence for the PV or Sb2 subfamilies, subfamilies of recently inserted Alu elements. These data support the observations that at least three source genes are active in the human genome, one of which is distinct from the PV and Sb2 subfamilies and predates either of these two subfamilies. Appearance of the Alu insertion in different ethnic populations suggests that the insertion may have occurred in the last 100,000 years. This Alu insert should be a useful marker for population studies and for marking COL3A1 alleles.  相似文献   

10.
A family of novel mobile DNA elements is described, examples of which are found at several independent locations and encode a variety of antibiotic resistance genes. The complete elements consist of two conserved segments separated by a segment of variable length and sequence which includes inserted antibiotic resistance genes. The conserved segment located 3' to the inserted resistance genes was sequenced from Tn21 and R46, and the sequences are identical over a region of 2026 bases, which includes the sulphonamide resistance gene sull, and two further open reading frames of unknown function. The complete sequences of both the 3' and 5' conserved regions of the DNA element have been determined. A 59-base sequence element, found at the junctions of inserted DNA sequences and the conserved 3' segment, is also present at this location in the R46 sequence. A copy of one half of this 59-base element is found at the end of the sull gene, suggesting that sull, though part of the conserved region, was also originally inserted into an ancestral element by site-specific integration. Inverted or direct terminal repeats or short target site duplications, both of which are characteristics of class I and class II transposons, are not found at the outer boundaries of the elements described here. Furthermore, the conserved regions do not encode any proteins related to known transposition proteins, except the DNA integrase encoded by the 5' conserved region which is implicated in the gene insertion process. Mobilization of this element has not been observed experimentally; mobility is implied from the identification of the element in at least four independent locations, in Tn21, R46 (IncN), R388 (IncW) and Tn1696. The definitive features of these novel elements are (i) that they include site-specific integration functions (the integrase and the insertion site); (ii) that they are able to acquire various gene units and act as an expression cassette by supplying the promoter for the inserted genes. As a consequence of acquiring different inserted genes, the element exists in a variety of forms which differ in the number and nature of the inserted genes. This family of elements appears formally distinct from other known mobile DNA elements and we propose the name DNA integration elements, or integrons.  相似文献   

11.
12.
13.
14.
Transposable elements derived from the 7SL RNA gene, such as Alu elements in primates, have had remarkable success in several mammalian lineages. The results presented here show a broad spectrum of functions for genomic segments that display sequence composition similarities with the 7SL RNA gene. Using thoroughly documented loci, we report that DNaseI-hypersensitive sites can be singled out in large genomic sequences by an assessment of sequence composition similarities with the 7SL RNA gene. We apply a root word frequency approach to illustrate a distinctive relationship between the sequence of the 7SL RNA gene and several classes of functional genomic features that are not presumed to be of transposable origin. Transposable elements that show noticeable similarities with the 7SL sequence include Alu sequences, as expected, but also long terminal repeats and the 5′-untranslated regions of long interspersed repetitive elements. In sequences masked for repeated elements, we find, when using the 7SL RNA gene as query sequence, distinctive similarities with promoters, exons and distal gene regulatory regions. The latter being the most notoriously difficult to detect, this approach may be useful for finding genomic segments that have regulatory functions and that may have escaped detection by existing methods.  相似文献   

15.
Sequence analysis of a 237 kb genomic fragment from the central region of the MHC has revealed that the HLA-B and HLA-C genes are contained within duplicated segments peri-B (53 kb) and peri-C (48 kb), respectively, and separated by an intervening sequence (IF) of 30 kb. The peri-B and peri-C segments share at least 90% sequence homology except when interrupted by insertions/deletions including Alu, L1, an endogenous retrovirus, and pseudogenes. The sequences of peri-B, IF, and peri-C were searched for the presence of Alu elements to use as markers of evolution, chromosomal rearrangements, and polymorphism. Of 29 Alu elements, 14 were identified in peri-B, 11 in peri-C, and 4 in IF. The Alu elements in peri-B and peri-C clustered phylogenetically into two clades which were classified as ``preduplication' and ``postduplication' clades. Four Alu J elements that are shared by peri-B and peri-C and are flanked by homologous sequences in their paralogous locations, respectively, clustered into a ``preduplication' clade. By contrast, the majority of Alu elements, which are unique to either peri-B or peri-C, clustered into a postduplication clade together with the Alu consensus subfamily members ranging from platyrrhine-specific (Spqxcg) to catarrhine-specific Alu sequences (Y). The insertion of platyrrhine-specific Alu elements in postduplication locations of peri-B and peri-C implies that these two segments are the products of a duplication which occurred in primates prior to the divergence of the New World primate from the human lineage (35–44 mya). Examination of the paralogous Alu integration sites revealed that 9 of 14 postduplication Alu sequences have produced microsatellites of different length and sequence within the Alu 3′-poly A tail. The present analysis supports the hypothesis that HLA-B and HLA-C genes are products of an extended segmental duplication between 44 and 81 million years ago (mya), and that subsequent diversification of both genomic segments occurred because of the mobility and mutation of retroelements such as Alu repeats. Received: 21 May 1997 / Accepted: 9 July 1997  相似文献   

16.
The computational detection of regulatory elements in DNA is a difficult but important problem impacting our progress in understanding the complex nature of eukaryotic gene regulation. Attempts to utilize cross-species conservation for this task have been hampered both by evolutionary changes of functional sites and poor performance of general-purpose alignment programs when applied to non-coding sequence. We describe a new and flexible framework for modeling binding site evolution in multiple related genomes, based on phylogenetic pair hidden Markov models which explicitly model the gain and loss of binding sites along a phylogeny. We demonstrate the value of this framework for both the alignment of regulatory regions and the inference of precise binding-site locations within those regions. As the underlying formalism is a stochastic, generative model, it can also be used to simulate the evolution of regulatory elements. Our implementation is scalable in terms of numbers of species and sequence lengths and can produce alignments and binding-site predictions with accuracy rivaling or exceeding current systems that specialize in only alignment or only binding-site prediction. We demonstrate the validity and power of various model components on extensive simulations of realistic sequence data and apply a specific model to study Drosophila enhancers in as many as ten related genomes and in the presence of gain and loss of binding sites. Different models and modeling assumptions can be easily specified, thus providing an invaluable tool for the exploration of biological hypotheses that can drive improvements in our understanding of the mechanisms and evolution of gene regulation.  相似文献   

17.
L M Erickson  H S Kim  N Maeda 《Genomics》1992,14(4):948-958
To investigate the nature of the recombination that generated the haptoglobin three-gene cluster in Old World primates, we sequenced the region between the second gene (HPR) and the third gene (HPP) in chimpanzees (15 kb), as well as the region 3' to the cluster in humans (14 kb). Comparison to the previously sequenced human haptoglobin (HP) and HPR genes showed that the junction point between HP and HPR in humans (junction 1) was not identical to the junction point between the HPR and HPP genes of the chimpanzee (junction 2). An Alu sequence was found at each junction, but both Alu sequences lacked short direct repeats of the flanking genomic DNA. The lack of direct repeats implies that both junction Alu sequences are the products of recombination between different Alu elements. In addition, other insertion and deletion events are clustered in the regions near the junction Alu sequences. The observation that Alu sequences define the junctions between genes in the haptoglobin gene cluster emphasizes the importance of Alu sequences in the evolution of multigene families.  相似文献   

18.
19.
We have isolated, sequenced, and characterized a single-copy B creatine kinase pseudogene. The chromosomal assignment of this gene is 16p13 and a unique sequence probe from this locus detects EcoRI restriction fragment length polymorphisms of 7.8 and 5.4 kb. In 26 unrelated individuals, the frequencies for the 7.8- and 5.4-kb B creatine kinase pseudogene alleles were calculated to be 17.3 and 82.7%, respectively. The B creatine kinase pseudogene is interrupted by a 904-bp DNA insertion composed of three Alu repeat sequences in tandem flanked by an 18-bp direct repeat, derived from the pseudogene sequence. Nucleotide sequence analysis of the Alu elements suggests that the Alu sequences were incorporated into this locus in three separate integration events. Several complex clustered Alu repeat sequences without defined integration borders have been previously identified at different genomic loci. This is the first evidence that complex tandem Alu elements can integrate in an apparently serial manner in the human genome and supports the contention that Alu repeats integrate nonrandomly into the human genome.  相似文献   

20.
Alu elements undergo amplification through retroposition and integration into new locations throughout primate genomes. Over 500,000 Alu elements reside in the human genome, making the identification of newly inserted Alu repeats the genomic equivalent of finding needles in the haystack. Here, we present two complementary methods for rapid detection of newly integrated Alu elements. In the first approach we employ computational biology to mine the human genomic DNA sequence databases in order to identify recently integrated Alu elements. The second method is based on an anchor-PCR technique which we term Allele-Specific Alu PCR (ASAP). In this approach, Alu elements are selectively amplified from anchored DNA generating a display or 'fingerprint' of recently integrated Alu elements. Alu insertion polymorphisms are then detected by comparison of the DNA fingerprints generated from different samples. Here, we explore the utility of these methods by applying them to the identification of members of the smallest previously identified subfamily of Alu repeats in the human genome termed Ya8. This subfamily of Alu repeats is composed of about 50 elements within the human genome. Approximately 50% of the Ya8 Alu family members have inserted in the human genome so recently that they are polymorphic, making them useful markers for the study of human evolution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号