首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two types of peripheral light-harvesting complexes LH2 (B800–850) from photosynthetic purple bacterium Allochromatium minutissimum were studied. First type containing carotenoids was prepared from wild type cells. The other one was obtained from carotenoid depleted cells grown with diphenylamine. We have shown that under laser femtosecond excitation within absorption 1200–1500 nm wavelength range the two-photon excitation of LH2 complexes takes place. This can be observed as fluorescence of bacteriochlorophyll (BChl) spectral form B850 (BChl molecules of circular aggregate with strong exciton interaction in 850 nm spectral domain). LH2 fluorescence excitation spectra under two-photon excitation are the same for carotenoid-containing and carotenoidless preparations. In both cases the broad band with peak near 1350 (675) nm (FWHM ~ 240 (120) nm) was found. It is concluded that the broad band with peak near 1350 (675) nm in two-photon excitation spectra of LH2 complexes from Allochromatium minutissimum cannot be interpreted as two-photon excitation band of the optically forbidden S0 → S1 transition of carotenoids (rhodopin). Possible nature of this band is discussed.  相似文献   

2.
Light-harvesting antenna core (LH1-RC) complexes isolated from Rhodospirillum rubrum and Rhodopseudomonas palustris were successfully self-assembled on an ITO electrode modified with 3-aminopropyltriethoxysilane. Near infra-red (NIR) absorption, fluorescence, and IR spectra of these LH1-RC complexes indicated that these LH1-RC complexes on the electrode were stable on the electrode. An efficient energy transfer and photocurrent responses of these LH1-RC complexes on the electrode were observed upon illumination of the LH1 complex at 880 nm.  相似文献   

3.
Low-light adapted B800 light-harvesting complex 4 (LH4) from Rhodopseudomonas palustris is a complex in which the arrangement of the bacteriochloropyll a pigments is very different from the well-known B800-850 LH2 complex. For bulk samples, the main spectroscopic feature in the near-infrared is the occurrence of a single absorption band at 802 nm. Single-molecule spectroscopy can resolve the narrow bands that are associated with the exciton states of the individual complexes. The low temperature (1.2 K) fluorescence excitation spectra of individual LH4 complexes are very heterogeneous and display unique features. It is shown that an exciton model can adequately reproduce the polarization behavior of the complex, the experimental distributions of the number of observed peaks per complex, and the widths of the absorption bands. The results indicate that the excited states are mainly localized on one or a few subunits of the complex and provide further evidence supporting the recently proposed structure model.  相似文献   

4.
Structural aspects of the core antenna in the purple sulfur bacteria Chromatium tepidum and Chromatium vinosum were studied by means of fluorescence emission and singlet-singlet annihilation measurements. In both species the number of bacteriochlorophylls of the core antenna between which energy transfer can occur corresponds to one core-reaction center complex only. From measurements of variable fluorescence we conclude that in C. tepidum excitation energy can be transferred back from the core antenna (B920) to the peripheral B800–850 complex in spite of the relatively large energy gap, and on basis of annihilation measurements a model of separate core-reaction center units accompanied by their own peripheral antenna is suggested. C. vinosum contains besides a core antenna, B890, two peripheral antennae, B800–820 and B800–850. Energy transfer was found to occur from the core to B800–850, but not to B800–820, and it was concluded that in C. vinosum each core-reaction center complex has its own complement of B800–850. The results reported here are compared to those obtained earlier with various strains and species of purple non-sulfur bacteria.Abbreviations BChl- bacteriochlorophyll - B800–820 and B800–850- antenna complexes with Qy-band absorption maxima near 800 nm and 820 or 850 nm, respectively - B890 and B920- antenna complexes with Qy-band absorption maxima near 890 and 920 nm, respectively - LH1- light harvesting 1 or core antenna - LH2- light harvesting 2 or peripheral antenna  相似文献   

5.
Measurements of polarized fluorescence and CD were made on light-harvesting complex 1 and a subunit form of this complex from Rhodospirillum rubrum, Rhodobacter sphaeroides, and Rhodobacter capsulatus. The subunit form of LH1, characterized by a near-infrared absorbance band at approximately 820 nm, was obtained by titration of carotenoid-depleted LH1 complexes with the detergent n-octyl beta-D-glucopyranoside as reported by Miller et al. (1987) [Miller J. F., Hinchigeri, S. B., Parkes-Loach, P. S., Callahan, P. M., Sprinkle, J. R., & Loach, P. A. (1987) Biochemistry 26, 5055-5062]. Fluorescence polarization and CD measurements at 77 K suggest that this subunit form must consist of an interacting bacteriochlorophyll a dimer in all three bacterial species. A small, local decrease in the polarization of the fluorescence is observed upon excitation at the blue side of the absorption band of the B820 subunit. This decrease is ascribed to the presence of a high-energy exciton component, perpendicular to the main low-energy exciton component. From the extent of the depolarization, we estimate the oscillator strength of the high-energy component to be at most 3% of the main absorption band. The optical properties of B820 are best explained by a Bchl a dimer that has a parallel or antiparallel configuration with an angle between the Qy transition dipoles not larger than 33 degrees. The importance of this structure is emphasized by the results showing that core antennas from three different purple bacteria have a similar structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Reported herein is a Stark fluorescence spectroscopy study performed on photosystem II core antenna complexes CP43 and CP47 in their native and aggregated states. The systematic mathematical modeling of the Stark fluorescence spectra with the aid of conventional Liptay formalism revealed that induction of aggregation in both the core antenna complexes via detergent removal results in a single quenched species characterized by a remarkably broad and inhomogenously broadened emission lineshape peaking around 700 nm. The quenched species possesses a fairly large magnitude of charge-transfer character. From the analogy with the results from aggregated peripheral antenna complexes, the quenched species is thought to originate from the enhanced chlorophyll-chlorophyll interaction due to aggregation. However, in contrast, aggregation of both core antenna complexes did not produce a far-red emission band at ~730 nm, which was identified in most of the aggregated peripheral antenna complexes. The 730-nm emission band of the aggregated peripheral antenna complexes was attributed to the enhanced chlorophyll-carotenoid (lutein1) interaction in the terminal emitter locus. Therefore, it is very likely that the no occurrence of the far-red band in the aggregated core antenna complexes is directly related to the absence of lutein1 in their structures. The absence of the far-red band also suggests the possibility that aggregation-induced conformational change of the core antenna complexes does not yield a chlorophyll-carotenoid interaction associated energy dissipation channel.  相似文献   

7.
High pressure is used with hole burning and absorption spectroscopies at low temperatures to study the pressure dependence of the B800B850 energy transfer rate in the LH2 complex of Rhodobacter sphaeroides and to assess the extent to which pressure can be used to identify and characterize states associated with strongly coupled chlorophyll molecules. Pressure tuning of the B800–B850 gap from 750 cm\s-1 at 0.1 MPa to 900 cm-1 at 680 MPa has no measurable effect on the 2 ps energy transfer rate of the B800–850 complex at 4.2 K. An explanation for this resilience against pressure, which is supported by earlier hole burning studies, is provided. It is based on weak coupling nonadiabatic transfer theory and takes into account the inhomogeneous width of the B800–B850 energy gap, the large homogeneous width of the B850 band from exciton level structure and the Franck-Condon factors of acceptor protein phonons and intramolecular BChl a modes. The model yields reasonable agreement with the 4.2 K energy transfer rate and is consistent with its weak temperature dependence. It is assumed that it is the C9-ring exciton levels which lie within the B850 band that are the key acceptor levels, meaning that BChl a modes are essential to the energy transfer process. These ring exciton levels derive from the strongly allowed lowest energy component of the basic B850 dimer. However, the analysis of B850s linear pressure shift suggests that another Förster pathway may also be important. It is one that involves the ring exciton levels derived from the weakly allowed upper component of the B850 dimer which we estimate to be quasi-degenerate with B800. In the second part of the paper, which is concerned with strong BChl monomer-monomer interactions of dimers, we report that the pressure shifts of B875 (LH2), the primary donor absorption bands of bacterial RC (P870 of Rb. sphaeroides and P960 of Rhodopseudomonas viridis) and B1015 (LH complex of Rps. viridis) are equal and large in value (-0.4 cm01/MPa at 4.2 K) relative to those of isolated monomers in polymers and proteins (< -0.1 cm01/MPa). The shift rate for B850 at 4.2 K is-0.28 cm–1/MPa. A model is presented which appears to be capable of providing a unified explanation for the pressure shifts.Abbreviations B800 BChl antenna band absorbing (at room temperature) at 800 nm (B850, B875, B1015 are defined similarly) - CD circular dichroism - FC factor Franck-Condon factor - FMO comple Fenna-Matthews-Olson complex - L-S theory Laird-Skinner theory - LH1 core light-harvesting complex of the BChl antenna complexes - LH2 peripheral light-harvesting complex of the BChl antenna complexes - NPHB non-photochemical hole burning - P960 absorption band of special pair of Rhodopseudomonas viridis absorbing at 960 nm (room temperature). P870 of Rhodobacter sphaeroides is defined similarly - QM/MM results quantum mechanical/molecular mechanical results - RC reaction center - ZPH zero phonon hole  相似文献   

8.
Rhodopseudomonas palustris is a species of purple photosynthetic bacteria that has a multigene family of puc genes that encode the alpha and beta apoproteins, which form the LH2 complexes. A genetic dissection strategy has been adopted in order to try and understand which spectroscopic form of LH2 these different genes produce. This paper presents a characterisation of one of the deletion mutants generated in this program, the pucBAd only mutant. This mutant produces an unusual spectroscopic form of LH2 that only has a single large NIR absorption band at 800 nm. Spectroscopic and pigment analyses on this complex suggest that it has basically a similar overall structure as that of the wild-type HL LH2 complex. The mutant has the unique phenotype where the mutant LH2 complex is only produced when cells are grown at LL. At HL the mutant only produces the LH1-RC core complex.  相似文献   

9.
Low-temperature heterogeneous absorption and circular dichroism spectra of the Rb. sphaeroides LH2 complexes are calculated within the framework of the mini-exciton theory and diagonal static random disorder for the pure electronic transitions of the monomeric Bchl molecules. The coupling of Bchl molecules with the surrounding amino acid residues has been shown to change both the exciton distribution between the pigment molecules in each of the exciton states. The value of the delocalization index depends on the excitation wavelength and varies between 2-6 Bchl molecules. The optical transitions occurring at 780-790 and 820 nm have been found to be strongly mixed so that all Bchl molecules of the LH2 complex predetermine absorption in these spectral regions. On the other hand, absorption at 800 and 850 nm is mainly determined by the cycles of 9 and 18 Bchl molecules, respectively. Thus, the light energy absorbed by the B800 molecules at 800 nm is transferred to the B850 molecules by the interlevel exciton relaxation processes due to the population of the heavily mixed 820-nm exciton levels. The width of the heterogeneous absorption band for the cyclic monomeric aggregate has been shown to decrease as compared with the monomeric absorption band by square root(Ndel) time, where Ndel is the mean number of pigments over which the exciton is delocalized within the excited absorption band.  相似文献   

10.
Strongly bounded associates of B800–850 (LH2) and B800–830 (LH3) complexes from photosynthetic purple bacterium Thiorhodospira sibirica were investigated. It was shown that associates contain 8–10 complexes (LH2:LH3 ≈ 1:1). Absorption spectra of the monomer LH2 and the monomer LH3 complexes were calculated. Excitation of B800 absorption band of associates results in: (i) intracomplex excitation energy transfer from B800 to B830 or B850 with time constant of about 500 fs; (ii) intercomplex excitation energy transfer from B820 band of LH3 complex to B850 band of LH2 complex with time constant of about 2.5 ps; (iii) excitation deactivation in B850 band of LH2 complex with time constant of about 800 ps. Signal polarization at long-wavelength side of associates absorption spectrum near 900 nm was negative (?0.1). The interaction of LH3 and LH2 complexes in associates is, to some extent, analogous to the interaction of LH2 and LH1 complexes in chromatophores. Time constant of excitation energy transfer between LH3 and LH2 complexes in associates may be regarded as a minimal time constant for energy transfer between the peripheral and core antenna complexes.  相似文献   

11.
A recently isolated species of the photosynthetic purple sulfur bacteria, provisionally called strain 970, was investigated with respect to its antenna function by means of various spectroscopic techniques, including fluorescence and pump-probe absorption difference spectroscopy. The bacterium contains bacteriochlorophyll a and an as yet unidentified carotenoid, perhaps 3,4,3',4'-tetrahydrospirilloxanthin. It has a single antenna complex of the LH1 type, with a Q(y) absorption band situated at the unusually long wavelength of 963 nm at room temperature and 990 nm at 6 K. In contrast to many other species, the reaction center showed two well-separated absorption bands of bacteriopheophytin at 6 K, located at 747 and 762 nm. The primary electron donor showed a bleaching band centered at 925 nm upon photooxidation. Thus, the energy gap between LH1 and the primary electron donor is quite large in this strain: 425 cm(-1). Nevertheless, trapping occurred with a time constant of 65 +/- 5 ps, similar to the rates observed in other purple bacteria. As in other species, no back-transfer from the reaction center to the antenna was observed. Our results show that strain 970 is a unique subject for the study of antenna and reaction center function and organization.  相似文献   

12.
In this work the spectroscopic properties of the special low-energy absorption bands of the outer antenna complexes of higher plant Photosystem I have been investigated by means of low-temperature absorption, fluorescence, and fluorescence line-narrowing experiments. It was found that the red-most absorption bands of Lhca3, Lhca4, and Lhca1-4 peak, respectively, at 704, 708, and 709 nm and are responsible for 725-, 733-, and 732-nm fluorescence emission bands. These bands are more red shifted compared to "normal" chlorophyll a (Chl a) bands present in light-harvesting complexes. The low-energy forms are characterized by a very large bandwidth (400-450 cm(-1)), which is the result of both large homogeneous and inhomogeneous broadening. The observed optical reorganization energy is untypical for Chl a and resembles more that of BChl a antenna systems. The large broadening and the changes in optical reorganization energy are explained by a mixing of an Lhca excitonic state with a charge transfer state. Such a charge transfer state can be stabilized by the polar residues around Chl 1025. It is shown that the optical reorganization energy is changing through the inhomogeneous distribution of the red-most absorption band, with the pigments contributing to the red part of the distribution showing higher values. A second red emission form in Lhca4 was detected at 705 nm and originates from a broad absorption band peaking at 690 nm. This fluorescence emission is present also in the Lhca4-N-47H mutant, which lacks the 733-nm emission band.  相似文献   

13.
The spectral characteristics of fluorescence quenching by open reaction centres in isolated Photosystem II membranes were determined with very high resolution and analysed. Quenching due to photochemistry is maximal near 687 nm, minimal in the chlorophyll b emission interval and displays a distinctive structure around 670 nm. The amplitude of this `quenching hole' is about 0.03 for normalised spectra. On the basis of the absorption spectra of isolated chlorophyll–protein complexes, it is shown that these quenching structures can be exactly described by assuming that photochemistry lowers the fluorescence yield of the reaction centre complex (D1/D2/cytb 559) plus CP47, with quenching of the former complex being approximately double that of the latter complex. These data, which qualitatively indicate that there are kinetically limiting processes for primary photochemistry in the antenna, have been analysed by means of several different kinetic models. These models are derived from present structural knowledge of the arrangement of the chlorophyll–protein complexes in Photosystem II and incorporate the reversible charge separation characteristic of the exciton/radical pair equilibration model. In this way it is shown that Photosystem II cannot be considered to be purely trap limited and that exciton migration in the antenna imposes a diffusion limitation of about 30%, irrespective of the structural model assumed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Energy transfers within the B808-866 BChl a antenna in chlorosome-membrane complexes from the green photosynthetic bacterium Chloroflexus aurantiacus were studied in two-color pump-probe experiments at room temperature. The steady-state spectroscopy and protein sequence of the B808-866 complex are reminiscent of well-studied LH2 antennas from purple bacteria. B808-->B866 energy transfers occur with approximately 2 ps kinetics; this is slower by a factor of approximately 2 than B800-->B850 energy transfers in LH2 complexes from Rhodopseudomonas acidophila or Rhodobacter sphaeroides. Anisotropy studies show no evidence for intra-B808 energy transfers before the B808-->B866 step; intra-B866 processes are reflected in 350-550 fs anisotropy decays. Two-color anisotropies under 808 nm excitation suggest the presence of a B808-->B866 channel arising either from direct laser excitation of upper B866 exciton components that overlap the B808 absorption band or from excitation of B866 vibronic bands in nontotally symmetric modes.  相似文献   

15.
The effect of growing Rhodopseudomonas (Rps.) acidophila and Rps. palustris in the presence of different concentrations of the carotenoid (Car) biosynthetic inhibitor diphenylamine (DPA) has been investigated. Growth with sub-maximal concentrations of DPA induces Car limitation. The exact response to DPA is species dependent. However, both Rps. acidophila and Rps. palustris respond by preferentially incorporating the limiting amount of coloured Cars into their LH2 complexes at the expense of the RC-LH1 complexes. As inhibition by DPA becomes more severe there is an increase in the percentage of Cars with reduced numbers of conjugated C=C bonds. The effect of this changed Car composition on the structure and function of the antenna complexes has been investigated using absorption, fluorescence, CD and Raman spectroscopies. The results show that although the presence of Car molecules is important for the stability of the LH2 complexes that the overall native structure can be maintained by the presence of many different Cars.  相似文献   

16.
We studied fluorescent and absorption properties of the chloroplasts and pigment–protein complexes isolated by gel electrophoresis from the leaves of pea, the parent cultivar Torsdag and mutants chlorotica 2004 and 2014. Specific fluorescence peaks of chlorophyll forms in individual complexes have been determined from the absorption and fluorescence spectra of the chloroplast chlorophyll and their second derivatives at 23 and –196°C. The mutant chlorotica 2004 proved to have an increased intensity of a long-wave band of the light-harvesting complex I at both 23°C (745 nm) and –196°C (728 nm). At the same time, this mutant manifested a decreased accumulation of the chlorophyll forms making up the nearest-neighbor antenna of the PS I reaction center (at 690, 697, and 708 nm). No spectral differences have been revealed between chlorotica 2014 mutant and the parent cultivar. Gel electrophoresis revealed the synthesis of all chlorophyll–protein complexes in both mutants. At the same time, analysis of photochemical activity of PS I and PS II reaction centers and calculations of their number and the size of the light-harvesting antenna have shown that the number of reaction centers in the PS I of chlorotica 2004 mutant is reduced by a factor of 1.7 because its chlorophyll a–protein complex is disturbed by the mutation. The primary effect of chlorotica 2014 mutation remains unclear. The proportional changes in the content of photosystem complexes in this mutant suggest that they are secondary and result from a 50% decrease in chlorophyll content.  相似文献   

17.
The spectroscopic properties of the light-harvesting 2 complexes (LH2) from the purple bacterium Rhodopseudomonas acidophila (strain 10050) in detergent micelles and reconstituted into lipid membranes have been studied by single-molecule spectroscopy. When LH2 complexes are solubilized from their host biological membranes by nondenaturing detergents, such as LDAO, there is a small 2-nm spectral shift of the B850 absorption band in the ensemble spectrum. This is reversed when the LH2 complexes are put back into phospholipid vesicles, i.e., into a more native-like environment. The spectroscopic properties on the single-molecule level of the detergent-solubilized LH2 complexes were compared with those reconstituted into the lipid membranes to see if their detailed spectroscopic behavior was influenced by these small changes in the position of the B850 absorption band. A detailed analysis of the low-temperature single-molecule fluorescence-excitation spectra of the LH2 complexes in these two different conditions showed no significant differences. In particular, the distribution of the spectral splitting between the circular k = +/-1 exciton states of the B850 absorption band and the distribution of the mutual angle between the k = +/-1 exciton states are identical in both cases. It can be concluded, therefore, that the LH2 complexes from Rps. acidophila are equally stable when solubilized in detergent micelles as they are when membrane reconstituted. Moreover, when they are solubilized in a suitable detergent and spin coated onto a surface for the single-molecule experiments they do not display any more structural disorder than when in a phospholipid membrane.  相似文献   

18.
In this work we explain the spectral heterogeneity of the absorption band (. Biochim. Biophys. Acta. 1229:373-380), as well as the spectral evolution of pump-probe spectra for membranes of Rhodopseudomonas (Rps.) viridis. We propose an exciton model for the LH1 antenna of Rps. viridis and assume that LH1 consists of 24-32 strongly coupled BChl b molecules that form a ring-like structure with a 12- or 16-fold symmetry. The orientations and pigment-pigment distances of the BChls were taken to be the same as for the LH2 complexes of BChl a-containing bacteria. The model gave an excellent fit to the experimental results. The amount of energetic disorder necessary to explain the results could be precisely estimated and gave a value of 440-545 cm(-1) (full width at half-maximum) at low temperature and 550-620 cm(-1) at room temperature. Within the context of the model we calculated the coherence length of the steady-state exciton wavepacket to correspond to a delocalization over 5-10 BChl molecules at low temperature and over 4-6 molecules at room temperature. Possible origins of the fast electronic dephasing and the observed long-lived vibrational coherence are discussed.  相似文献   

19.
Cells of pigment mutant C-6D of the green alga Scenedesmus obliquus synthesize only Chl a and precursors of carotenoids during heterotrophic growth in the dark. These cells exhibit high PSI-activity per Chl and a low Chl/P700-ratio. After transfer to light, Chl a, Chl b and carotenoids are formed with different kinetics. Analysis of chlorophyll fluorescence emission and excitation spectra revealed a sevenfold increase in the amount of the long wavelength antenna of PSI (720 nm) resulting in an increase in the absorption cross section of PSI during illumination. The underlying changes in molecular organization of PSI were investigated by sucrose density centrifugation of solubilized thylakoids after digitonin treatment and subsequent identification of the components by gel electrophoresis, HPLC and fluorescence. In dark grown cells one blue-green band (0-II) could be resolved. This band contained only Chl a and the reaction center complex of PSI, CPI. After 24 hours of illumination three pigmented zones and a small amount of free pigment were observed. One of the zones (24-I) was identified as a light-harvesting fraction containing the pigment-protein complexes LHCP1 and LHCP3. In the second fraction (24-II) the reaction center complexes of PSI and PSII were found. The highest molecular weight fraction (24-III) was enriched in PSI-complexes of higher molecular weight and contained a high amount of long wavelength fluorescence antenna (720 nm) attributed to PSI. In contrast to band 24-II which contained a high percentage of β-carotene and a high Chl a/b-ratio, the Chl a/b-ratio of fraction 24-III was lower and the xanthophyll content increased. Our data demonstrate an increase in the PSI-unit size during chloroplast development in mutant C-6D of Scenedesmus obliquus. Dark-grown cultures have small functional PSI-units composed of the chlorophylls involved in charge separation and the core antenna. This unit contains only Chl a and no carotenoids. After transfer to light Chl b and carotenoids are formed. Simultaneously with the appearance of carotenoids and Chl b, PSI-complexes of higher molecular weight are synthesized indicating the addition of a LHC to the reaction center complex of PSI.  相似文献   

20.
Dinoflagellates from the genus Symbiodinium form symbiotic associations with cnidarians including corals and anemones. The photosynthetic apparatuses of these dinoflagellates possess a unique photosynthetic antenna system incorporating the peridinin–chlorophyll a–protein (PCP). It has been proposed that the appearance of a PCP-specific 77 K fluorescence emission band around 672–675 nm indicates that high light treatment results in PCP dissociation from intrinsic membrane antenna complexes, blocking excitation transfer to the intrinsic membrane-bound antenna complexes, chlorophyll a–chlorophyll c2–peridinin–protein-complex (acpPC) and associated photosystems (Reynolds et al., 2008 Proc Natl Acad Sci USA 105:13674–13678).We have tested this model using time-resolved fluorescence decay kinetics in conjunction with global fitting to compare the time-evolution of the PCP spectral bands before and after high light exposure. Our results show that no long-lived PCP fluorescence emission components appear either before or after high light treatment, indicating that the efficiency of excitation transfer from PCP to membrane antenna systems remains efficient and rapid even after exposure to high light. The apparent increased relative emission at around 675 nm was, instead, caused by strong preferential exciton quenching of the membrane antenna complexes associated with acpPC and reaction centers. This strong non-photochemical quenching (NPQ) is consistent with the activation of xanthophyll-associated quenching mechanisms and the generally-observed avoidance in nature of long-lived photoexcited states that can lead to oxidative damage. The acpPC component appears to be the most strongly quenched under high light exposure suggesting that it houses the photoprotective exciton quencher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号