首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neural responses and aversion to bitter stimuli in rats   总被引:1,自引:0,他引:1  
Gustatory responses of rats to quinine, nicotine, caffeine,MgCl2 and bitter peptides such as glycyl-L-phenylalanine (Gly-Phe)and glycyl-L-isoleucine (Gly-lle), were studied by recordingintegrated responses to bitter stimuli from the chorda tympaniand IXth nerve as well as by measuring fluid intakes with atwo-bottle choice method. In addition, the effect of L-glutamyl-L-glutamicacid (Glu-Glu), which has an ability of masking bitterness inhumans, on the IXth nerve response was examined. Quinine, nicotine and caffeine elicited aversive behavior atconcentrations similar to those eliciting the IXth nerve responses,while MgCl2 induced aversion above 0.1 M although it producedneural responses at much lower concentrations in both nerves.No aversion was produced by the bitter peptides at 30 mM, althougha small response was elicited by Gly-Phe in the chorda tympaniand by Gly-Ile in the IXth nerve. Responses in the IXth nerveto mixtures of Glu-Glu with bitter substances was smaller thanthe sum of those for single solution alone, indicating depressionof nerve responses to bitter stimuli by Glu-Glu.  相似文献   

2.
Chronic rinsing with chlorhexidine, an oral-antiseptic, has been shown to decrease the saltiness of NaCl and the bitterness of quinine. The effect of acute chlorhexidine on taste has not been investigated. The purpose of the present study was to examine the effect of acute chlorhexidine rinses on taste intensity and quality of 11 stimuli representing sweet, salt, sour, bitter and savory. All stimuli were first matched for overall intensity so the effects of chlorhexidine would be directly comparable across compounds. As a control treatment, the bitter taste of chlorhexidine digluconate (0.12%) was matched in intensity to quinine HCl, which was found to cross-adapt the bitterness of chlorhexidine. Subjects participated in four experimental conditions: a pre-test, a quinine treatment, a chlorhexidine treatment, and a post-test condition, while rating total taste intensity and taste qualities in separate test sessions. Relative to the quinine treatment, chlorhexidine was found to decrease the salty taste of NaCl, KCl and NH4Cl, and not to significantly affect the tastes of sucrose, monosodium glutamate (MSG), citric acid, HCl and the taste of water. The bitter taste of urea, sucrose octa-acetate and quinine were suppressed after chlorhexidine rinses relative to water rinses, but were only marginally suppressed relative to quinine rinses. Potential mechanisms are discussed.  相似文献   

3.
Capsaicin is viewed as a purely chemesthetic stimulus that selectively stimulates the somatosensory system. Here we show that when applied to small areas of the tongue, capsaicin can produce a bitter taste as well as sensory irritation. In experiment 1, individuals were screened for the ability to perceive bitterness from capsaicin on the circumvallate papillae. Fifteen of 25 subjects who reported at least weak bitterness rated the intensity of taste, irritation and coolness produced by 100-320 microM capsaicin and 100-320 mM menthol applied via cotton swabs to the tip (fungiform region), the posterior edge (foliate region), and the dorsal posterior surface (circumvallate region) of the tongue. Sucrose, citric acid, sodium chloride and quinine hydrochloride were applied to the same areas to assess tastes responsiveness. On average, capsaicin and menthol produced "moderate" bitterness (and no other significant taste qualities) in the circumvallate region, and weaker bitterness on the side and tip of the tongue. Sensory irritation from capsaicin was rated significantly higher at the tongue tip, whereas menthol coolness was rated higher in the circumvallate region. In experiment 2 we applied sucrose and quinine hydrochloride together with capsaicin to investigate the effects other taste stimuli might have on capsaicin's reported bitterness. As expected, adding quinine produced stronger bitterness in the circumvallate and fungiform regions, and adding sucrose significantly reduced the bitterness of capsaicin in the circumvallate region. Overall, the results suggest that capsaicin and menthol are capable of stimulating a subset of taste neurons that respond to bitter substances, perhaps via receptor-gated ion channels like those recently found in capsaicin- and menthol-sensitive trigeminal ganglion neurons, and that the glossopharyngeal nerve may contain more such neurons than the chorda tympani nerve. That some people fail to perceive bitterness from capsaicin further implies that the incidence of capsaicin-sensitive taste neurons varies across people as well as between gustatory nerves.  相似文献   

4.
Caffeine contributes to the flavor profiles of beverage and food products, and other bitter compounds, such as quinine, cannot replicate caffeine's bitterness. Research also has indicated caffeine's ability to enhance desirable tastes, such as sweetness and saltiness, in beverages by modifying neurological pathways. Caffeine may reduce potential " off-flavors" by solubilizing some compounds, while having little effect on other compounds considered important in beverage flavor profiles. Exposure to caffeine may enhance cognition and potentially heighten the capacity for smell and taste. Thus, use of caffeine in beverages may positively affect flavor profiles and the experience of beverage consumption.  相似文献   

5.
The effect of consumption of bitter taste substances (caffeine and beer) to bitter taste sensitivity was examined by 19 healthy adults. For individual taste sensitivity, detection thresholds were used on 6 bitter substances (caffeine, iso-alpha-acids: beer bittering agents, quinine sulfate, L-tryptophan, L-phenylalanine and glycyl-L-phenylalanyl-L-phenylalanine) and 3 non-bitter substances (L-aspartic acid, aspartame and NaCl). Nonusers of caffeine had significantly higher sensitivity (lower threshold) for caffeine compared to moderate and heavy users. Slight consumers of beer had significantly higher sensitivity for iso-alpha-acids relative to heavy users of beer, Iso-alpha-acids were not detected in saliva in acute dosing test by using 6 subjects. The correlations between thresholds of 6 bitter substances were calculated. Significant correlations (p < 0.01) were noted in 2 cases between caffeine and quinine, and iso-alpha-acids and L-trypothan. These data suggest the significant relation between individual bitter taste sensitivity and the consumption of caffeine and beer (iso-alpha-acids).  相似文献   

6.
Although the numerous stimuli representing the taste quality of bitterness are known to be transduced through multiple mechanisms, recent studies have suggested an unpredicted complexity of the transduction pathways for individual bitter stimuli. To investigate this notion more thoroughly, a single prototypic bitter stimulus, caffeine, was studied by using patch-clamp and ratiometric imaging techniques on dissociated rat taste receptor cells. At behaviorally relevant concentrations, caffeine produced strong inhibition of outwardly and inwardly rectifying potassium currents. Caffeine additionally inhibited calcium current, produced a weaker inhibition of sodium current, and was without effect on chloride current. Consistent with its effects on voltage-dependent currents, caffeine caused a broadening of the action potential and an increase of the input resistance. Caffeine was an effective stimulus for elevation of intracellular calcium. This elevation was concentration dependent, independent of extracellular calcium or ryanodine, and dependent on intracellular stores as evidenced by thapsigargin treatment. These dual actions on voltage-activated ionic currents and intracellular calcium levels suggest that a single taste stimulus, caffeine, utilizes multiple transduction mechanisms.  相似文献   

7.
Bitter peptides activate hTAS2Rs, the human bitter receptors   总被引:1,自引:0,他引:1  
Fermented food contains numerous peptides derived from material proteins. Bitter peptides formed during the fermentation process are responsible for the bitter taste of fermented food. We investigated whether human bitter receptors (hTAS2Rs) recognize bitterness of peptides with a heterologous expression system. HEK293 cells expressing hTAS2R1, hTAS2R4, hTAS2R14, and hTAS2R16 responded to bitter casein digests. Among those cells, the hTAS2R1-expressing cell was most strongly activated by the synthesized bitter peptides Gly-Phe and Gly-Leu, and none of the cells was activated by the non-bitter dipeptide Gly-Gly. The results showed that these bitter peptides, as well as many other bitter compounds, activate hTAS2Rs, suggesting that humans utilize these hTAS2Rs to recognize and perceive the structure and bitterness of peptides.  相似文献   

8.
The nature and occurrence of carry-over effects, i.e. the response to a stimulus is influenced by previous samples, were examined for selected bitter compounds. A time-intensity procedure was used to rate the bitterness of six compounds (caffeine, denatonium benzoate, limonin, naringin, quinine and sucrose octa-acetate). For each subject concentrations of these compounds were determined that were approximately equal in intensity to 1.18 x 10(-5) M limonin. To test carry-over effects of each compound the 36 paired sequences (pairs) were evaluated. Within a session three pairs were tested, between which two-stage rinses were used to remove any effects of the previous pairs. Within a pair only water rinses were used between stimuli. For all compounds carry-over or sensitization effects were observed in which values for maximum intensity, rate of onset and total area under the time-intensity curve were higher for a compound when tested in the second position than in the first. In addition, the degree of sensitization and susceptibility to sensitization were compound-specific. Caffeine increased the bitterness by the largest amount for all other compounds, while it was least affected. Regardless of the compound in the first position, the bitterness of quinine and denatonium were most enhanced.  相似文献   

9.
A previous study investigating individuals' bitterness sensitivities found a close association among three compounds: L-tryptophan (L-trp), L-phenylalanine (L-phe) and urea (Delwiche et al., 2001, Percept. Psychophys. 63, 761-776). In the present experiment, psychophysical cross-adaptation and bitterness inhibition experiments were performed on these three compounds to determine whether the bitterness could be differentially affected by either technique. If the two experimental approaches failed to differentiate L-trp, L-phe and urea's bitterness, then we may infer they share peripheral physiological mechanisms involved in bitter taste. All compounds were intensity matched in each of 13 subjects, so the judgments of adaptation or bitterness inhibition would be based on equal initial magnitudes and, therefore, directly comparable. In the first experiment, cross-adaptation of bitterness between the amino acids was high (>80%) and reciprocal. Urea and quinine-HCl (control) did not cross-adapt with the amino acids symmetrically. In a second experiment, the sodium salts, NaCl and Na gluconate, did not differentially inhibit the bitterness of L-trp, L-phe and urea, but the control compound, MgSO(4), was differentially affected. The bitter inhibition experiment supports the hypothesis that L-trp, L-phe and urea share peripheral bitter taste mechanisms, while the adaptation experiment revealed subtle differences between urea and the amino acids indicating that urea and the amino acids activate only partially overlapping bitter taste mechanisms.  相似文献   

10.
The jaw movements and muscular activity of masticatory muscles of five assessors, having bitterness thresholds about 8 μM quinine in water, were monitored throughout chewing of similar strength gelatin gels containing 0, 40, 70 or 100 μM quinine. Gel bitterness ratings were not related to sensory texture which was 78kN/m2 by shear test. On average, 100 μM quinine gels were as bitter as 7 to 30 μM quinine in water, depending on the assessor. Chewing patterns were not affected by concentration of quinine in the gels. During mastication of acceptable gels, there appears to be no feedback from taste to the motor control of mastication. In gels of the same consistency and the same concentration of quinine, assessors who chewed more rated higher for bitterness. The implications for mimicking mastication by machine and the training of assessors for solid foods are discussed.  相似文献   

11.
The interindividual variation in the sensitivity to bitterness is attributed in part to genetic polymorphism at the taste receptor level, but other factors, such as saliva composition, might be involved. In order to investigate this, 2 groups of subjects (hyposensitive, hypersensitive) were selected from 29 healthy male volunteers based on their detection thresholds for caffeine, and their salivary proteome composition was compared. Abundance of 26 of the 255 spots detected on saliva electrophoretic patterns was significantly different between hypo- and hypersensitive subjects. Saliva of hypersensitive subjects contained higher levels of amylase fragments, immunoglobulins, and serum albumin and/or serum albumin fragments. It also contained lower levels of cystatin SN, an inhibitor of protease. The results suggest that proteolysis occurring within the oral cavity is an important perireceptor factor associated to the sensitivity to the bitter taste of caffeine.  相似文献   

12.
The effects of changed ionic environments on the frog taste nerve responses to the bitter substances were examined. The responses to quinine and strychnine carrying a positive charge were suppressed by an increase in ionic strength of stimulating solutions. It was concluded that electrostatic interaction of these positive bitter substances with the receptor membranes greatly contributes to the adsorption of the substances on the membranes and that this interaction was suppressed by an increase in ionic strength. The responses to neutral bitter substances (caffeine and theophylline) were unchanged by an increase in salt concentration. The zeta potential of the mouse neuroblastoma (N-18 clone), which was depolarized by various bitter substances similarly to a taste cell, was measured in the presence of the bitter substances. The zeta potential was a little changed by quinine and practically unchanged by strychnine, caffeine and theophylline. The membrane fluidity of the N-18 cell monitored with 2-(9-anthroyloxy)stearic acid was changed in response to the bitter substances, while the fluidity monitored with 12-(9-anthroyloxy)stearic acid or 1,6-diphenyl-1,3,5-hexatriene was unchanged. This suggested that the bitter substances are adsorbed on the hydrophobic region near the surface and induce a conformational change at the region. The depolarization by the bitter substances seems to stem from changes in the “boundary potential” at the region near the surface within the membrane interior.  相似文献   

13.
Multiple bitter receptor sites appear to exist within the hamstergustatory system supporting the data of other investigatorson humans, rats and frogs. The sodium salts of four anions,m-nitrobenzene sulfonate (NBSA), picrate, m-nitrobenzoate (NBA)and cholate, were tested in two-bottle preference tests andfor generalization to a variety of stimuli in a conditionedtaste aversion (CTA) paradigm. All four of these anions arebitter to humans. One, NBSA, generalized to sucrose suggestinga sweet taste, while the remaining three appear to be bitterwith varying degrees of saltiness. The bitterness of these threeanions to hamsters appears to be perceptually different froma quinine-type bitterness. Separate bitter receptor sites areindicated for quinine and urea, plus a third site acceptingNBA, picrate and cholate. More bitter sites are plausible. Separatesites for quinine and urea appear to occur across species. Itwas also concluded that quinine does not serve as a prototypicbitter stimulus for all bitters in the CTA test.  相似文献   

14.
The genetically determined ability to taste 6-n-propylthiouracil (PROP) has been linked with lowered acceptance of some bitter foods. Fifty-four women, aged 18-30 years, tasted and rated PROP-impregnated filter paper and seven solutions of PROP. Summed bitterness intensity ratings for PROP solutions determined PROP taster status. Respondents also tasted five sucrose and seven caffeine solutions, as well as seven solutions each of caffeine and PROP that had been sweetened with 0.3 mmol/l neohesperidin dihydrochalcone (NHDC). Respondents also rated three kinds of chocolate using 9-point category scales. PROP tasters rated caffeine solutions as more bitter than did non-tasters and liked them less. PROP tasters did not rate either sucrose or NHDC as more sweet. The addition of NHDC to PROP and caffeine solutions suppressed bitterness intensity more effectively for tasters than for non-tasters and improved hedonic ratings among both groups. PROP tasters and non-tasters showed the same hedonic response to sweetened caffeine solutions and did not differ in their sensory responses to chocolate. Genetic taste markers may have only a minor impact on the consumption of such foods as sweetened coffee or chocolate.  相似文献   

15.
The effect of the sweetness inhibitor 2(-4-niethoxyphenoxy)propanoicacid (sodium gait) (Na-PMP) on the taste and temporal propertiesof a range of bitter-sweet stimuli was determined using a trainedsensory panel. Na-PMP was found to be an effective inhibitorof the sweetness response of all stimuli tested, reducing bothsweetness intensity and persistence. The inhibitor was foundto be specific to sweet taste, no reduction in bitterness intensityor persistence was observed at the concentrations of Na-PMPemployed in this study. The results therefore do not supportthe claim of Fuller and Kurtz (1991), that Na-PMP is a potentbitterness inhibitor, but rather support the existence of twodistinct receptor sites/loci in sweet and bitter chemoreception.  相似文献   

16.
鉴于哮喘病患病人数众多,约有一半的病人病情得不到较好的控制,急需新的治疗方法和药物.最近研究发现,苦味受体(bitter taste receptors,T2 Rs)在多个组织中表达,且苦味剂对哮喘有治疗潜力,T2Rs有可能成为哮喘治疗的新靶点.本文选C57BL/6小鼠随机分为对照组、二氧化硫(sulfur dioxi...  相似文献   

17.
Although several pathways of bitter taste signal transduction have been proposed in taste cells, these mechanisms have not been elucidated in detail. To investigate the diversity of responses to bitter stimuli, we recorded the electrophysiological responses to quinine, denatonium and naringin using whole-cell patch clamp technique in isolated taste cells of C57BL/6J mice. Ten mM quinine induced depolarizing response under the current clamp mode, and inward current response under the voltage-clamp mode (holding potential -80 mV) using both K+ (with pseudo intracellular solution) and Cs+ (K+ was substituted by Cs+ in the pseudo intracellular solution) pipettes. However, when the K+ pipette was used, the membrane conductance was suppressed and activated in succession. On the other hand, the membrane conductance was only activated when the Cs+ pipette was used. Half to one mM denatonium induced depolarizing response under the current clamp mode, and outward current response under the voltage clamp mode with both pipettes. Using these pipettes, the membrane conductance was activated or suppressed in the individual case. Naringin-induced responses were not detected in these measurements. These electrophysiological recordings suggest that multiple transduction mechanisms are involved in bitter taste perception in mouse taste cells.  相似文献   

18.
Lim J  Green BG 《Chemical senses》2008,33(2):137-143
Taste is always accompanied by tactile stimulation, but little is known about how touch interacts with taste. One exception is evidence that taste can be "referred" to nearby tactile stimulation. It was recently found (Lim J, and Green BG. 2007. The psychophysical relationship between bitter taste and burning sensation: evidence of qualitative similarity. Chem Senses. 32:31-39) that spatial discrimination of taste was poorer for bitterness than for other tastes when the perceived intensities were matched. We hypothesized that this difference may have been caused by greater referral of bitterness by touch. The present study tested this hypothesis by comparing localization of quinine sulfate and sucrose under conditions that minimized and maximized the opportunity for referral. In both conditions, stimulation was produced by 5 cotton swabs spaced 1 cm apart and arranged in an arc to enable simultaneous contact with the front edge of the tongue. Only one swab contained the taste stimulus, whereas the rest were saturated with deionized water. In both conditions, the swabs were stroked up-and-down against the tongue 5 times. Subjects were asked to identify which swab contained the taste stimulus 1) 5 s after the fifth stroke (touch-removed condition) and 2) immediately at the end of the fifth stroke, with the swabs still in contact with the tongue (touch-maintained condition). Ratings of taste intensity were obtained to assess the possible effect of perceived intensity on spatial localization. Taste localization was surprisingly accurate, especially for sucrose, with errors of localization in the range of 1 cm or less. For both stimuli, localization tended to be poorer when the tactile stimulus was present while subjects made their judgments, but the difference between conditions was significant only for the lower concentration of quinine. The results are discussed in terms of both the surprisingly good spatial acuity of taste and the possibility of having a close perceptual relationship between touch and bitter taste.  相似文献   

19.
It was recently shown that in some subjects capsaicin can evoke bitterness as well as burning and stinging, particularly in the circumvallate (CV) region of the tongue. Because perception of bitterness from capsaicin is characterized by large individual differences, the main goal of the present study was to learn whether people who taste capsaicin as bitter also report bitterness from structurally similar sensory irritants that are known to stimulate capsaicin-sensitive neurons. The irritancy and taste of capsaicin and two of its most commonly studied congeners, piperine and zingerone, were measured in individuals who had been screened for visibility of, and reliable access to, the CV papillae. Approximately half of these individuals reported tasting bitterness from all three irritants when the stimuli were swabbed directly onto the CV papillae. Concentrations that produced similar levels of burning sensation across subjects also produced similar (though lower) levels of bitter taste. These results are consistent with the hypothesis that capsaicin and its congeners stimulate bitterness via a common sensory receptor that is distributed differentially among individuals. Additionally, bitter tasters rated gustatory qualities (but not burning and stinging) slightly but significantly higher than did bitter non-tasters, which suggests that perception of capsaicin bitterness is associated with a higher overall taste responsiveness (but not chemesthetic responsiveness) in the CV region.  相似文献   

20.
In order to study potential mixture interactions among bitter compounds, selected sodium salts were added to five compounds presented either alone or as binary bitter-compound mixtures. Each compound was tested at a concentration that elicited 'weak' perceived bitterness. The bitter compounds were mixed at these concentrations to form a subset of possible binary mixtures. For comparison, the concentration of each solitary compound was doubled to measure bitterness inhibition at the higher intensity level elicited by the mixtures. The following sodium salts were tested for bitterness inhibition: 100 mM sodium chloride (salty), 100 mM sodium gluconate (salty), 100 and 20 mM monosodium glutamate (umami), and 50 mM adenosine monophosphate disodium salt (umami). Sucrose (sweet) was also employed as a bitterness suppressor. The sodium salts differentially suppressed the bitterness of compounds and their binary combinations. Although most bitter compounds were suppressed, the bitterness of tetralone was not suppressed, nor was the bitterness of the binary mixtures that contained it. In general, the percent suppression of binary mixtures of compounds was predicted by the average percent suppression of its two components. Within the constraints of the present study, the bitterness of mixtures was suppressed by sodium salts and sucrose independently, with few bitter interactions. This is consistent with observations that the bitter taste system integrates the bitterness of multi-compound solutions linearly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号