首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
花是被子植物主要的繁殖器官,在繁育后代的过程中,发挥着极其重要的作用,PISTILLATA(PI)基因作为控制花器官发育的B类功能基因中的一员,在花器官发育中起到重要的作用。为探究PI基因在花瓣和雄蕊发育中的功能,本文以拟南芥(Arabidopsis thaliana)中的PI基因作为研究对象,利用PCR技术从拟南芥花序c DNA扩增出At PI基因,构建植物表达载体(p ROKⅡ-At PI)并进行烟草(Nicotiana tobacum)转化。转基因植株的PCR检测结果表明,At PI基因已经整合到了烟草基因组中。在T2代植株中,通过实时定量荧光PCR检测显示,At PI在m RNA水平也均有表达。过量表达PI的转基因烟草在花器官中存在明显表型,与野生型相比主要表现为转基因植株花冠变小,雄蕊缩短,果实畸形且子房基部比野生型长5~10 mm,上述结果表明At PI基因是特异性参与雄蕊和花瓣的发育并起着至关重要的作用。  相似文献   

2.
拟南芥CYCD3;1基因的克隆及功能研究   总被引:2,自引:0,他引:2  
从拟南芥基因组中克隆出CYCD3;1基因,将其插入植物双元载体pER8中,使其受一个嵌合转录启动子的控制;利用农杆菌介导通过真空渗透法将外源基因导入拟南芥中,经潮霉素抗性筛选出转化植株后,用PCR鉴定出阳性转化植株,对阳性转化植株进行连续光照培养并观察其表型变化,发现转基因株系与野生型之间在抽苔和开花时间上有较大差别。结果表明,CYCD3;1低水平误表达会影响植物的生长发育。  相似文献   

3.
棉花乙烯合成基因促进拟南芥和烟草不定根发生的研究   总被引:1,自引:0,他引:1  
从棉花纤维cDNA中克隆获得乙烯合成基因GhACO3,构建了植物过量表达载体p35S::GhACO3.通过花序侵染法和叶盘法分别转化拟南芥和烟草,利用卡那霉素筛选及分子检测获得转基因阳性拟南芥和烟草植株.结果表明,GhACO3基因已整合到拟南芥和烟草基因组中;经过纯合筛选后获得转基因T2代拟南芥植株;与野生型拟南芥相比,GhACO3基因对拟南芥不定根发生具有显著促进作用;与野生型烟草植株相比,转GhACO3基因烟草不定根发生得到了显著的促进.研究表明,GhACO3基因的过量表达能够促进拟南芥和烟草不定根的形成发育,为进一步探讨GhACO3的生物学功能和进行转基因育种奠定了基础.  相似文献   

4.
利用PCR技术从已建立的新疆雪莲cDNA文库中克隆雪莲水孔蛋白基因sikPIP1,构建植物表达载体pBI121-sikPIP1,利用农杆菌介导法获得转基因烟草,PCR和RT-PCR检测证明该基因成功导入并得以转录,并对检测结果均为阳性的植株通过水分胁迫和温度胁迫进行抗旱性和抗寒性分析。结果显示:(1)克隆得到长为880 bp,具有水孔蛋白特性的sikPIP1基因,完整ORF为840 bp。(2)水分胁迫中,断水7 d后转基因烟草生长表型明显优于野生型烟草,生理指标测定结果显示,转基因烟草的相对电导率和丙二醛含量均低于野生型烟草,相对含水量高于野生型烟草。(3)不同温度胁迫处理,转基因烟草表型显著优于野生型,特别是0℃以下低温胁迫,野生型烟草出现严重的萎蔫,而转基因烟草受伤害程度较轻;生理指标结果显示转基因烟草相对电导率、丙二醛含量低于野生型烟草。结果表明,转sikPIP1基因提高了烟草抗旱能力和抗寒能力。  相似文献   

5.
为了研究山葡萄CBF基因调节植物对盐胁迫的应答机理,分别构建了山葡萄Va CBF1、Va CBF2和Va CBF3的植物过表达载体。经酶切及琼脂糖电泳检测证实3个基因均插入到p BASTA中,表明表达载体构建成功。然后,分别将3个植物过表达载体转入农杆菌EHA105中,并通过浸花法浸染拟南芥。利用除草剂筛选获得3个基因的拟南芥过表达株系。最后,对野生型拟南芥与转基因拟南芥进行盐胁迫处理,发现OE-CBF2转基因植株的主根伸长长度显著长于其它植株,3个转基因株系的侧根长度也明显长于野生型植株。上述结果表明山葡萄CBF基因可能在植物盐胁迫中对根部生长发育起到非常重要的调控作用。  相似文献   

6.
D类细胞周期蛋白(D-type cyclin,CYCD)调控细胞周期G1/S期转变。CYCD与细胞周期蛋白依赖性激酶(cyclin-dependent kinase,CDK)结合形成CYCD/CDK复合物,被激活的CYCD/CDK复合物通过磷酸化下游细胞周期响应因子调控细胞周期有序进行,进而影响植物的生长发育。该研究以‘741杨’为实验材料,成功鉴定得到1个D2类细胞周期蛋白基因(PtoCYCD2;1)。研究表明:(1)实时定量PCR(qRT-PCR)显示,PtoCYCD2;1基因在根、茎、叶、叶柄、树皮和木质部中均有表达,在叶中的相对表达水平最高。(2)亚细胞定位表明PtoCYCD2;1蛋白定位于细胞核。(3)与野生型(Wild-Type poplar,WT)相比,过表达PtoCYCD2;1基因的‘741杨’出现株高降低,茎直径减小,叶片明显下卷的表型。(4)扫描电镜分析(SEM)显示,转基因杨树叶片的上表皮细胞平均面积变小,细胞数量增多;树脂切片结果显示与WT相比,转基因杨树叶片的栅栏组织和海绵组织的细胞间隙疏松。(5)qRT-PCR结果显示,转基因杨树中细胞周期调控基因CDKA;1、CDKB1;1和CDKB2;1的表达水平显著上调,植物成视网膜细胞瘤相关蛋白1(retinoblastoma-related protein1,RBR1)基因、细胞周期蛋白依赖性激酶抑制因子(kip-related protein,KRP)基因的表达水平显著下调。该研究结果为进一步研究木本植物CYCD2基因的功能奠定了基础。  相似文献   

7.
过量表达星星草PtSOS_1提高拟南芥的耐盐性   总被引:4,自引:0,他引:4  
将星星草中分离的质膜型Na+/H+逆向转运蛋白基因PtSOS1(GenBank登录号EF440291)构建到pGWB2植物表达载体上,转化拟南芥,获得抗卡那霉素的抗性植株.PCR和Northern检测表明,PtSOS1已整合到拟南芥基因组中并过量表达.耐盐性实验表明,PtSOS1过量表达提高了拟南芥植株的耐盐性.盐分测定表明,盐胁迫下PtSOS1转基因植株中Na+积累低于野生型的,K+含量则高于野生型的,转基因植株中K+/Na+比值高于野生型.  相似文献   

8.
为明确拟南芥(Arabidopsis thaliana)光敏色素B激活标签的抑制蛋白1(phy B activation-tagged suppressor1,BAS1)基因对烟草(Nicotiana tabacum)中烟碱、降烟碱和N-亚硝基降烟碱合成的影响,通过构建含有不同启动子的植物表达载体p SH-p LXM5-BAS1和p SH-35S-BAS1遗传转化烟草。在8~10叶期分别取转基因和野生型烟草植株相同部位的叶片,采用LC-MS方法对样品中烟碱、降烟碱、亚硝基降烟碱含量进行测定,结果表明转基因烟草烟碱含量和降烟碱含量与野生型相比均明显提高。转p LXM5-BAS1基因和转35S-BAS1基因植株烟碱含量分别是野生型植株2.9倍和2.95倍;同时测得降烟碱含量分别为野生型的3.35倍和3.76倍;在转基因和野生型烟草中均未检测到亚硝基降烟碱。表明超量表达At BAS1对烟草的烟碱和降烟碱合成存在显著影响。据NCBI数据库中报道的烟碱合成相关基因PMT和QPT,降烟碱合成相关基因CYP82E4v1、CYP82E5v2、CYP82E10的序列,设计各基因的Real-time PCR引物,并以烟草β-Actin基因作为内参,Real-Time PCR结果表明烟碱和降烟碱合成相关基因表达均出现不同程度的上调。综上可知,在烟草中超量表达At BAS1基因,促使烟碱和降烟碱合成相关基因表达的上调,直接导致了烟草中烟碱含量和降烟碱含量的大幅提高。本研究为后续深入挖掘影响烟碱及降烟碱生成及转化的新基因并最终构建完整的烟碱代谢网络提供了借鉴,也为研究烟碱向降烟碱转化过程中信号因子和信号传递提供了一个新途径。  相似文献   

9.
将星星草中分离的质膜型Na^+/H^+逆向转运蛋白基因PtSOSJ(GenBank登录号EF440291)构建到pGWB2植物表达载体上,转化拟南芥,获得抗卡那霉素的抗性植株。PCR和Northem检测表明,PtSOS1已整合到拟南芥基因组中并过量表达。耐盐性实验表明,PtSOS1过量表达提高了拟南芥植株的耐盐性。盐分测定表明,盐胁迫下PtSOS1转基因植株中Na^+积累低于野生型的,K^+含量则高于野生型的,转基因植株中K^+/Na^+比值高于野生型。  相似文献   

10.
以拟南芥At5NC056820为研究对象,构建其过表达载体,以蘸花法侵染拟南芥,经半定量PCR鉴定成功获得了12株过表达株系,并测定转基因植株在干旱胁迫下的生理指标,分析转基因植株的抗旱性,以明确At5NC056820对干旱胁迫的响应,为进一步揭示lncRNA影响植物抗旱性的分子机制提供依据。结果显示:(1)成功构建出含有At5NC056820的载体,并得到了12株阳性植株。(2)阳性植株经RCR验证,证实At5NC056820已在拟南芥中过表达;转基因拟南芥A-3、A-7和A-8在干旱处理下均较野生型长势良好。(3)干旱处理10d后,转基因拟南芥的游离脯氨酸含量为2 429.58μg·g~(-1),比野生型高2.2~2.5倍;转基因拟南芥叶绿素含量为0.82mg·g~(-1),平均下降了48.9%,而野生型拟南芥下降了63.0%;转基因拟南芥丙二醛含量为2.15 mmol·L~(-1)·g~(-1),其上升量较野生型少1.19mmol·L~(-1)·g~(-1);转基因拟南芥的植物组织相对含水量为53.73%,其下降量较野生型少19.0%。研究表明,lncRNA-At5NC056820能够在一定程度上提高拟南芥的耐旱性。  相似文献   

11.
旨在研究C2H2型锌指蛋白在植物生长发育、非生物胁迫信号转导过程中的作用。前期从新疆无苞芥中克隆的一个单锌指基因Op ZFP,利用叶盘法将Op ZFP基因转入普通烟草中。半定量RT-PCR表明,在转基因植株中Op ZFP基因能够高效表达。烟草耐盐性分析显示,在高盐胁迫下,转基因植株的根长要长于野生型植株,且转基因烟草丙二醛(MDA)的含量要明显低于野生型植株;并且高盐胁迫处理,野生型烟草离体叶片叶绿素降解率高于转基因植株。这些结果表明,过量表达Op ZFP的转基因植株可以提高植物对盐胁迫的抗性。  相似文献   

12.
旨在探讨枣树抗坏血酸过氧化物酶基因ZjAPX在植物渗透胁迫中的作用。将ZjAPX基因转入到模式植物拟南芥,以野生型(WT)、转ZjAPX拟南芥株系T2为试材,进行不同浓度NaCl胁迫和干旱胁迫。结果表明,转基因株系的种子萌发、植株生长均优于野生型株系;荧光定量PCR检测转基因拟南芥植株在干旱和盐胁迫处理10 d后目的基因ZjAPX的表达量显著高于野生拟南芥,表明ZjAPX的高表达明显提高了植株的抗旱和耐盐性。  相似文献   

13.
该研究采用实时荧光定量PCR(qRT PCR)技术,对烟草金属耐受蛋白1(MTP1)基因(NtMTP1)在烟草不同组织以及不同质量浓度ZnSO4处理下的表达进行了分析;利用农杆菌介导法,将NtMTP1基因植物过表达载体pBI121 35S∶∶MTP1转化野生型烟草,筛选得到NtMTP1基因过表达的转基因烟草植株,并进行不同质量浓度ZnSO4处理,检测NtMTP1基因过表达对烟草Zn胁迫耐受性的影响。结果表明:NtMTP1基因在烟草中呈现组织特异性表达,主要在花与叶中表达;NtMTP1基因的表达受到Zn2+诱导,在400 μmol/L ZnSO4处理后,表达量达到最高,为对照组的3.81倍;3株转基因烟草植株中NtMTP1基因表达量分别为野生型的10.42、7.61和11.84倍,与野生型相比,过表达植株对Zn胁迫的耐受性显著增强。研究结果为阐明NtMTP1基因在烟草体内Zn2+转运过程中的生物学功能提供了重要依据。  相似文献   

14.
以模式植物拟南芥(Arabidopsis thaliana)和烟草(Nicotiana tabacum)及PRSV寄主植物番木瓜(CaricapapayaL.)作为试验材料,开展了番木瓜环斑病毒外壳蛋白基因dsRNA介导的PRSV病原抗性的研究。利用农杆菌介导法将番木瓜环斑病毒外壳蛋白CP基因反向重复表达载体pHellsgate12-CPIR(简称PHG12-CPIR)分别转化到烟草和拟南芥中,获得阳性植株,并利用渗透法和农杆菌介导的瞬时表达体系将pHG12-CPIR载体导入到番木瓜中。对转基因植株进行攻毒试验并分析了其抗病性。在接种3~7d内,在拟南芥和番木瓜上转基因植株的发病情况较轻,而野生型植株叶片与转基因植株相比,均表现出不同程度的黄化、皱缩和枯斑等症状。在接种PRSV后,番木瓜和拟南芥转化植株表现症状的叶片的比例与对照相比,结果显著低于对照,而在烟草植株上症状表现的差异不明显。在3种植物上RT-PCR检测结果显示,在接种番木瓜环斑病毒PRSV后,野生型植株中有高浓度的病毒积累,而转pHG12-CPIR基因植株中几乎没有病毒积累,推测转pHG12-CPIR基因植株中瞬时表达系统已启动RNAi机制抑制了CP基因的表达。  相似文献   

15.
拟南芥液泡膜上的Na+/H+逆向转运蛋白是由 AtNHX1 基因编码的一种重要的植物耐盐性因子。 AtNHXS1 是利用DNA改组(DNA shuffling)技术对 AtNHX1 基因进行定向分子进化获得的新基因。利用农杆菌介导的叶盘法将该基因转入烟草中,经过潮霉素和PCR鉴定,得到了10个独立的转基因株系。对其中两个PCR阳性株系进行Southern blot 鉴定,确定 AtNHXS1 以单拷贝的形式成功地插入到烟草的基因组中。荧光定量PCR分析表明, AtNHXS1 基因可以利用烟草的转录体系正确转录。在盐处理下,随着盐浓度的提高,植株不同组织部位 AtNHXS1 基因的表达均有不同程度的提高,其中叶片上调趋势最明显。耐盐性试验结果表明,盐处理下,转基因烟草的长势明显优于野生型。400 mmol/L NaCl 处理下,野生型烟草完全死亡,转基因烟草生长受到抑制,但是仍然能够正常生长。研究结果表明, AtNHXS1 新基因能够显著提高烟草的耐盐性。  相似文献   

16.
水稻受盐抑制基因OsZFP1的转基因分析   总被引:7,自引:0,他引:7  
OsZFP1(水稻锌指蛋白1)基因编码的蛋白含有3个推测的Cys2/Cys2-型锌指结构域,它的表达受盐胁迫负调控。构建了以35S为启动子的OsZFP1基因的植物表达载体,并将其转入拟南芥(ArabidopsisthalianaL.)植物和水稻(OryzasativaL.)愈伤组织中以过量表达OsZFP1基因。转基因的拟南芥植株和水稻愈伤组织对盐处理的敏感性都比野生型要高。这一结果表明OsZFP1基因可能编码一种负调控蛋白,它可能抑制某些盐诱导基因的表达。在ABA处理下,转基因拟南芥植株比野生型植株抽苔晚,说明OsZFP1基因的作用可能受ABA调节。  相似文献   

17.
GmC2H2转录因子基因是本实验室获得的一个编码172个氨基酸携带516bp核苷酸的转录因子,属于经典C2H2型锌指蛋白.通过构建植物表达载体GmC2H2-pCAMBIA1304,借助优化的Floral-dip法转化模式植物拟南芥,经潮霉素Hygromycine( 45-50 mg/L)抗性筛选获得转基因拟南芥植株.GUS组织染色分析表明,GmC2H2基因在生长12d的转基因拟南芥幼苗中,表达部位主要集中在根部.对转基因拟南芥进行了低温(1℃)和脱落酸(200 μmol/L)胁迫处理,测定其生理生化指标,通过real-time qPCR确定目的基因在转基因拟南芥中的表达情况.结果表明,携带GmC2H2目的基因的转基因拟南芥中脯氨酸和可溶性糖水平要高于野生型植株,而丙二醛水平要低于野生型,在抗逆性方面明显优于野生型拟南芥植株;并且胁迫处理下的转基因拟南芥中GmC2H2基因的表达量要高于未胁迫处理的转基因植株,说明GmC2H2基因的表达受低温和ABA的诱导,初步明确了该转录因子基因的功能.  相似文献   

18.
PPF1是一个与植物营养生长相关的基因。它编码的产物可能是一个膜蛋白并与拟南芥叶绿体中的类囊体蛋白ALB3有很高的同源性。免疫电镜分析表明PPF1蛋白同样主要定位于类囊体膜 ,而且在短日照G2豌豆开花两周后仍发育良好的叶绿体中有很高的表达 ,在长日照豌豆同时期非正常叶绿体中丰度非常低。对转基因拟南芥和野生型植株的叶片衰老进程比较发现 ,PPF1在拟南芥中的过量表达可以延缓叶片的衰老 ,而用PPF1反义mRNA抑制拟南芥中的同源基因ALB3则明显加快叶片衰老速度。对转基因拟南芥的超微结构分析显示 ,PPF1在拟南芥中过量表达时 ,转基因植株的叶绿体比野生型植株的叶绿体大并含有更多的基粒和基质类囊体膜 ;相反 ,反义PPF1表达抑制其在拟南芥中的同源物时 ,转基因植株的叶绿体比野生型植株的叶绿体小并含有较少的基粒和发育较差的类囊体膜系统。这些数据表明叶绿体的发育状况与PPF1或拟南芥同源物ALB3的表达水平呈正相关。我们的结果提示PPF1基因可能通过控制叶绿体的发育状况来调节植物的发育。  相似文献   

19.
OsZFP1(水稻锌指蛋白1)基因编码的蛋白含有3个推测的Cys2/Cys2-型锌指结构域,它的表达受盐胁迫负调控.构建了以35S为启动子的OsZFP1基因的植物表达载体,并将其转入拟南芥(Arabidopsis thaliana L.)植物和水稻(Oryza sativa L.)愈伤组织中以过量表达OsZFP1基因.转基因的拟南芥植株和水稻愈伤组织对盐处理的敏感性都比野生型要高.这一结果表明OsZFP1基因可能编码一种负调控蛋白,它可能抑制某些盐诱导基因的表达.在ABA处理下,转基因拟南芥植株比野生型植株抽苔晚,说明OsZFP1基因的作用可能受ABA调节.  相似文献   

20.
PPF1是一个与植物营养生长相关的基因.它编码的产物可能是一个膜蛋白并与拟南芥叶绿体中的类囊体蛋白ALB3有很高的同源性.免疫电镜分析表明PPF1蛋白同样主要定位于类囊体膜,而且在短日照G2豌豆开花两周后仍发育良好的叶绿体中有很高的表达,在长日照豌豆同时期非正常叶绿体中丰度非常低.对转基因拟南芥和野生型植株的叶片衰老进程比较发现, PPF1在拟南芥中的过量表达可以延缓叶片的衰老,而用PPF1反义mRNA抑制拟南芥中的同源基因ALB3则明显加快叶片衰老速度.对转基因拟南芥的超微结构分析显示,PPF1在拟南芥中过量表达时,转基因植株的叶绿体比野生型植株的叶绿体大并含有更多的基粒和基质类囊体膜;相反,反义PPF1表达抑制其在拟南芥中的同源物时,转基因植株的叶绿体比野生型植株的叶绿体小并含有较少的基粒和发育较差的类囊体膜系统.这些数据表明叶绿体的发育状况与PPF1或拟南芥同源物ALB3的表达水平呈正相关.我们的结果提示PPF1基因可能通过控制叶绿体的发育状况来调节植物的发育.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号