首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Bacteriophage P22, a podovirus infecting strains of Salmonella typhimurium, packages a 42-kbp genome using a headful mechanism. DNA translocation is accomplished by the phage terminase, a powerful molecular motor consisting of large and small subunits. Although many of the structural proteins of the P22 virion have been well characterized, little is known about the terminase subunits and their molecular mechanism of DNA translocation. We report here structural and assembly properties of ectopically expressed and highly purified terminase large and small subunits. The large subunit (gp2), which contains the nuclease and ATPase activities of terminase, exists as a stable monomer with an α/β fold. The small subunit (gp3), which recognizes DNA for packaging and may regulate gp2 activity, exhibits a highly α-helical secondary structure and self-associates to form a stable oligomeric ring in solution. For wild-type gp3, the ring contains nine subunits, as demonstrated by hydrodynamic measurements, electron microscopy, and native mass spectrometry. We have also characterized a gp3 mutant (Ala 112 → Thr) that forms a 10-subunit ring, despite a subunit fold indistinguishable from wild type. Both the nonameric and decameric gp3 rings exhibit nonspecific DNA-binding activity, and gp2 is able to bind strongly to the DNA/gp3 complex but not to DNA alone. We propose a scheme for the roles of P22 terminase large and small subunits in the recruitment and packaging of viral DNA and discuss the model in relation to proposals for terminase-driven DNA translocation in other phages.  相似文献   

2.
Pseudomonas phages are increasingly important biomedicines for phage therapy, but little is known about how these viruses package DNA. This paper explores the terminase subunits from the Myoviridae E217, a Pseudomonas-phage used in an experimental cocktail to eradicate P. aeruginosa in vitro and in animal models. We identified the large (TerL) and small (TerS) terminase subunits in two genes ~58 kbs away from each other in the E217 genome. TerL presents a classical two-domain architecture, consisting of an N-terminal ATPase and C-terminal nuclease domain arranged into a bean-shaped tertiary structure. A 2.05 Å crystal structure of the C-terminal domain revealed an RNase H-like fold with two magnesium ions in the nuclease active site. Mutations in TerL residues involved in magnesium coordination had a dominant-negative effect on phage growth. However, the two ions identified in the active site were too far from each other to promote two-metal-ion catalysis, suggesting a conformational change is required for nuclease activity. We also determined a 3.38 Å cryo-EM reconstruction of E217 TerS that revealed a ring-like decamer, departing from the most common nonameric quaternary structure observed thus far. E217 TerS contains both N-terminal helix-turn-helix motifs enriched in basic residues and a central channel lined with basic residues large enough to accommodate double-stranded DNA. Overexpression of TerS caused a more than a 4-fold reduction of E217 burst size, suggesting a catalytic amount of the protein is required for packaging. Together, these data expand the molecular repertoire of viral terminase subunits to Pseudomonas-phages used for phage therapy.  相似文献   

3.
Translocation of double-stranded DNA into a preformed capsid by tailed bacteriophages is driven by powerful motors assembled at the special portal vertex. The motor is thought to drive processive cycles of DNA binding, movement, and release to package the viral genome. In phage T4, there is evidence that the large terminase protein, gene product 17 (gp17), assembles into a multisubunit motor and translocates DNA by an inchworm mechanism. gp17 consists of two domains; an N-terminal ATPase domain (amino acids 1-360) that powers translocation of DNA, and a C-terminal nuclease domain (amino acids 361-610) that cuts concatemeric DNA to generate a headful-size viral genome. While the functional motifs of ATPase and nuclease have been well defined and the ATPase atomic structure has been solved, the DNA binding motif(s) responsible for viral DNA recognition, cutting, and translocation are unknown. Here we report the first evidence for the presence of a double-stranded DNA binding activity in the gp17 ATPase domain. Binding to DNA is sensitive to Mg2+ and salt, but not the type of DNA used. DNA fragments as short as 20 bp can bind to the ATPase but preferential binding was observed to DNA greater than 1 kb. A high molecular weight ATPase-DNA complex was isolated by gel filtration, suggesting oligomerization of ATPase following DNA interaction. DNA binding was not observed with the full-length gp17, or the C-terminal nuclease domain. The small terminase protein, gp16, inhibited DNA binding, which was further accentuated by ATP. The presence of a DNA binding site in the ATPase domain and its binding properties implicate a role in the DNA packaging mechanism.  相似文献   

4.
The final step in the morphogenesis of long-tailed double-stranded DNA bacteriophages is the joining of the DNA-filled head to the tail. The connector is a specialized structure of the head that serves as the interface for tail attachment and the point of egress for DNA from the head during infection. Here, we report the determination of a 2.1 Å crystal structure of gp6 of bacteriophage HK97. Through structural comparisons, functional studies, and bioinformatic analysis, gp6 has been determined to be a component of the connector of phage HK97 that is evolutionarily related to gp15, a well-characterized connector component of bacteriophage SPP1. Whereas the structure of gp15 was solved in a monomeric form, gp6 crystallized as an oligomeric ring with the dimensions expected for a connector protein. Although this ring is composed of 13 subunits, which does not match the symmetry of the connector within the phage, sequence conservation and modeling of this structure into the cryo-electron microscopy density of the SPP1 connector indicate that this oligomeric structure represents the arrangement of gp6 subunits within the mature phage particle. Through sequence searches and genomic position analysis, we determined that gp6 is a member of a large family of connector proteins that are present in long-tailed phages. We have also identified gp7 of HK97 as a homologue of gp16 of phage SPP1, which is the second component of the connector of this phage. These proteins are members of another large protein family involved in connector assembly.  相似文献   

5.
Exchange of DNA between bacteria involves conjugative pili. While the prevailing view has been that F-pili are completely retracted before single-stranded DNA is passed from one cell to another, it has recently been reported that the F-pilus, in addition to establishing the contact between mating cells, serves as a channel for passing DNA between spatially separated cells during conjugation. The structure and function of F-pili are poorly understood. They are built from a single subunit having only 70 residues, and the small size of the subunit has made these filaments difficult to study. Here, we have applied electron cryo-microscopy and single-particle methods to solve the long-existing ambiguity in the packing geometry of F-pilin subunits. We show that the F-pilus has an entirely different symmetry from any of the known bacterial pili as well as any of the filamentous bacteriophages, which have been suggested to be structural homologs. Two subunit packing schemes were identified: one has stacked rings of four subunits axially spaced by ∼ 12.8 Å, while the other has a one-start helical symmetry with an axial rise of ∼ 3.5 Å per subunit and a pitch of ∼ 12.2 Å. Both structures have a central lumen of ∼ 30 Å diameter that is more than large enough to allow for the passage of single-stranded DNA. Remarkably, both schemes appear to coexist within the same filaments, in contrast to filamentous phages that have been described as belonging to one of two possible symmetry classes. For the segments composed of rings, the twist between adjacent rings is quite variable, while the segments having a one-start helix are in multiple states of both twist and extension. This coexistence of two very different symmetries is similar to what has recently been reported for an archaeal Methanococcus maripaludis pili filament and an archaeal Sulfolobus shibatae flagellar filament.  相似文献   

6.
In double-stranded DNA bacteriophages the viral DNA is translocated into an empty prohead shell by a powerful ATP-driven motor assembled at the unique portal vertex. Terminases consisting of two to three packaging-related ATPase sites are central to the packaging mechanism. But the nature of the key translocating ATPase, stoichiometry of packaging motor, and basic mechanism of DNA encapsidation are poorly understood. A defined phage T4 packaging system consisting of only two components, proheads and large terminase protein (gp17; 70 kDa), is constructed. Using the large expanded prohead, this system packages any linear double-stranded DNA, including the 171 kb T4 DNA. The small terminase protein, gp16 (18 kDa), is not only not required but also strongly inhibitory. An ATPase activity is stimulated when proheads, gp17, and DNA are actively engaged in the DNA packaging mode. No packaging ATPase was stimulated by the N-terminal gp17-ATPase mutants, K166G (Walker A), D255E (Walker B), E256Q (catalytic carboxylate), D255E-E256D and D255E-E256Q (Walker B and catalytic carboxylate), nor could these sponsor DNA encapsidation. Experiments with the two gp17 domains, N-terminal ATPase domain and C-terminal nuclease domain, suggest that terminase association with the prohead portal and communication between the domains are essential for ATPase stimulation. These data for the first time established an energetic linkage between packaging stimulation of N-terminal ATPase and DNA translocation. A core pathway for the assembly of functional DNA translocating motor is proposed. Since the catalytic motifs of the N-terminal ATPase are highly conserved among >200 large terminase sequences analyzed, these may represent common themes in phage and herpes viral DNA translocation.  相似文献   

7.
The tightly packaged double-stranded DNA (dsDNA) genome in the mature particles of many tailed bacteriophages has been shown to form multiple concentric rings when reconstructed from cryo-electron micrographs. However, recent single-particle DNA packaging force measurements have suggested that incompletely packaged DNA (ipDNA) is less ordered when it is shorter than ∼ 25% of the full genome length. The study presented here initially achieves both the isolation and the ipDNA length-based fractionation of ipDNA-containing T3 phage capsids (ipDNA-capsids) produced by DNA packaging in vivo; some ipDNA has quantized lengths, as judged by high-resolution gel electrophoresis of expelled DNA. This is the first isolation of such particles among the tailed dsDNA bacteriophages. The ipDNA-capsids are a minor component (containing ∼ 10− 4 of packaged DNA in all particles) and are initially detected by nondenaturing gel electrophoresis after partial purification by buoyant density centrifugation. The primary contaminants are aggregates of phage particles and empty capsids. This study then investigates ipDNA conformations by the first cryo-electron microscopy of ipDNA-capsids produced in vivo. The 3-D structures of DNA-free capsids, ipDNA-capsids with various lengths of ipDNA, and mature bacteriophage are reconstructed, which reveals the typical T = 7l icosahedral shell of many tailed dsDNA bacteriophages. Though the icosahedral shell structures of these capsids are indistinguishable at the current resolution for the protein shell (∼ 15 Å), the conformations of the DNA inside the shell are drastically different. T3 ipDNA-capsids with 10.6 kb or shorter dsDNA (< 28% of total genome) have an ipDNA conformation indistinguishable from random. However, T3 ipDNA-capsids with 22 kb DNA (58% of total genome) form a single DNA ring next to the inner surface of the capsid shell. In contrast, dsDNA fully packaged (38.2 kb) in mature T3 phage particles forms multiple concentric rings such as those seen in other tailed dsDNA bacteriophages. The distance between the icosahedral shell and the outermost DNA ring decreases in the mature, fully packaged phage structure. These results suggest that, in the early stage of DNA packaging, the dsDNA genome is randomly distributed inside the capsid, not preferentially packaged against the inner surface of the capsid shell, and that the multiple concentric dsDNA rings seen later are the results of pressure-driven close-packing.  相似文献   

8.
Fang H  Jing P  Haque F  Guo P 《Biophysical journal》2012,102(1):127-135
Linear double-stranded DNA (dsDNA) viruses package their genomes into preformed protein shells via nanomotors using ATP as an energy source. The central hub of the bacteriophage φ29 DNA-packaging motor contains a 3.6-nm channel for dsDNA to enter during packaging and to exit during infection. The negatively charged interior channel wall is decorated with a total of 48 positively charged lysine residues displayed as four 12-lysine rings from the 12 gp10 subunits that enclose the channel. The standard notion derived from many models is that these uniquely arranged, positively charged rings play active roles in DNA translocation through the channel. In this study, we tested this prevailing view by examining the effect of mutating these basic lysines to alanines, and assessing the impact of altering the pH environment. Unexpectedly, mutating these basic lysine residues or changing the pH to 4 or 10, which could alter the charge of lysines, did not measurably impair DNA translocation or affect the one-way traffic property of the channel. The results support our recent findings regarding the dsDNA packaging mechanism known as the "push through a one-way valve".  相似文献   

9.
ATP is the source of energy for numerous biochemical reactions in all organisms. Tailed bacteriophages use ATP to drive powerful packaging machines that translocate viral DNA into a procapsid and compact it to near-crystalline density. Here we report that a complex network of interactions dictates adenine recognition and ATP hydrolysis in the pentameric phage T4 large "terminase" (gp17) motor. The network includes residues that form hydrogen bonds at the edges of the adenine ring (Q138 and Q143), base-stacking interactions at the plane of the ring (I127 and R140), and cross-talking bonds between adenine, triphosphate, and Walker A P-loop (Y142, Q143, and R140). These interactions are conserved in other translocases such as type I/type III restriction enzymes and SF1/SF2 helicases. Perturbation of any of these interactions, even the loss of a single hydrogen bond, leads to multiple defects in motor functions. Adenine recognition is therefore a key checkpoint that ensures efficient ATP firing only when the fuel molecule is precisely engaged with the motor. This may be a common feature in the energy release mechanism of ATP-driven molecular machines that carry out numerous biomolecular reactions in biological systems.  相似文献   

10.
In many DNA viruses, genome packaging is initiated by the small subunit of the packaging terminase, which specifically binds to the packaging signal on viral DNA and directs assembly of the terminase holoenzyme. We have experimentally mapped the DNA-interacting region on Shigella virus Sf6 terminase small subunit gp1, which occupies extended surface areas encircling the gp1 octamer, indicating that DNA wraps around gp1 through extensive contacts. High‐resolution structures reveal large-scale motions of the gp1 DNA-binding domain mediated by the curved helix formed by residues 54–81 and an intermolecular salt bridge formed by residues Arg67 and Glu73, indicating remarkable structural plasticity underlying multivalent, pleomorphic gp1:DNA interactions. These results provide spatial restraints for protein:DNA interactions, which enable construction of a three-dimensional pseudo-atomic model for a DNA-packaging initiation complex assembled from the terminase small subunit and the packaging region on viral DNA. Our results suggest that gp1 functions as a DNA-spooling device, which may transform DNA into a specific architecture appropriate for interaction with and cleavage by the terminase large subunit prior to DNA translocation into viral procapsid. This may represent a common mechanism for the initiation step of DNA packaging in tailed double‐stranded DNA bacterial viruses.  相似文献   

11.
12.
Terminases of double-stranded DNA bacteriophages are required for packaging and generation of terminii in replicated concatemeric DNA molecules. Genetic evidence suggests that these functions in phage T4 are carried out by the products of genes 16 and 17. We cloned these T4 genes into a heat-inducible cI repressor-lambda PL promoter vector system, and overexpressed them in Escherichia coli. We developed an in-vitro DNA packaging system, which, consistent with the genetic data, shows an absolute requirement for the terminase proteins. The overexpressed terminase proteins gp16 and gp17 appear to form a specific complex and an ATP binding site is present in the gp17 molecule. We purified the terminase proteins either as individual gp16 or gp17 proteins, or as a gp16-gp17 complex. The gp16 function of the terminase complex is dispensable for packaging mature DNA, whereas gp17 is essential for packaging DNA under any condition tested. We constructed a defined in-vitro DNA packaging system with the purified terminase proteins, purified proheads and a DNA-free phage completion gene products extract. All the components of this system can be stored at -90 degrees C without loss of packaging activity. The terminase proteins, therefore, may serve as useful reagents for mechanistic studies on DNA packaging, as well as to develop T4 as a packaging-cloning vector.  相似文献   

13.
Bacteriophage DNA packaging results from an ATP-driven translocation of concatemeric DNA into the prohead by the phage terminase complexed with the portal vertex dodecamer of the prohead. Functional domains of the bacteriophage T4 terminase and portal gene 20 product (gp20) were determined by mutant analysis and sequence localization within the structural genes. Interaction regions of the portal vertex and large terminase subunit (gp17) were determined by genetic (terminase-portal intergenic suppressor mutations), biochemical (column retention of gp17 and inhibition of in vitro DNA packaging by gp20 peptides), and immunological (co-immunoprecipitation of polymerized gp20 peptide and gp17) studies. The specificity of the interaction was tested by means of a phage T4 HOC (highly antigenicoutercapsid protein) display system in which wild-type, cs20, and scrambled portal peptide sequences were displayed on the HOC protein of phage T4. Binding affinities of these recombinant phages as determined by the retention of these phages by a His-tag immobilized gp17 column, and by co-immunoprecipitation with purified terminase supported the specific nature of the portal protein and terminase interaction sites. In further support of specificity, a gp20 peptide corresponding to a portion of the identified site inhibited packaging whereas the scrambled sequence peptide did not block DNA packaging in vitro.The portal interaction site is localized to 28 residues in the central portion of the linear sequence of gp20 (524 residues). As judged by two pairs of intergenic portal-terminase suppressor mutations, two separate regions of the terminase large subunit gp17 (central and COOH-terminal) interact through hydrophobic contacts at the portal site. Although the terminase apparently interacts with this gp20 portal peptide, polyclonal antibody against the portal peptide appears unable to access it in the native structure, suggesting intimate association of gp20 and gp17 possibly internalizes terminase regions within the portal in the packasome complex. Both similarities and differences are seen in comparison to analogous sites which have been identified in phages T3 and lambda.  相似文献   

14.
DNA packaging by double-stranded DNA bacteriophages and herpesviruses is driven by a powerful molecular machine assembled at the portal vertex of the empty prohead. The phage T4 packaging machine consists of three components: dodecameric portal (gp20), pentameric large terminase motor (gp17), and 11- or 12-meric small terminase (gp16). These components dynamically interact and orchestrate a complex series of reactions to produce a DNA-filled head containing one viral genome per head. Here, we analyzed the interactions between the portal and motor proteins using a direct binding assay, mutagenesis, and structural analyses. Our results show that a portal binding site is located in the ATP hydrolysis-controlling subdomain II of gp17. Mutations at key residues of this site lead to temperature-sensitive or null phenotypes. A conserved helix-turn-helix (HLH) that is part of this site interacts with the portal. A recombinant HLH peptide competes with gp17 for portal binding and blocks DNA translocation. The helices apparently provide specificity to capture the cognate prohead, whereas the loop residues communicate the portal interaction to the ATPase center. These observations lead to a hypothesis in which a unique HLH-portal interaction in the symmetrically mismatched complex acts as a lever to position the arginine finger and trigger ATP hydrolysis. Transiently connecting the critical parts of the motor; subdomain I (ATP binding), subdomain II (controlling ATP hydrolysis), and C-domain (DNA movement), the portal-motor interactions might ensure tight coupling between ATP hydrolysis and DNA translocation.  相似文献   

15.
Packaging of viral genomes into empty procapsids is powered by a large DNA-packaging motor. In most viruses, this machine is composed of a large (L) and a small (S) terminase subunit complexed with a dodecamer of portal protein. Here we describe the 1.75?? crystal structure of the bacteriophage P22 S-terminase in a nonameric conformation. The structure presents a central channel ~23?? in diameter, sufficiently large to accommodate hydrated B-DNA. The last 23 residues of S-terminase are essential for binding to DNA and assembly to L-terminase. Upon binding to its own DNA, S-terminase functions as a specific activator of L-terminase ATPase activity. The DNA-dependent stimulation of ATPase activity thus rationalizes the exclusive specificity of genome-packaging motors for viral DNA in the crowd of host DNA, ensuring fidelity of packaging and avoiding wasteful ATP hydrolysis. This posits?a model for DNA-dependent activation of genome-packaging motors of general interest in virology.  相似文献   

16.
Terminase is a protein complex involved in lambda DNA packaging. The subunits of terminase, gpNul and gpA, are the products of genes Nul and A. The actions of terminase include DNA binding, prohead binding and DNA nicking. Phage 21 is a lambdoid phage that also makes a terminase, encoded by genes 1 and 2. The terminases of 21 and lambda are not interchangeable. This specificity involves two actions of terminase; DNA binding and prohead binding. In addition, the subunits of lambda terminase will not form functional multimers with the subunits of 21 terminase. lambda-21 hybrid phages can be produced as a result of recombination. We describe here lambda-21 hybrid phages that have hybrid terminase genes. The packaging specificities of the hybrids and the structure of their genes were compared in order to identify functional domains of terminase. The packaging specificities were determined in vivo by complementation tests and helper packaging experiments. Restriction enzyme site mapping and sequencing located the sites at which recombination occurred to produce the hybrid phages. lambda-21 hybrid 51 carries the lambda A gene, and a hybrid 1/Nul gene. The crossover that produced this phage occurred near the middle of the 1 and Nul genes. The amino-terminal portion of the hybrid protein is homologous to gp1 and the carboxy-terminal portion is homologous to gpNul. It binds to 21 DNA and forms functional multimers with gpA, providing evidence that the amino-terminal portion of gpNul is involved in DNA binding and the carboxy-terminal portion of gpNul is involved in the interaction with gpA. lambda-21 hybrid 54 has a hybrid 2/A gene. The amino terminus of the hybrid protein of lambda-21 hybrid 54 is homologous with gp2. This protein forms functional multimers only with gp1, providing evidence that the amino terminus of gpA is involved in the interaction with gpNul. These studies identify three functional domains of terminase.  相似文献   

17.
The reliable repair of pre-mutagenic U/G mismatches that originated from hydrolytic cytosine deamination is crucial for the maintenance of the correct genomic information. In most organisms, any uracil base in DNA is attacked by uracil DNA glycosylases (UDGs), but at least in Methanothermobacter thermautotrophicus ΔH, an alternative strategy has evolved. The exonuclease III homologue Mth212 from the thermophilic archaeon M. thermautotrophicus ΔH exhibits a DNA uridine endonuclease activity in addition to the apyrimidinic/apurinic site endonuclease and 3′ → 5′exonuclease functions. Mth212 alone compensates for the lack of a UDG in a single-step reaction thus substituting the two-step pathway that requires the consecutive action of UDG and apyrimidinic/apurinic site endonuclease.In order to gain deeper insight into the structural basis required for the specific uridine recognition by Mth212, we have characterized the enzyme by means of X-ray crystallography. Structures of Mth212 wild-type or mutant proteins either alone or in complex with DNA substrates and products have been determined to a resolution of up to 1.2 Å, suggesting key residues for the uridine endonuclease activity. The insertion of the side chain of Arg209 into the DNA helical base stack resembles interactions observed in human UDG and seems to be crucial for the uridine recognition. In addition, Ser171, Asn153, and Lys125 in the substrate binding pocket appear to have important functions in the discrimination of aberrant uridine against naturally occurring thymidine and cytosine residues in double-stranded DNA.  相似文献   

18.
Sulfide:quinone oxidoreductase from the acidophilic and chemolithotrophic bacterium Acidithiobacillus ferrooxidans was expressed in Escherichia coli and crystallized, and its X-ray molecular structure was determined to 2.3 Å resolution for native unbound protein in space group P42212 . The decylubiquinone-bound structure and the Cys160Ala variant structure were subsequently determined to 2.3 Å and 2.05 Å resolutions, respectively, in space group P6222  . The enzymatic reaction catalyzed by sulfide:quinone oxidoreductase includes the oxidation of sulfide compounds H2S, HS, and S2− to soluble polysulfide chains or to elemental sulfur in the form of octasulfur rings; these oxidations are coupled to the reduction of ubiquinone or menaquinone. The enzyme comprises two tandem Rossmann fold domains and a flexible C-terminal domain encompassing two amphipathic helices that are thought to provide for membrane anchoring. The second amphipathic helix unwinds and changes its orientation in the hexagonal crystal form. The protein forms a dimer that could be inserted into the membrane to a depth of approximately 20 Å. It has an endogenous flavin adenine dinucleotide (FAD) cofactor that is noncovalently bound in the N-terminal domain. Several wide channels connect the FAD cofactor to the exterior of the protein molecule; some of the channels would provide access to the membrane. The ubiquinone molecule is bound in one of these channels; its benzoquinone ring is stacked between the aromatic rings of two conserved Phe residues, and it closely approaches the isoalloxazine moiety of the FAD cofactor. Two active-site cysteine residues situated on the re side of the FAD cofactor form a branched polysulfide bridge. Cys356 disulfide acts as a nucleophile that attacks the C4A atom of the FAD cofactor in electron transfer reaction. The third essential cysteine Cys128 is not modified in these structures; its role is likely confined to the release of the polysulfur product.  相似文献   

19.
Double-stranded DNA packaging in bacteriophages is driven by one of the most powerful force-generating molecular motors reported to date. The phage T4 motor is composed of the small terminase protein, gpl6 (18kDa), the large terminase protein, gp17 (70kDa), and the dodecameric portal protein gp20 (61kDa). gp16, which exists as an oligomer in solution, is involved in the recognition of the viral DNA substrate, the very first step in the DNA packaging pathway, and stimulates the ATPase and packaging activities associated with gp17. Sequence analyses using COILS2 revealed the presence of coiled coil motifs (CCMs) in gp16. Sixteen T4-family and numerous phage small terminases show CCMs in the corresponding region of the protein, suggesting a common structural and functional theme. Biochemical properties such as reversible thermal denaturation and analytical gel filtration data suggest that the central CCM-1 is critical for oligomerization of gp16. Mutations in CCM-1 that change the hydrophobicity of key residues, or pH 6.0, destabilized coiled coil interactions, resulting in a loss of gp16 oligomerization. The gp16 oligomers are in a dynamic equilibrium with lower M(r) intermediate species and monomer. Monomeric gp16 is unable to stimulate gp17-ATPase, an activity essential for DNA packaging, while conversion back into oligomeric form restored the activity. These data for the first time defined a CCM that is critical for structure and function of the small terminase. We postulate a packaging model in which the gp16 CCM is implicated in the regulation of packaging initiation and assembly of a supramolecular DNA packaging machine on the viral concatemer.  相似文献   

20.
Bacteriophage terminases package DNA through the portal ring of a procapsid during phage maturation. We have probed the mechanism of the phage T4 large terminase subunit gp17 by analyzing linear DNAs that are translocated in vitro. Duplex DNAs of random sequence from 20 to 500 bp were efficiently packaged. Dye and short, single-stranded end extensions were tolerated, whereas 20-base extensions, hairpin ends, 20-bp DNA-RNA hybrid, and 4-kb dsRNA substrates were not packaged. Molecules 60 bp long with 10 mismatched bases were translocated; substrates with 20 mismatched bases, a related D-loop structure, or ones with 20-base single-strand regions were not. A single nick in 100- or 200-bp duplexes, irrespective of location, reduced translocation efficiency, but a singly nicked 500-bp molecule was packaged as effectively as an unnicked control. A fluorescence-correlation-spectroscopy-based assay further showed that a 100-bp nicked substrate did not remain stably bound by the terminase-prohead. Taken together, two unbroken DNA strands seem important for packaging, consistent with a proposed torsional compression translocation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号