首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RNA-binding ability of ribosomal protein L1 is of profound interest, since L1 has a dual function as a ribosomal structural protein that binds rRNA and as a translational repressor that binds its own mRNA. Here, we report the crystal structure at 2.6 A resolution of ribosomal protein L1 from the bacterium Thermus thermophilus in complex with a 38 nt fragment of L1 mRNA from Methanoccocus vannielii. The conformation of RNA-bound T.thermophilus L1 differs dramatically from that of the isolated protein. Analysis of four copies of the L1-mRNA complex in the crystal has shown that domain II of the protein does not contribute to mRNA-specific binding. A detailed comparison of the protein-RNA interactions in the L1-mRNA and L1-rRNA complexes identified amino acid residues of L1 crucial for recognition of its specific targets on the both RNAs. Incorporation of the structure of bacterial L1 into a model of the Escherichia coli ribosome revealed two additional contact regions for L1 on the 23S rRNA that were not identified in previous ribosome models.  相似文献   

2.
Ribosomal protein L1 has a dual function as a ribosomal protein binding 23S rRNA and as a translational repressor binding its mRNA. L1 is a two-domain protein with N- and C-termini located in domain I. Earlier it was shown that L1 interacts with the same targets on both rRNA and mRNA mainly through domain I. We have suggested that domain I is necessary and sufficient for specific RNA-binding by L1. To test this hypothesis, a truncation mutant of L1 from Thermus thermophilus, representing domain I, was constructed by deletion of the central part of the L1 sequence, which corresponds to domain II. It was shown that the isolated domain I forms stable complexes with specific fragments of both rRNA and mRNA. The crystal structure of the isolated domain I was determined and compared with the structure of this domain within the intact protein L1. This comparison revealed a close similarity of both structures. Our results confirm our suggestion that in protein L1 its domain I alone is sufficient for specific RNA binding, whereas domain II stabilizes the L1-rRNA complex.  相似文献   

3.
The RNA-binding ability of ribosomal protein L1 is of profound interest since the protein has a dual function as a ribosomal protein binding rRNA and as a translational repressor binding its mRNA. Here, we report the crystal structure of ribosomal protein L1 in complex with a specific fragment of its mRNA and compare it with the structure of L1 in complex with a specific fragment of 23S rRNA determined earlier. In both complexes, a strongly conserved RNA structural motif is involved in L1 binding through a conserved network of RNA–protein H-bonds inaccessible to the solvent. These interactions should be responsible for specific recognition between the protein and RNA. A large number of additional non-conserved RNA–protein H-bonds stabilizes both complexes. The added contribution of these non-conserved H-bonds makes the ribosomal complex much more stable than the regulatory one.  相似文献   

4.
The formation of a specific and stable complex between two (macro)molecules implies complementary contact surface regions. We used ribosomal protein L1, which specifically binds a target site on 23S rRNA, to study the influence of surface modifications on the protein?RNA affinity. The threonine residue in the universally conserved triad Thr?Met?Gly significant for RNA recognition and binding was substituted by phenylalanine, valine and alanine, respectively. The crystal structure of the mutant Thr217Val of the isolated domain I of L1 from Thermus thermophilus (TthL1) was determined. This structure and that of two other mutants, which had been determined earlier, were analysed and compared with the structure of the wild type L1 proteins. The influence of structural changes in the mutant L1 proteins on their affinity for the specific 23S rRNA fragment was tested by kinetic experiments using surface plasmon resonance (SPR) biosensor analysis. Association rate constants undergo minor changes, whereas dissociation rate constants displayed significantly higher values in comparison with that for the wild type protein. The analysed L1 mutants recognize the specific RNA target site, but the mutant L1?23S rRNA complexes are less stable compared to the wild type complexes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The L11 ribosomal protein from Thermus thermophilus (TthL11) has been overproduced and purified to homogeneity using a two-step purification protocol. The overproduced protein carries a similar methylation pattern at Lys-3 as does its homolog from Escherichia coli. Chymotrypsin digested only a small part of the TthL11 protein and did not cleave TthL11 into two peptides, as in the case of EcoL11, but produced only a single N-terminal peptide. Tryptic digestion of TthL11 also produced an N-terminal peptide, in contrast to the C-terminal peptide obtained with L11 from Bacillus stearothermophilus. The recombinant protein forms a specific complex with a 55-nt 23S rRNA fragment known to interact with members of the L11 family from several organisms. Cooperative binding of TthL11 and thiostrepton to 23S rRNA leads to an increased protection of TthL11 from tryptic digestion. The similar structural and biochemical properties as well as the significant homology between L11 from E. coli and B. stearothermophilus with the corresponding protein from Thermus thermophilus indicate an evolutionarily conserved protein important for ribosome function.  相似文献   

6.
The L11 ribosomal protein from Thermus thermophilus (TthL11) has been overproduced and purified to homogeneity using a two-step purification protocol. The overproduced protein carries a similar methylation pattern at Lys-3 as does its homolog from Escherichia coli. Chymotrypsin digested only a small part of the TthL11 protein and did not cleave TthL11 into two peptides, as in the case of EcoL11, but produced only a single N-terminal peptide. Tryptic digestion of TthL11 also produced an N-terminal peptide, in contrast to the C-terminal peptide obtained with L11 from Bacillus stearothermophilus. The recombinant protein forms a specific complex with a 55-nt 23S rRNA fragment known to interact with members of the L11 family from several organisms. Cooperative binding of TthL11 and thiostrepton to 23S rRNA leads to an increased protection of TthL11 from tryptic digestion. The similar structural and biochemical properties as well as the significant homology between L11 from E. coli and B. stearothermophilus with the corresponding protein from Thermus thermophilus indicate an evolutionarily conserved protein important for ribosome function.  相似文献   

7.
BACKGROUND: L1 is an important primary rRNA-binding protein, as well as a translational repressor that binds mRNA. It was shown that L1 proteins from some bacteria and archaea are functionally interchangeable within the ribosome and in the repression of translation. The crystal structure of bacterial L1 from Thermus thermophilus (TthL1) has previously been determined. RESULTS: We report here the first structure of a ribosomal protein from archaea, L1 from Methanococcus jannaschii (MjaL1). The overall shape of the two-domain molecule differs dramatically from that of its bacterial counterpart (TthL1) because of the different relative orientations of the domains. Two strictly conserved regions of the amino acid sequence, each belonging to one of the domains and positioned close to each other in the interdomain cavity of TthL1, are separated by about 25 A in MjaL1 owing to a significant opening of the structure. These regions are structurally highly conserved and are proposed to be the specific RNA-binding sites. CONCLUSIONS: The unusually high RNA-binding affinity of MjaL1 might be explained by the exposure of its highly conserved regions. The open conformation of MjaL1 is strongly stabilized by nonconserved interdomain interactions and suggests that the closed conformations of L1 (as in TthL1) open upon RNA binding. Comparison of the two L1 protein structures reveals a high conformational variability of this ribosomal protein. Determination of the MjaL1 structure offers an additional variant for fitting the L1 protein into electron-density maps of the 50S ribosomal subunit.  相似文献   

8.
Ribosomal stalk is involved in the formation of the so-called “GTPase-associated site” and plays a key role in the interaction of ribosome with translation factors and in the control of translation accuracy. The stalk is formed by two or three copies of the L7/L12 dimer bound to the C-terminal tail of protein L10. The N-terminal domain of L10 binds to a segment of domain II of 23S rRNA near the binding site for ribosomal protein L11. The structure of bacterial L10 in complex with three L7/L12 N-terminal dimers has been determined in the isolated state, and the structure of the first third of archaeal L10 bound to domain II of 23S rRNA has been solved within the Haloarcula marismortui 50S ribosomal subunit. A close structural similarity between the RNA-binding domain of archaeal L10 and the RNA-binding domain of bacterial L10 has been demonstrated. In this work, a long RNA-binding N-terminal fragment of L10 from Methanococcus jannaschii has been isolated and crystallized. The crystal structure of this fragment (which encompasses two-thirds of the protein) has been solved at 1.6 Å resolution. The model presented shows the structure of the RNA-binding domain and the structure of the adjacent domain that exist in archaeal L10 and eukaryotic P0 proteins only. Furthermore, our model incorporated into the structure of the H. marismortui 50S ribosomal subunit allows clarification of the structure of the archaeal ribosomal stalk base.  相似文献   

9.
The crystal structures of unbound protein L1 and its complexes with ribosomal and messenger RNAs were analyzed. The apparent association rate constants for L1-RNA complexes proved to depend on the conformation of unbound L1. It was suggested that L1 binds to rRNA with a higher affinity than to mRNA, owing to additional interactions between domain II of L1 and the loop rRNA region, which is absent in mRNA. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 4, pp. 650–657. The article was translated by the authors.  相似文献   

10.
11.
Nine mutant ribosomal proteins L1 from the bacterium Thermus thermophilus and archaeon Methanococcus jannaschii were obtained and their crystal structures were determined and analyzed. The structure of the S179C TthL1 mutant, determined earlier, was also analyzed. In half of the proteins studied, point mutations of the amino acid residues exposed on the protein surface essentially changed the spatial structure of the protein. This proves that a correct study of biological processes with the help of site-directed mutagenesis requires a preliminary determination or, at least, modeling of the structures of mutant proteins. A detailed comparison of the structures of the L1 mutants and the corresponding wild-type L1 proteins demonstrated that the side chain of a mutated amino acid residue tends to adopt a location similar to that of the side chain of the corresponding residue in the wild-type protein. This observation assists in modeling the structure of mutant proteins.  相似文献   

12.
The core ribosomal protein S8 binds to the central domain of 16S rRNA independently of other ribosomal proteins and is required for assembling the 30S subunit. It has been shown with E. coli ribosomes that a short rRNA fragment restricted by nucleotides 588-602 and 636-651 is sufficient for strong and specific protein S8 binding. In this work, we studied the complexes formed by ribosomal protein S8 from Thermus thermophilus and Methanococcus jannaschii with short rRNA fragments isolated from the same organisms. The dissociation constants of the complexes of protein S8 with rRNA fragments were determined. Based on the results of binding experiments, rRNA fragments of different length were designed and synthesized in preparative amounts in vitro using T7 RNA-polymerase. Stable S8–RNA complexes were crystallized. Crystals were obtained both for homologous bacterial and archaeal complexes and for hybrid complexes of archaeal protein with bacterial rRNA. Crystals of the complex of protein S8 from M. jannaschii with the 37-nucleotide rRNA fragment from the same organism suitable for X-ray analysis were obtained.  相似文献   

13.
The L1 protuberance of the ribosome includes two domain ribosomal protein L1 and three helices of 23S rRNA (H76, H77, and H78) with interconnecting loops A and B. Helix 78 consists of two parts, i.e., H78a and H78b. A comparison of the available structural data of L1-RNA complexes with the obtained kinetic data made it possible to determine the influence of the nonconserved regions of Thermus thermophilus L1-protuberance on the mutual affinity of the L1 protein and 23S rRNA. It has been shown that the N-terminal helix of the protein and 78b helix of 23S rRNA are essential for the formation of an additional intermolecular contact, which is separated in the protein from the main site of L1-rRNA interaction by a flexible connection. This results in a rise in the TthL1-rRNA affinity. At the same time, the elongation of the 76 helix has no effect on rRNA-protein binding.  相似文献   

14.
Initiation codon selection in eukaryotes involves base-by-base inspection of the 5'-untranslated region of mRNA by scanning ribosomal 43S preinitiation complexes. We employed in vitro reconstitution to investigate factor requirements for this process and report that in the absence of eIF1 and DHX29, eIFs 4A, 4B and 4G promote efficient bypassing of stable stems by scanning 43S complexes and formation of 48S initiation complexes on AUG codons immediately upstream and downstream of such stems, without their unwinding. However, intact stems are not threaded through the entire mRNA Exit channel of the 40S subunit, resulting in incorrect positioning of mRNA upstream of the ribosomal P site in 48S complexes formed on AUG codons following intact stems, which renders them susceptible to dissociation by eIF1. In 48S complexes formed on AUG codons preceding intact stems, the stems are accommodated in the A site. Such aberrant complexes are destabilized by DHX29, which also ensures that mRNA enters the mRNA-binding cleft in a single-stranded form and therefore undergoes base-by-base inspection during scanning.  相似文献   

15.
In this work we show for the first time that the overproduced N-terminal fragment (residues 1-91) of ribosomal protein TL5 binds specifically to 5S rRNA and that the region of this fragment containing residues 80-91 is a necessity for its RNA-binding activity. The fragment of Escherichia coli 5S rRNA protected by TL5 against RNase A hydrolysis was isolated and sequenced. This 39 nucleotides fragment contains loop E and helices IV and V of 5S rRNA. The isolated RNA fragment forms stable complexes with TL5 and its N-terminal domain. Crystals of TL5 in complex with the RNA fragment diffracting to 2.75 A resolution were obtained.  相似文献   

16.
70S ribosomes from E. coli were chemically cross-linked under conditions of in vitro protein biosynthesis. The ribosomal RNAs were extracted from reacted ribosomes and separated on sucrose gradients. The 5S RNA was shown to contain the ribosomal protein L25 covalently bound. After total RNase T1 hydrolysis of the covalent RNA-protein complex several high molecular weight RNA fragments were obtained and identified by sequencing. One fragment, sequence region U103 to U120, was shown to be directly linked to the protein first by protein specific staining of the particular fragment and second by phosphor cellulose chromatography of the covalent RNA-protein complex. The other two fragments, U89 to G106 and A34 to G51, could not be shown to be directly linked to L25 but were only formed under cross-linking conditions. While the fragment U89 to G106 may be protected from RNase T1 digestion because of a strong interaction with the covalent RNA-protein complex, the formation of the fragment A34 to G51 is very likely the result of a double monovalent modification of two neighbouring guanosines in the 5S RNA. The RNA sequences U103 to U120 established to be in direct contact to the protein L25 within the ribosome falls into the sequence region previously proposed as L25 binding site from studies with isolated 5S RNA-protein complexes.  相似文献   

17.
The possible location of RNA in the ribosomal attachment site for the eukaryotic elongation factor EF-2 was analysed. Stable EF-2 · ribosome complexes formed in the presence of the non-hydrolysable GTP analogue GuoPP[CH2]P were cross-linked with the short (4 Å between the reactive groups) bifunctional reagent, diepoxybutane. Non-cross-linked EF-2 was removed and the covalent factor-ribosome complex isolated. No interaction between EF-2 and 18 S or 28 S rRNA could be demonstrated. However, density gradient centrifugation of the cross-linked ribosomal complexes showed an increased density (1.25 g/cm3) of the factor, as expected from a covalent complex between EF-2 and a low-molecular-weight RNA species. Treatment of the covalent ribosome-factor complexes with EDTA released approx 50% of the cross-linked EF-2 from the ribosome together with the 5 S rRNA · protein L5 complex. Furthermore, the complex co-migrated with the 5S rRNA · L5 particle in sucrose gradients. Polyacrylamide gel electrophoresis showed that EF-2 was directly linked to 5 S rRNA in the 5 S rRNA · L5 complex, as well as in the complexes isolated by density gradient centrifugation. No traces of 5.8 S rRNA or tRNA could be demonstrated. The data indicate that the ribosomal binding domain for EF-2 contains the 5 S rRNA · protein L5 particle and that EF-2 is located in close proximity to 5 S rRNA within the EF-2 · GuoPP[CH2]P · ribosome complex.  相似文献   

18.
Summary. Protein L4 from the thermophilic bacterium Thermus thermophilus (TthL4) was heterologously overproduced in Escherichia coli cells and purified under native conditions by using ion exchange chromatography. Although it’s known strong binding to RNA (23S rRNA as well as mRNA) the yield of the purified protein was 6 mg per 10 g of cells and it is similar to that referred for Thermotoga maritima L4 ribosomal protein. In addition, E. coli cells harboring the wild type Thermus thermophilus L4 (wtTthL4) ribosomal protein as well as its mutant having changed the highly conserved glutamic acid 56 by alanine (TthL4-Ala 56) were incorporated into E. coli ribosomes after transformation of the host cells with the recombined vector. The cells having incorporated the mutant TthL4-Ala56 are more sensitive against erythromycin related to that containing the wtTthL4 protein. The resistance to the drug indicates that the mutated amino acid Glu56 is probably critical for the local ribosomal conformation and that its mutation induces conformational disturbances that are “transferred” to the entrance of the major exit tunnel, the place where the drug does bind.  相似文献   

19.
20.
Native small ribosomal subunits from rabbit reticulocytes contain all initiation factors necessary for the formation of the mRNA-containing 48S pre-initiation complex. The complex formed in the presence of Met-tRNAf and 125I-labelled globin mRNA was cross-linked with diepoxybutane, and the covalent mRNA-protein complexes were isolated under denaturating conditions. The proteins of the covalent complex were identified as the 110, 95 and 66/64 kDa subunits of eIF-3. In addition, the 24 kDa cap binding protein and the ribosomal proteins S1, S3/3a, S6 and S11 were found covalently linked to the mRNA. Ribosomal proteins S3/3a and S6 were also involved in the ribosomal mRNA-binding domain of reticulocyte polysomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号