共查询到20条相似文献,搜索用时 0 毫秒
1.
Rochelle Wei Arunabh Bhattacharya Ryan T. Hamilton Amanda L. Jernigan Asish R. Chaudhuri 《Biochemical and biophysical research communications》2013
Protein misfolding is considered to be a potential contributing factor for motor neuron and muscle loss in diseases like Amyotrophic lateral sclerosis (ALS). Several independent studies have demonstrated using over-expressed mutated Cu/Zn-superoxide dismutase (mSOD1) transgenic mouse models which mimic familial ALS (f-ALS), that both muscle and motor neurons undergo degeneration during disease progression. However, it is unknown whether protein conformation of skeletal muscle and spinal cord is equally or differentially affected by mSOD1-induced toxicity. It is also unclear whether heat shock proteins (Hsp′s) differentially modulate skeletal muscle and spinal cord protein structure during ALS disease progression. We report three intriguing observations utilizing the f-ALS mouse model and cell-free in vitro system; (i) muscle proteins are equally sensitive to misfolding as spinal cord proteins despite the presence of low level of soluble and absence of insoluble G93A protein aggregate, unlike in spinal cord, (ii) Hsp′s levels are lower in muscle compared to spinal cord at any stage of the disease, and (iii) G93ASOD1 enzyme-induced toxicity selectively affects muscle protein conformation over spinal cord proteins. Together, these findings strongly suggest that differential chaperone levels between skeletal muscle and spinal cord may be a critical determinant for G93A-induced protein misfolding in ALS. 相似文献
2.
Arunabh Bhattacharya Rochelle Wei Ryan T. Hamilton Asish R. Chaudhuri 《Biochemical and biophysical research communications》2014
Our recent study in a mouse model of familial-Amyotrophic Lateral Sclerosis (f-ALS) revealed that muscle proteins are equally sensitive to misfolding as spinal cord proteins despite the presence of low mutant CuZn-superoxide dismutase, which is considered to be the key toxic element for initiation and progression of f-ALS. More importantly, we observed differential level of heat shock proteins (Hsp’s) between skeletal muscle and spinal cord tissues prior to the onset and during disease progression; spinal cord maintains significantly higher level of Hsp’s compared to skeletal muscle. In this study, we report two important observations; (i) muscle cells (but not neuronal cells) are extremely vulnerable to protein misfolding and cell death during challenge with oxidative stress and (ii) muscle cells fail to mount Hsp’s during challenge unlike neuronal cells. These two findings can possibly explain why muscle atrophy precedes the death of motor neurons in f-ALS mice. 相似文献
3.
Retinoic acid increases expression of the calcium-binding protein S100P in human gastric cancer cells 总被引:2,自引:0,他引:2
Retinoids mediate a wide spectrum of antitumor activities through induction of growth arrest, differentiation or apoptosis. To determine whether the effects of retinoids are mediated by specific gene activation or repression, one-day treatments of SC-M1 CL23 gastric cancer cells with vehicle alone or all-TRANS retinoic acid (tRA) (10 microM) were compared using differential display analysis. A 432-bp cDNA fragment from the tRA-treated cells was differentially amplified and its sequence analysis indicated homology with the calcium-binding protein S100P. Levels of S100P mRNA were increased 3.5-fold in SC-M1 CL23 gastric cancer cells treated with 10 microM tRA for 1 day, and the regulation was time- and concentration-dependent. Treatment with tRA (10 microM) also increased S100P mRNA levels in tRA-sensitive HtTA cells but not in inherent RA-resistant TMC-1 cells. However, the tRA-mediated increase in S100P expression was maintained in SC-M1/R cells that were established long-term in tRA-containing medium and had acquired partial RA resistance to tRA-induced growth suppression. In conclusion, tRA increases S100P expression, and the regulation remains intact in cells which develop acquired RA resistance. 相似文献
4.
Ryusei Kumemoto Kento YusaTomohiro Shibayama Kuniyuki Hatori 《Biochimica et Biophysica Acta (BBA)/General Subjects》2012
Background
During actomyosin interactions, the transduction of energy from ATP hydrolysis to motility seems to occur with the modulation of hydration. Trimethylamine N-oxide (TMAO) perturbs the surface of proteins by altering hydrogen bonding in a manner opposite to that of urea. Hence, we focus on the effects of TMAO on the motility and ATPase activation of actomyosin complexes.Methods
Actin and heavy meromyosin (HMM) were prepared from rabbit skeletal muscle. Structural changes in HMM were detected using fluorescence and circular dichroism spectroscopy. The sliding velocity of rhodamine-phalloidin-bound actin filaments on HMM was measured using an in vitro motility assay. ATPase activity was measured using a malachite green method.Results
Although TMAO, unlike urea, stabilized the HMM structure, both the sliding velocity and ATPase activity of acto-HMM were considerably decreased with increasing TMAO concentrations from 0–1.0 M. Whereas urea-induced decreases in the structural stability of HMM were recovered by TMAO, TMAO further decreased the urea-induced decrease in ATPase activation. Urea and TMAO were found to have counteractive effects on motility at concentrations of 0.6 M and 0.2 M, respectively.Conclusions
The excessive stabilization of the HMM structure by TMAO may suppress its activities; however, the counteractive effects of urea and TMAO on actomyosin motor activity is distinct from their effects on HMM stability.General significance
The present results provide insight into not only the water-related properties of proteins, but also the physiological significance of TMAO and urea osmolytes in the muscular proteins of water-stressed animals. 相似文献5.
Amyloid-β (Aβ) proteins, which consist of 42 amino acids (Aβ1–42), are the major constituent of neuritic plaques that form in the brains of senile patients with Alzheimer’s disease (AD). Several reports state that three aspartic acid (Asp) residues at positions 1, 7, and 23 in Aβ1–42 in the plaques of patients with AD are highly isomerized from the l- to d-form. Using biophysical experiments, the present study shows that simultaneous d-isomerization of Asp residues at positions 7 and 23 (d-Asp7,23) enhances oligomerization, fibril formation, and neurotoxic effect of Aβ1–42. In addition, d-isomerization of Asp at position 1 (d-Asp1) suppresses malignant effects induced by d-Asp7,23 of Aβ1–42. These results provide fundamental information to elucidate molecular mechanisms of AD pathogenesis and to develop potent inhibitors of amyloid aggregates and Aβ neurotoxicity. 相似文献
6.
Jan van Dieck Agnes M. Jaulent Trevor J. Rutherford Alan R. Fersht 《Journal of molecular biology》2009,394(5):922-9065
Proteins of the S100 family bind to the intrinsically disordered transactivation domain (TAD; residues 1-57) and C-terminus (residues 293-393) of the tumor suppressor p53. Both regions provide sites that are subject to posttranslational modifications, such as phosphorylation and acetylation, that can alter the affinity for interacting proteins such as p300 and MDM2. Here, we found that S100A1, S100A2, S100A4, S100A6, and S100B bound to two subdomains of the TAD (TAD1 and TAD2). Both subdomains were mandatory for high-affinity binding to S100 proteins. Phosphorylation of Ser and Thr residues increased the affinity for the p53 TAD. Conversely, acetylation and phosphorylation of the C-terminus of p53 decreased the affinity for S100A2 and S100B. In contrast, we found that nitrosylation of S100B caused a minor increase in binding to the p53 C-terminus, whereas binding to the TAD remained unaffected. As activation of p53 is usually accompanied by phosphorylation and acetylation at several sites, our results suggest that a shift in binding from the C-terminus in favor of the N-terminus occurs upon the modification of p53. We propose that binding to the p53 TAD might be involved in the stimulation of p53 activity by S100 proteins. 相似文献
7.
Anja S. Knaupp 《Journal of molecular biology》2010,396(2):375-898
The serpinopathies encompass a large number of diseases caused by inappropriate conformational change and self-association (polymerization) of a serpin (serine proteinase inhibitor) molecule. The most common serpinopathy is α1-antitrypsin (α1AT) deficiency, which is associated with an increased risk for liver cirrhosis, hepatocellular carcinoma and early-onset emphysema. The Z variant of α1AT, which accounts for 95% of all cases of α1AT deficiency, polymerizes during synthesis and after secretion. Here, we show using intrinsic and extrinsic fluorescence probes that Z α1AT exists in a non-native conformation. We examined the thermodynamic stability by transverse urea gradient gel electrophoresis, thermal denaturation and equilibrium guanidine hydrochloride unfolding and found that, despite structural differences between the two proteins, wild-type α1AT and Z α1AT display similar unfolding pathways and thermodynamic stabilities. Far-UV circular dichroism and bis-ANS (4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid, dipotassium salt) fluorescence suggest that the intermediate ensembles formed during unfolding of wild-type α1AT and Z α1AT are characterized by similar structural features. Kinetic analysis of the unfolding transition showed that Z α1AT unfolds at least 1.5-fold faster than the wild type. The biological implications of these data are discussed. 相似文献
8.
Mauricio Baez 《FEBS letters》2009,583(12):2054-2164
Escherichia coli phosphofructokinase-2 (Pfk-2) is a homodimer whose subunits consist of a large domain and an additional β-sheet that provides the interfacial contacts between the subunits, creating a β-barrel flattened-like structure with the adjacent subunit’s β-sheet. To determine how the structural organization of Pfk-2 determines its stability, the reversible unfolding of the enzyme was characterized under equilibrium conditions by enzymatic activity, circular dichroism, fluorescence and hydrodynamic measurements. Pfk-2 undergoes a cooperative unfolding/dissociation process with the accumulation of an expanded and unstructured monomeric intermediate with a marginal stability and a large solvent accessibility with respect to the native dimer. 相似文献
9.
The presence of the Z mutation (Glu342Lys) is responsible for more than 95% of α1-antitrypsin (α1AT) deficiency cases. It leads to increased polymerization of the serpin α1AT during its synthesis and in circulation. It has been proposed that the Z mutation results in a conformational change within the folded state of antitrypsin that enhances its polymerization. In order to localize the conformational change, we have created two single tryptophan mutants of Z α1AT and analyzed their fluorescence properties. α1AT contains two tryptophan residues that are located in distinct regions of the molecule: Trp194 at the top of β-sheet A and Trp238 on β-sheet B. We have replaced each tryptophan residue individually with a phenylalanine in order to study the local environment of the remaining tryptophan residue in both M and Z α1AT. A detailed fluorescence spectroscopic analysis of each mutant was carried out, and we detected differences in the emission spectrum, the Stern-Volmer constant for potassium iodide quenching and the anisotropy of only Trp194 in Z α1AT compared to M α1AT. Our data reveal that the Z mutation results in a conformational change at the top of β-sheet A but does not affect the structural integrity of β-sheet B. 相似文献
10.
11.
Pierce A Mirzaei H Muller F De Waal E Taylor AB Leonard S Van Remmen H Regnier F Richardson A Chaudhuri A 《Journal of molecular biology》2008,382(5):1195-1210
It is proposed that conformational changes induced in proteins by oxidation can lead to loss of activity or protein aggregation through exposure of hydrophobic residues and alteration in surface hydrophobicity. Because increased oxidative stress and protein aggregation are consistently observed in amyotrophic lateral sclerosis (ALS), we used a 4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid (BisANS) photolabeling approach to monitor changes in protein unfolding in vivo in skeletal muscle proteins in ALS mice. We find two major proteins, creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), conformationally affected in the ALS G93A mouse model concordant with a 43% and 41% reduction in enzyme activity, respectively. This correlated with changes in conformation and activity that were detected in CK and GAPDH with in vitro oxidation. Interestingly, we found that GAPDH, but not CK, is conformationally and functionally affected in a longer-lived ALS model (H46R/H48Q), exhibiting a 22% reduction in enzyme activity. We proposed a reaction mechanism for BisANS with nucleophilic amino acids such as lysine, serine, threonine, and tyrosine, and BisANS was found to be primarily incorporated to lysine residues in GAPDH. We identified the specific BisANS incorporation sites on GAPDH in nontransgenic (NTg), G93A, and H46R/H48Q mice using liquid chromatography-tandem mass spectrometry analysis. Four BisANS-containing sites (K52, K104, K212, and K248) were found in NTg GAPDH, while three out of four of these sites were lost in either G93A or H46R/H48Q GAPDH. Conversely, eight new sites (K2, K63, K69, K114, K183, K251, S330, and K331) were found on GAPDH for G93A, including one common site (K114) for H46R/H48Q, which is not found on GAPDH from NTg mice. These data show that GAPDH is differentially affected structurally and functionally in vivo in accordance with the degree of oxidative stress associated with these two models of ALS. 相似文献
12.
目的评价血S100B蛋白和尿乳酸/肌酐对乙肝肝硬化门脉高压症术后肝性脑病发生的早期预测价值。方法回顾性分析65例乙肝肝硬化门脉高压症患者的临床资料,动态检测术后24、48和72h的血S100B蛋白和尿乳酸/肌酐比值水平,根据是否发生术后肝性脑病将受试者分为肝性脑病组与非肝性脑病组,并对肝性脑病组患者进行临床分度。结果乙肝肝硬化门脉高压症患者术后发生肝性脑病组72h内血S100B蛋白含量和24 h内尿乳酸/肌酐比值水平明显高于非肝性脑病组(P<0.001);72h内血S100B蛋白含量和24 h内尿乳酸/肌酐比值之间及与肝性脑病的临床分度呈正相关(P<0.001);当血S100B水平在28ng/L,尿乳酸/肌酐比值在0.47时,单独检测72h血S100B蛋白的敏感度、特异度分别为91.2%、93.6%;尿乳酸/肌酐比值预测肝性脑病的敏感度和特异性度以术后24h最高,分别为89.3%和91.7%;如检测72h血S100B蛋白的同时监测术后24h尿乳酸/肌酐比值可显著提高肝性脑病诊断的准确性,联合应用两项指标进行检测,诊断的敏感度和特异度分别为95.7%和98.6%,较两种方法单独应用敏感度和特异度均提高。结论对门静脉高压症患者术后以临床表现为基础,同时监测72h内血S100B蛋白和24h尿乳酸/肌酐比值,对提高术后肝性脑病的早期诊断和临床分度具有一定应用价值。 相似文献
13.
S100 protein is a brain-specific protein which is absent at birth and first appears in rabbit brain 2–3 days after birth. To determine how the synthesis of this brain-specific protein is regulated, mRNA was isolated from brain polysomes and assayed for S100 protein mRNA activity by in vitro translation in a heterologous cell-free system and immunoprecipitation of released polypeptides with rabbit anti-S I00 protein antiserum. 5100 protein mRNA was detected primarily in small polysomes containing five to eight ribosomes, and virtually no S 100 protein mRNA was present in polysomes containing more than eight ribosomes. S100 protein mRNA was not detected in brain polysomes at stages prior to the induction of synthesis of S100 protein, i.e., in fetal brain or in 1-day neonates. The amount of S100 protein mRNA in polysomes of the cerebral cortex and cerebellum was measured to see if it correlated with the level of S100 protein in the two regions of adult brain. The cerebellum, which contained three to four times the level of S100 protein in the cerebral cortex, contained four times more S100 protein mRNA. 相似文献
14.
Jiang ZG Liu Y Hussain MM Atkinson D McKnight CJ 《Journal of molecular biology》2008,383(5):1181-1194
The synthesis of apolipoprotein B (apoB) dictates the formation of chylomicrons and very low-density lipoproteins, two major lipoprotein precursors in the human plasma. Despite its biological significance, the mechanism of the assembly of these apoB-containing lipoproteins remains elusive. An essential obstacle is the lack of systems that allow fine dissection of key components during assembly, including nascent apoB peptide, lipids in defined forms, chaperones, and microsomal triglyceride transfer protein (MTP). In this study, we used a prokaryotic cell-free expression system to reconstitute early events in the assembly of apoB-containing lipoprotein that involve the N-terminal domains of apoB. Our study shows that N-terminal domains larger than 20.5% of apoB (B20.5) have an intrinsic ability to remodel vesicular phospholipid bilayers into discrete protein-lipid complexes. The presence of appropriate lipid substrates during apoB translation plays a pivotal role for successful lipid recruitment, and similar lipid recruitment fails to occur if the lipids are added posttranslationally. Cotranslational presence of MTP can dramatically promote the folding of B6.4-20.5 and B6.4-22. Furthermore, apoB translated in the presence of MTP retains its phospholipid recruitment capability posttranslationally. Our data suggest that during the synthesis of apoB, the N-terminal domain has a short window for intrinsic phospholipid recruitment, the time frame of which is predetermined by the environment where apoB synthesis occurs. The presence of MTP prolongs this window of time by acting as a chaperone. The absence of either proper lipid substrate or MTP may result in the improper folding of apoB and, consequently, its degradation. 相似文献
15.
Panteha Mirarefi C. Ted Lee Jr. 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(1):106-114
Photoreversible changes in the conformation and enzymatic activity of bovine carbonic anhydrase have been investigated as a function of photoresponsive surfactant concentration and light conditions. The light-responsive surfactant undergoes a photoisomerization from the relatively hydrophobic trans isomer under visible light to the relatively hydrophilic cis isomer upon UV illumination, providing a means to photoreversibly control enzyme–surfactant interactions. Small-angle neutron scattering and dynamic light scattering measurements, along with fluorescence spectroscopy, indicate that carbonic anhydrase unfolds upon addition of the surfactant under visible light, while only a small degree of unfolding is observed under UV light. Therefore, the enzyme is completely inactivated in the presence of the trans surfactant, while 40% of the native activity is preserved under UV light, providing a photoreversible “on/off switch” of enzyme activity. Small-angle neutron scattering data provide details of the in vitro conformational changes of the enzyme in response to the photosurfactant and light, with the enzyme found to aggregate as a result of photosurfactant-induced unfolding. Fourier transform infrared (FT-IR) spectroscopy further provides information on the secondary structure changes of the protein in the presence of photosurfactant. 相似文献
16.
Beata Čunderlíková Qian Peng Anton Mateašík 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
Photodynamic therapy and photodiagnosis of cancer requires preferential accumulation of fluorescent photosensitizers in tumors. Clinical evidence documents feasibility of ALA-based photodiagnosis for tumor detection. However, false positive results and large variations in fluorescence intensities are also reported. Furthermore, selective accumulation of fluorescent species of photosensitizers in tumor cell lines, as compared to normal ones, when cultured in vitro, is not always observed. To understand this discrepancy we analyzed the impact of various factors on the intensity of detected PpIX fluorescence.Methods
Impacts of cell type, mitochondrial potential, cell–cell interactions and relocalization of PpIX among different cell types in co-cultures of different cell lines were analyzed by confocal microscopy and flow cytometry. Fluorescence spectroscopy was used to estimate absolute amounts of ALA-induced PpIX in individual cell lines. Immunofluorescence staining was applied to evaluate the ability of cell lines to produce collagen.Results
Higher ALA-induced PpIX fluorescence in cancer cell lines as compared to normal ones was not detected by all the methods used. Mitochondrial activity was heterogeneous throughout the cell monolayers and could not be clearly correlated with PpIX fluorescence. Positive collagen staining was detected in all cell lines tested.Conclusions
Contrary to in vivo situation, ALA-induced PpIX production by cell lines in vitro may not result in higher PpIX fluorescence signals in tumor cells than in normal ones. We suggest that a combination of several properties of tumor tissue, instead of tumor cells only, is responsible for increased ALA-induced PpIX fluorescence in solid tumors.General significance
Understanding the reasons of increased ALA-induced PpIX fluorescence in tumors is necessary for reliable ALA-based photodiagnosis, which is used in various oncological fields. 相似文献17.
The point mutation S120G in human nucleoside diphosphate kinase A, identified in patients with neuroblastoma, causes a protein folding defect. The urea-unfolded protein cannot refold in vitro, and accumulates as a molten globule folding intermediate. We show here that the trimethylamine-N-oxide (TMAO) corrects the folding defect and stimulated subunit association. TMAO also substantially increased the stability to denaturation by urea of both wild-type and S120G mutant. A non-native folding intermediate accumulated in the presence of 4.5-7 M urea and of 2 M TMAO. It was inactive, monomeric, contained some secondary structure but no tertiary structure and displayed a remarkable stability to denaturation. 相似文献
18.
The cAMP receptor protein (CRP) requires cAMP for an allosteric change and regulates more than 150 genes in Escherichia coli. In this study, the modular half of cAMP receptor protein was used to investigate the allosteric signal transmission pathway induced by cAMP binding. The activation of CRP upon cAMP binding is indicated to be realignment of the two subunits within the CRP dimer. The interaction of loop 3 and Phe136 do not involve in signal transmission. 相似文献
19.
The function of the extrinsic 23 kDa protein of Photosystem II (PSII) was studied with respect to Mn binding and its ability to supply Mn to PSII during photoactivation, i.e. the light-dependent assembly of the tetramanganese cluster. The extrinsic proteins and the Mn cluster were removed by TRIS treatment from PSII-enriched membrane fragments and purified by anion exchange chromatography. Room temperature EPR spectra of the purified 23 kDa protein demonstrated the presence of Mn. Photoactivation was successful with low Mn concentrations when the 23 kDa protein was present, while in its absence a higher Mn concentration was needed to reach the same level of oxygen evolution activity. In addition, the rate of photoactivation was significantly accelerated in the presence of the 23 kDa protein. It is proposed that the 23 kDa protein plays an important role in providing Mn during the process of PSII assembly and that it acquires Mn during the light-induced turnover of D1 in the PSII damage-repair cycle and delivers Mn to repaired PSII. 相似文献
20.
Cliff MJ Alizadeh T Jelinska C Craven CJ Staniforth RA Waltho JP 《Journal of molecular biology》2006,364(4):810-823
Protein folding is directed by the sequence of sidechains along the polypeptide backbone, but despite this the developement of sidechain interactions during folding is not well understood. Here, the thiol-active reagent, dithio-nitrobenzoic acid (DTNB), is used to probe the exposure of the cysteine sidechain thiols in the kinetic folding intermediates of the N-terminal domain of phosphoglycerate kinase (N-PGK) and a number of conservative (I-, L-, or V-to-C) single cysteine variants. Rapid dilution of chemically denatured protein into folding conditions in the presence of DTNB allowed the degree of sidechain protection in any rapidly formed intermediate to be determined through the analysis of the kinetics of labelling. The protection factors derived for the intermediate(s) were generally small (<25), indicating only partial burial of the sidechains. The distribution of protection parallels the previously reported backbone amide protection for the folding intermediate of N-PGK. These observations are consistent with the hypothesis that such intermediates resemble molten globule states; i.e. with native-like backbone hydrogen bonding and overall tertiary structure, but with the sidechains that make up the hydrophobic protein core dynamic and intermittently solvent exposed. The success of the competition technique in characterizing this kinetic intermediate invites application to other model systems. 相似文献