共查询到20条相似文献,搜索用时 15 毫秒
1.
The concept of multispecific antibodies is of high therapeutic interest but has failed to produce pharmaceutical products due to the poor biophysical properties of such molecules. Here, we propose an alternative and simple way to generate bispecific binding molecules using designed ankyrin repeat proteins (DARPins). For this purpose, monovalent DARPins with different epitope specificities were selected against the α chain of the high-affinity receptor for human immunoglobulin E (IgE) (Fc?RIα). Two of the isolated binders interfering with IgE binding to the receptor were joined to each other or to themselves via a flexible protein linker. The resulting bivalent and bispecific DARPins were tested for their ability to prevent allergen-induced cell degranulation using rat basophilic leukemia cells stably transfected with human Fc?RIα. The bispecific DARPin construct was the most potent one, efficiently blocking the IgE-Fc?RI interaction and preventing the release of proinflammatory mediators. Noteworthy, the multivalent and multispecific DARPin construct did not show any alteration of the beneficial biophysical properties of the monovalent parental DARPins. Hence, bispecific DARPins may be used to generate receptor antagonists simultaneously targeting different epitopes on the same molecule. Moreover, they easily overcome the limiting immunoglobulin binding paradigm (one binding molecule = one epitope) and thereby represent an alternative to monoclonal antibodies in cases where the immunoglobulin scaffold is unsuitable. 相似文献
2.
Colin D. WhiteZhigang Li David B. Sacks 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(5):1074-1082
Human epidermal growth factor receptor 2 (HER2), a member of the ErbB family of receptor tyrosine kinases, has defined roles in neoplastic transformation and tumor progression. Overexpression of HER2 is an adverse prognostic factor in several human neoplasms and, particularly in breast cancer, correlates strongly with a decrease in overall patient survival. HER2 stimulates breast tumorigenesis by forming protein-protein interactions with a diverse array of intracellular signaling molecules, and evidence suggests that manipulation of these associations holds therapeutic potential. To modulate specific HER2 interactions, the region(s) of HER2 to which each target binds must be accurately identified. Calmodulin (CaM), a ubiquitously expressed Ca2+ binding protein, interacts with multiple intracellular targets. Interestingly, CaM binds the juxtamembrane region of the epidermal growth factor receptor, a HER2 homolog. Here, we show that CaM interacts, in a Ca2+-regulated manner, with two distinct sites on the N-terminal portion of the HER2 intracellular domain. Deletion of residues 676-689 and 714-732 from HER2 prevented CaM-HER2 binding. Inhibition of CaM function or deletion of the CaM binding sites from HER2 significantly decreased both HER2 phosphorylation and HER2-stimulated cell growth. Collectively, these data suggest that inhibition of CaM-HER2 interaction may represent a rational therapeutic strategy for the treatment of patients with breast cancer. This article is part of a Special Issue entitled: 11th European Symposium on Calcium. 相似文献
3.
Phagocytosis is an important process for the removal of apoptotic cells or cellular debris. Eat-me signals control the initiation of phagocytosis and hold the key for in-depth understanding of its molecular mechanisms. However, because of difficulties to identify unknown eat-me signals, only a limited number of them have been identified and characterized. Using a newly developed functional cloning strategy of open reading frame (ORF) phage display, we identified nine putative eat-me signals, including tubby-like protein 1 (Tulp1). This further led to the elucidation of tubby as the second eat-me signal in the same protein family. Both proteins stimulated phagocytosis of retinal pigment epithelium (RPE) cells and macrophages. Tubby-conjugated fluorescent microbeads facilitated RPE phagocytosis. Tubby and Tulp1, but not other family members, enhanced the uptake of membrane vesicles by RPE cells in synergy. Retinal membrane vesicles of Tubby mice and Tulp1−/− mice showed reduced activities for RPE phagocytosis, which were compensated by purified tubby and Tulp1, respectively. These data reveal a novel activity of tubby and Tulp1, and demonstrate that unbiased identification of eat-me signals by the broadly applicable strategy of ORF phage display can provide detailed insights into phagocyte biology. 相似文献
4.
5.
We show here that autocrine ligand activation of epidermal growth factor (EGF) receptor in combination with interstitial flow is critically involved in the morphogenetic response of endothelial cells to VEGF stimulation. Human umbilical vein endothelial cell (HUVEC) monolayers cultured on a collagen gel and exposed to low interstitial flow in the absence of EGF and VEGF remained viable and mitotic but exhibited little evidence of vascular morphogenesis. Addition of VEGF produced a flow-dependent morphogenetic response within 48 to 72 h, characterized by branched capillary-like structures. The response was substantially abolished by inhibitors related to the autocrine EGF receptor pathway including Galardin, AG1478, PD98059, and an EGF receptor-blocking antibody, indicating that regulation of the morphogenetic process operates via autocrine EGF receptor activation. Moreover, we observed that in our system the EGF receptor was always activated independently of the interstitial flow, and, in addition, the EGF receptor inhibitors used above reduced the phosphorylation state of the receptor, correlating with inhibition of capillary morphogenesis. Finally, 5'bromo-2'-deoxyuridine (BrdU) labeling identified dividing cells at the monolayer but not in the extending capillary-like structures. EGF pathway inhibitors Galardin and AG1478 did not reduce BrdU incorporation in the monolayer, indicating that the EGF-receptor-mediated morphogenetic behavior is mainly due to cell migration rather than proliferation. Based on these results, we propose a two-step model for in vitro capillary morphogenesis in response to VEGF stimulation with interstitial fluid flow: monolayer maintenance by mitotic activity independent of EGF receptors and a migratory response mediated by autocrine EGF receptor activation wherein cells establish capillary-like structures. 相似文献
6.
Perez-Torres M Valle BL Maihle NJ Negron-Vega L Nieves-Alicea R Cora EM 《Experimental cell research》2008,314(16):2907-2918
Soluble isoforms of the epidermal growth factor receptor (sEGFR) previously have been identified in the conditioned culture media (CCM) of the vulvar adenocarcinoma cell line, A431 and within exosomes of the keratinocyte cell line HaCaT. Here, we report that the extracellular domain (ECD) of EGFR is shed from the cell surface of human carcinoma cell lines that express 7 × 105 receptors/cell or more. We purified this proteolytic isoform of EGFR (PI-sEGFR) from the CCM of MDA-MB-468 breast cancer cells. The amino acid sequence of PI-sEGFR was determined by reverse-phase HPLC nano-electrospray tandem mass spectrometry of peptides generated by trypsin, chymotrypsin or GluC digestion. The PI-sEGFR protein is identical in amino acid sequence to the EGFR ECD. The release of PI-sEGFR from MDA-MB-468 cells is enhanced by phorbol 12-myristate 13-acetate, heat-inactivated fetal bovine serum, pervanadate, and EGFR ligands (i.e., EGF and TGF-α). In addition, 4-aminophenylmercuric acetate, an activator of metalloproteases, increased PI-sEGFR levels in the CCM of MDA-MB-468 cells. Inhibitors of metalloproteases decreased the constitutive shedding of EGFR while the PMA-induced shedding was inhibited by metalloprotease inhibitors, by the two serine protease inhibitors leupeptin and 3,4-dichloroisocoumarin (DCI), and by the aspartyl inhibitor pepstatin. These results suggest that PI-sEGFR arises by proteolytic cleavage of EGFR via a mechanism that is regulated by both PKC- and phosphorylation-dependent pathways. Our results further suggest that when proteolytic shedding of EGFR does occur, it is correlated with a highly malignant phenotype. 相似文献
7.
Inhibition of Na,K-ATPase-suppressive activity of translationally controlled tumor protein by sorting nexin 6 总被引:2,自引:0,他引:2
Translationally controlled tumor protein (TCTP) has both extra- and intracellular functions. Our group recently reported that TCTP interacts with Na,K-ATPase and suppresses its activity. Our studies led to the identification of sorting nexin 6 (SNX6) which binds with TCTP as a potential negative regulator of TCTP. SNX6 does not interact directly with any cytoplasmic domains of Na,K-ATPase. However, when overexpressed, it restores the Na,K-ATPase activity suppressed by TCTP. This was confirmed by measurements of purified plasma membrane Na,K-ATPase activity after incubation with recombinant TCTP and SNX6. SNX6 alone has no effect on Na,K-ATPase activity, but activates Na,K-ATPase via inhibition of TCTP. Inhibition of endogenous TCTP by the overexpression of SNX6 or knockdown of TCTP expression by siTCTP increased Na,K-ATPase activity above the basal level. The interaction between SNX6 and TCTP thus appears to regulate Na,K-ATPase activity. 相似文献
8.
Zheng Cao Bhuminder Singh Cunxi Li Nicholas O. Markham Lolne J. Carrington Jeffrey L. Franklin Ramona Graves‐Deal Eileen J. Kennedy James R. Goldenring Robert J. Coffey 《Traffic (Copenhagen, Denmark)》2019,20(5):357-368
The classic mode of G protein‐coupled receptor (GPCR)‐mediated transactivation of the receptor tyrosine kinase epidermal growth factor receptor (EGFR) transactivation occurs via matrix metalloprotease (MMP)‐mediated cleavage of plasma membrane‐anchored EGFR ligands. Herein, we show that the Gαs‐activating GPCR ligands vasoactive intestinal peptide (VIP) and prostaglandin E2 (PGE2) transactivate EGFR through increased cell‐surface delivery of the EGFR ligand transforming growth factor‐α (TGFα) in polarizing madin‐darby canine kidney (MDCK) and Caco‐2 cells. This is achieved by PKA‐mediated phosphorylation of naked cuticle homolog 2 (NKD2), previously shown to bind TGFα and direct delivery of TGFα‐containing vesicles to the basolateral surface of polarized epithelial cells. VIP and PGE2 rapidly activate protein kinase A (PKA) that then phosphorylates NKD2 at Ser‐223, a process that is facilitated by the molecular scaffold A‐kinase anchoring protein 12 (AKAP12). This phosphorylation stabilized NKD2, ensuring efficient cell‐surface delivery of TGFα and increased EGFR activation. Thus, GPCR‐triggered, PKA/AKAP12/NKD2‐regulated targeting of TGFα to the cell surface represents a new mode of EGFR transactivation that occurs proximal to ligand cleavage by MMPs. 相似文献
9.
Maria-Ioanna Ellina Panagiotis Bouris Alexios J. Aletras Achilleas D. Theocharis Dimitris Kletsas Nikos K. Karamanos 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
ErbB receptors, EGFR and HER2, have been implicated in the development and progression of colon cancer. Several intracellular pathways are mediated upon activation of EGFR and/or HER2 by EGF. However, there are limited data regarding the EGF-mediated signaling affecting functional cell properties and the expression of extracellular matrix macromolecules implicated in cancer progression.Methods
Functional assays, such as cell proliferation, transwell invasion assay and migration were performed to evaluate the impact of EGFR/HER2 in constitutive and EGF-treated Caco-2 cells. Signaling pathways were evaluated using specific intracellular inhibitors. Western blot was also utilized to examine the phosphorylation levels of ERK1/2. Real time PCR was performed to evaluate gene expression of matrix macromolecules.Results
EGF increases cell proliferation, invasion and migration and importantly, EGF mediates overexpression of EGFR and downregulation of HER2. The EGF–EGFR axis is the main pathway affecting colon cancer's invasive potential, proliferative and migratory ability. Intracellular pathways (PI3K-Akt, MEK1/2-Erk and JAK-STAT) are all implicated in the migratory profile. Notably, MT1- and MT2-MMP as well as TIMP-2 are downregulated, whereas uPA is upregulated via an EGF–EGFR network. The EGF–EGFR axis is also implicated in the expression of syndecan-4 and TIMP-1. However, glypican-1 upregulation by EGF is mainly mediated via HER2.Conclusions and general significance
The obtained data highlight the crucial importance of EGF on the expression of both receptors and on the EGF–EGFR/HER2 signaling network, reveal the distinct roles of EGFR and HER2 on expression of matrix macromolecules and open a new area in designing novel agents in targeting colon cancer. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. 相似文献10.
Michal Grzmil Brian A. Hemmings 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(3):476-483
Despite the variety of modern therapies against human brain cancer, in its most aggressive form of glioblastoma multiforme (GBM) it is a still deadly disease with a median survival of approximately 1 year. Over the past 2 decades, molecular profiling of low- and high-grade malignant brain tumours has led to the identification and molecular characterisation of mechanisms leading to brain cancer development, maintenance and progression. Genetic alterations occurring during gliomagenesis lead to uncontrolled tumour growth stimulated by deregulated signal transduction pathways. The characterisation of hyperactivated signalling pathways has identified many potential molecular targets for therapeutic interference in human gliomas. Overexpressed or mutated and constitutively active kinases are attractive targets for low-molecular-weight inhibitors. Although the first attempts with mono-therapy using a single targeted kinase inhibitor were not satisfactory, recent studies based on the simultaneous targeting of several core hyperactivated pathways show great promise for the development of novel therapeutic approaches. This review focuses on genetic alterations leading to the activation of key deregulated pathways in human gliomas. 相似文献
11.
Yang Chen Tianyu Li Xiaoqiang Yu Jianfeng Xu Jianling Li Dexiang Luo Zengnan Mo Yanling Hu 《Gene》2014
Prostate cancer (PCa) is a malignant disease influencing numerous men worldwide every year. However, the exact pathogenesis and the genes, environment, and other factors involved have not been explained clearly. Some studies have proposed that cell signaling pathways might play a key role in the development and progression of PCa. According to our previous study, the RTK/ERK pathway containing nearly 40 genes was associated with PCa risk. On the basis of these genes, we conducted a meta-analysis with our own Chinese Consortium for Prostate Cancer Genetics (ChinaPCa) study and available studies in the databases to describe the association between the pathway and PCa on the SNP level. The results suggested that rs4764695/IGF1 (recessive model: pooled OR = 0.92, 95%CI = 0.852–0.994, P = 0.034; I2 = 0%, P = 0.042; allele analysis: pooled OR = 0.915, 95%CI = 0.874–0.958, P = 0; I2 = 0%, P = 0.424; codominant model: OR = 0.835, 95%CI = 0.762–0.916, P = 0; I2 = 0%, P = 0.684) and rs1570360/VEGF (recessive model: OR = 0.596, 95%CI = 0.421–0.843, P = 0.003; I2 = 23.9%, P = 0.269; codominant model: OR = 0.576, 95%CI = 0.404–0.820, P = 0.002; I2 = 49.1%, P = 0.140) were significantly associated with PCa. In subgroup analysis, the relationship was also found in Caucasians for IGF1 (dominant model: OR = 0.834, 95%CI = 0.769–0.904, P = 0; allele analysis: OR = 0.908, 95%CI = 0.863–0.955, P = 0; AA vs CC: OR = 0.829, 95%CI = 0.750–0.916, P = 0; AC vs CC: OR = 0.837, 95%CI = 0.768–0.912, P = 0). In addition, in Asians (allele analysis: OR = 0.21, 95%CI = 0.168–0.262, P = 0) and Caucasians (recessive model: OR = 0.453, 95%CI: 0.240–0.855, P = 0.015; codominant model: OR = 0.464, 95%CI = 0.240–0.898, P = 0.023) for VEGF, the association was significant. The results indicated that rs4764695/IGF1 and rs1570360/VEGF might play a key role in the development and progression of PCa. On the SNP level, we suggest that the study gives us a new view of gene-pathway analysis and targeted therapy for PCa. 相似文献
12.
From proteases that cleave peptide bonds in the plane of the membrane, rhomboids have evolved into a heterogeneous superfamily with a wide range of different mechanistic properties. In mammals 14 family members have been annotated based on a shared conserved membrane-integral rhomboid core domain, including intramembrane serine proteases and diverse proteolytically inactive homologues. While the function of rhomboid proteases is the proteolytic release of membrane-tethered factors, rhomboid pseudoproteases including iRhoms and derlins interact with their clients without cleaving them. It has become evident that specific recognition of membrane protein substrates and clients by the rhomboid fold reflects a spectrum of cellular functions ranging from growth factor activation, trafficking control to membrane protein degradation. This review summarizes recent progress on rhomboid family proteins in the mammalian secretory pathway and raises the question whether they can be seen as new drug targets for inflammatory diseases and cancer. This article is part of a special issue entitled: Intramembrane Proteases. 相似文献
13.
Grøvdal LM Johannessen LE Rødland MS Madshus IH Stang E 《Experimental cell research》2008,314(6):1292-1300
The protein tyrosine kinase Ack1 has been linked to cancer when over-expressed. Ack1 has also been suggested to function in clathrin-mediated endocytosis and in down-regulation of the epidermal growth factor (EGF) receptor (EGFR). We have studied the intracellular localization of over-expressed Ack1 and found that Ack1 co-localizes with the EGFR upon EGF-induced endocytosis in cells with moderate over-expression of Ack. This co-localization is mainly observed in early endosomes. Furthermore, we found that over-expression of Ack1 retained the EGFR at the limiting membrane of early endosomes, inhibiting sorting to inner vesicles of multivesicular bodies. Down-regulation of Ack1 in HeLa cells resulted in reduced rate of (125)I-EGF internalization, whereas internalization of (125)I-transferrin was not affected. In cells where Ack1 had been knocked down by siRNA, recycling of internalized (125)I-EGF was increased, while degradation of (125)I-EGF was inhibited. Together, these data suggest that Ack1 is involved in an early step of EGFR desensitization. 相似文献
14.
Breast cancer cells develop resistance to endocrine therapies by shifting between estrogen receptor (ER)-regulated and growth factor receptor (GFR)-regulated survival signaling pathways. To study this switch, we propose a mathematical model of crosstalk between these pathways. The model explains why MCF7 sub-clones transfected with HER2 or EGFR show three GFR-distribution patterns, and why the bimodal distribution pattern can be reversibly modulated by estrogen. The model illustrates how transient overexpression of ER activates GFR signaling and promotes estrogen-independent growth. Understanding this survival-signaling switch can help in the design of future therapies to overcome resistance in breast cancer. 相似文献
15.
16.
We identified intersectin1 (ITSN1) as a new binding partner of the SH2 domain containing inositol 5-phosphatase 2 (SHIP2). The interaction between SHIP2 and ITSN1 was confirmed in vivo. Src homology 3D, A, C, and E domains of ITSN1 were shown to be implicated in the interaction. In response to epidermal growth factor, SHIP2 expression could recruit the ITSN1 short form (ITSN1-S) to the cell membrane, while SHIP2 overexpression did not modulate the ITSN-mediated extracellular signal-regulated kinase1/2 and c-Jun NH2-terminal kinase activation. Our data provide a molecular link between SHIP2 and ITSN1 which are involved in receptor endocytosis regulation. STRUCTURED SUMMARY: 相似文献
17.
Yangtze River Delta white goat is an exclusive indigenous Chinese goat breeds that can produce Brush Hair specialized in making valuable writing brush. The high-grade (Type III) Brush Hair is conical coarse hair but with a tip, which only grows in the cervical carina and back regions of Yangtze River Delta white goats. Screening of genes influencing the formation of Type III Brush Hair was conducted using differential display of mRNA technique in skin including the hair follicles of different goat groups and the differential bands were identified using reverse Northern dot blot, and the positive bands were subsequently cloned and sequenced. The results showed that 20 differentially displayed bands were obtained, seven of which were identified positive as expressed in skin. Three of these seven cDNAs were homologous to certain sequences from GenBank and the other four were respectively homologous to CKLF-like MARVEL transmembrane domain containing 3 (CMTM3), S100 calcium binding protein A4 (S100A4), protein kinase inhibitor gamma (PKIG) and fibulin 1-D. The study would provide a new view to elucidate their roles in hair growth and hair follicle cycle and increase our understanding of the formation of Type III Brush Hair. 相似文献
18.
Yong Hwa Jo Hye Ok Kim Juhie Lee Sang Sook Lee Chang Hoon Cho In Sug Kang Won Jae Choe Hyung Hwan Baik Kyung-Sik Yoon 《Gene》2013
Microcephalin 1 (MCPH1) has a crucial role in the DNA damage response by promoting the expression of checkpoint kinase 1 (CHK1) and breast cancer susceptibility gene 1 (BRCA1). MCPH1 containing BRCT domain has been suggested as a tumor suppressor in breast and ovarian cancers. We analyzed the effect of both protein expression and MCPH1 polymorphisms in breast cancer patients. Low nuclear expression of microcephalin was present in 52.4% of breast cancers and was associated with allele T in rs2912010 (p = 0.046). However, cytoplasmic microcephalin expression increased with increasing grade (p = 0.010). An association between low nucleus microcephalin expression and allele T was identified in rs2912010 (p = 0.046). After data analysis, allele distribution of the MCPH1 polymorphisms was not different between breast cancer patients and healthy controls. But the polymorphism was associated with negative status for ER (rs2912010/C2302T; p = 0.032, rs1057090/C2358T; p = 0.027, rs2912016/C2494A; p = 0.024), and allele T in both rs2912010 and rs1057090 was associated with increasing tumor grade (rs2912010; p = 0.040, rs1057090; p = 0.043) in breast cancer. We are first to report that association of MCPH1 protein expression and its polymorphisms in breast cancer. The MCPH1 polymorphisms and protein expression were associated with tumorigenesis in breast cancer and may be a useful biomarker for identification of the aggressive types of breast cancer. 相似文献
19.
Joachim Feldwisch Vladimir Tolmachev Christofer Lendel Nina Herne Barbro Larsson Eva Lindqvist Ingmarie Höidén-Guthenberg Per Jonasson 《Journal of molecular biology》2010,398(2):232-247
Affibody molecules are non-immunoglobulin-derived affinity proteins based on a three-helical bundle protein domain. Here, we describe the design process of an optimized Affibody molecule scaffold with improved properties and a surface distinctly different from that of the parental scaffold. The improvement was achieved by applying an iterative process of amino acid substitutions in the context of the human epidermal growth factor receptor 2 (HER2)-specific Affibody molecule ZHER2:342. Replacements in the N-terminal region, loop 1, helix 2 and helix 3 were guided by extensive structural modeling using the available structures of the parent Z domain and Affibody molecules. The effect of several single substitutions was analyzed followed by combination of up to 11 different substitutions. The two amino acid substitutions N23T and S33K accounted for the most dramatic improvements, including increased thermal stability with elevated melting temperatures of up to + 12 °C. The optimized scaffold contains 11 amino acid substitutions in the nonbinding surface and is characterized by improved thermal and chemical stability, as well as increased hydrophilicity, and enables generation of identical Affibody molecules both by chemical peptide synthesis and by recombinant bacterial expression. A HER2-specific Affibody tracer, [MMA-DOTA-Cys61]-ZHER2:2891-Cys (ABY-025), was produced by conjugating MMA-DOTA (maleimide-monoamide-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) to the peptide produced either chemically or in Escherichia coli. ABY-025 showed high affinity and specificity for HER2 (equilibrium dissociation constant, KD, of 76 pM) and detected HER2 in tissue sections of SKOV-3 xenograft and human breast tumors. The HER2-binding capacity was fully retained after three cycles of heating to 90 °C followed by cooling to room temperature. Furthermore, the binding surfaces of five Affibody molecules targeting other proteins (tumor necrosis factor α, insulin, Taq polymerase, epidermal growth factor receptor or platelet-derived growth factor receptor β) were grafted onto the optimized scaffold, resulting in molecules with improved thermal stability and a more hydrophilic nonbinding surface. 相似文献
20.
Barbara WollerSusan Luiskandl Milica PopovicBarbara E.M. Prieler Gloria IkongeMichaela Mutzl Holger RehmannRuth Herbst 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(6):1198-1210
RIN proteins serve as guanine nucleotide exchange factors for Rab5a. They are characterized by the presence of a RIN homology domain and a C-terminal Vps9 domain. Currently three family members have been described and analyzed. Here we report the identification of a novel RIN family member, Rin-like (Rinl), that represents a new interaction partner of the receptor tyrosine kinase MuSK, which is an essential key regulator of neuromuscular synapse development. Rinl is localized to neuromuscular synapses but shows the highest expression in thymus and spleen. Rinl preferentially binds to nucleotide-free Rab5a and catalyzes the exchange of GDP for GTP. Moreover, Rinl also binds GDP-bound Rab22 and increases the GDP/GTP exchange implicating Rinl in endocytotic processes regulated by Rab5a and Rab22. Interestingly, Rinl shows a higher catalytic rate for Rab22 compared to Rab5a. Rinl is closely associated with the cytoskeleton and thus contributes to the spatial control of Rab5a and Rab22 signaling at actin-positive compartments. Most importantly, overexpression of Rinl affects fluid-phase as well as EGFR endocytosis. 相似文献