首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potential B epitopes and T-helper epitopes in the N-terminal extracellular domain of the α7-subunit of human acetylchloline receptor (AChR) were theoretically calculated in order to reveal peptides that can induce the formation of specific antibodies to this domain. Four peptides structurally corresponding to four α7-subunit regions containing 16–23 aa and three of their truncated analogues were synthesized. Rabbits were immunized with both free peptides and protein conjugates of their truncated analogues, and a panel of antibodies to various exposed regions of the N-terminal extracellular domain of the AChR α7-subunit was obtained. All of the four predicted peptides were shown to induce the production of antipeptide antibodies in free form, without conjugation with any protein carrier. The free peptides and the protein conjugates of truncated analogues induced the formation of almost equal levels of antibodies. Most of the obtained antisera contained antibodies that bind to the recombinant extracellular N-terminal domain of the rat AChR α7-subunit and do not react with the analogous domain of the α1-subunit of the ray Torpedo californica AChR.  相似文献   

2.
Five synthetic fragments of the N-terminal domain of the alpha7 subunit of the human nicotinic acetylcholine receptor (alpha7 nAChR) that correspond to theoretically calculated B epitopes and T helper epitopes of the protein and contain from 16 to 29 amino acid residues were tested for the ability to stimulate the formation of antibodies in mice of three lines having H-2d, H-2b, and H-2k haplotypes of the major histocompatibility complex. It was shown that, in the free (unconjugated) form, all the peptides stimulate the formation of antibodies at least in one mouse line. Most of the peptides induced the formation of antibodies in BALB/c mice (haplotype H-2d); therefore, more detailed studies were carried out on these animals. The free peptides and/or their conjugates with keyhole limpet hemocyanin were demonstrated to be capable of stimulating the formation in BALB/c mice of antibodies that bind to the recombinant extracellular N-terminal domain of (alpha7 nAChRalpha). The epitope mapping of antipeptide antibodies carried out using truncated fragments helped reveal antipeptide antibodies to four regions of the alpha7 subunit: 1-23, 98-106, 159-168, and 173-188 (or 179-188).  相似文献   

3.
Five synthetic fragments of the N-terminal domain of the α7 subunit of the human nicotinic acetylcholine receptor (α7 nAChR) that correspond to theoretically calculated B epitopes and T helper epitopes of the protein and contain from 16 to 29 amino acid residues were tested for the ability to stimulate the formation of antibodies in mice of three lines having H-2d, H-2b, and H-2k haplotypes of the major histocompatibility complex. It was shown that, in the free (unconjugated) form, all the peptides stimulate the formation of antibodies at least in one mouse line. Most of the peptides induced the formation of antibodies in BALB/c mice (haplotype H-2d); therefore, more detailed studies were carried out on these animals. The free peptides and/or their conjugates with keyhole limpet hemocyanin were demonstrated to be capable of stimulating the formation in BALB/c mice of antibodies that bind to the recombinant extracellular N-terminal domain of (α7 nAChRα. The epitope mapping of antipeptide antibodies carried out using truncated fragments helped reveal antipeptide antibodies to four regions of the α7 subunit: 1–23, 98–106, 159–168, and 173–188 (or 179–188).  相似文献   

4.
S Verrall  Z W Hall 《Cell》1992,68(1):23-31
Ligand-gated ion channels are oligomeric membrane proteins in which homologous subunits specifically recognize one another and assemble around an aqueous pore. To identify domains responsible for the specificity of subunit association, we used a dominant-negative assay in which truncated subunits of the mouse muscle acetylcholine receptor (AChR) were coexpressed with the four wild-type subunits in transfected COS cells. Fragments of the alpha, delta, and gamma subunits consisting solely of the extracellular N-terminal domain blocked surface expression of the AChR and the formation of alpha delta heterodimers, an early step in the assembly pathway of the AChR. Immunoprecipitation and sucrose gradient sedimentation experiments showed that an N-terminal fragment of the alpha subunit forms a specific complex with the intact delta subunit. Thus the extracellular N-terminal domain of the alpha, delta, and gamma subunits contains the information necessary for specific subunit association.  相似文献   

5.
We have compared specificity of a panel of polyclonal antibodies against synthetic fragments of the alpha7 subunit of homooligomeric acetylcholine receptor (AChR) and some subunits of heteromeric AChRs. The antibody interaction with extracellular domain of alpha7 subunit of rat AChR (residues 7-208) produced by heterologous expression in E. coli and rat adrenal membranes was investigated by the ELISA method. For comparison, membranes from the Torpedo californica ray electric organ enriched in muscle-type AChR and polyclonal antibodies raised against the extracellular domain (residues 1-209) of the T. californica AChR alpha1 subunit were also used. Antibody specificity was also characterized by Western blot analysis using rat AChR extracellular domain alpha7 (7-208) and the membrane-bound T. californica AChR. Epitope localization was analyzed within the framework of AChR extracellular domain model based on the crystal structure of acetylcholine-binding protein available in the literature. According to this analysis, the 179-190 epitope is located on loop C, which is exposed and mobile. Use of antibodies against alpha7 (179-190) revealed the presence of alpha7 AChR in rat adrenal membranes.  相似文献   

6.
The target of most of the autoantibodies against the acetylcholine receptor (AChR) in myasthenic sera is the main immunogenic region (MIR) on the extracellular side of the AChR alpha-subunit. Binding of anti-MIR monoclonal antibodies (mAbs) has been recently localized between residues alpha 67 and alpha 76 of Torpedo californica electric organ (WNPADYGGIK) and human muscle (WNPDDYGGVK) AChR. In order to evaluate the contribution of each residue to the antigenicity of the MIR, we synthesized peptides corresponding to residues alpha 67-76 from Torpedo and human AChRs, together with 13 peptide analogues. Nine of these analogues had one residue of the Torpedo decapeptide replaced by L-alanine, three had a structure which was intermediate between those of the Torpedo and human alpha 67-76 decapeptides, and one had D-alanine in position 73. Binding studies employing six anti-MIR mAbs and all 15 peptides revealed that some residues (Asn68 and Asp71) are indispensable for binding by all mAbs tested, whereas others are important only for binding by some mAbs. Antibody binding was mainly restricted to residues alpha 68-74, the most critical sequence being alpha 68-71. Fish electric organ and human MIR form two distinct groups of strongly overlapping epitopes. Some peptide analogues enhanced mAb binding compared with Torpedo and human peptides, suggesting that the construction of a very antigenic MIR is feasible.  相似文献   

7.
Monoclonal antibodies reactive with distinct regions of the N-terminal domain of the lambda repressor protein have been isolated. By comparing the affinities of these antibodies for mutant repressors with increased and decreased thermal stabilities, each of the antibodies can be shown to bind to epitopes accessible in the native conformation of the N-terminal domain. Experiments probing antibody binding to protein fragments, mutant variants, and peptides have also been used to define likely regions of contact between the antibodies and the N-terminal domain.  相似文献   

8.
Monoclonal antibodies to alpha 4, the major regulatory protein of herpes simplex virus 1, have been shown to differ in their effects on the binding of the protein to its DNA-binding site in the promoter-regulatory domain of an alpha gene. To map the epitopes, we expressed truncated genes in transient expression systems. All 10 monoclonal antibodies tested reacted with the N-terminal 288-amino-acid polypeptide. To map the epitopes more precisely, 29 15-mer oligopeptides, overlapping by five amino acids at each end, were synthesized and reacted with the monoclonal antibodies. The nine reactive monoclonal antibodies were mapped to seven sites. Of the two monoclonal antibodies which blocked the binding of alpha 4 to DNA, one (H950) reacted with oligopeptide no. 3 near the N terminal of the protein, whereas the second (H942) reacted with oligopeptide no. 23 near the C terminus of the 288-amino-acid polypeptide. In further tests, oligopeptide no. 19 was found to compete with two host proteins, designated as alpha H1 and alpha H2-alpha H3, for binding to DNA as well as to retard DNA in a band shift assay, whereas oligopeptides no. 26, 27, and 28 enhanced the binding of alpha 4 to DNA. Moreover, oligopeptide no. 27 was also found to retard DNA in a band shift assay. Polypeptide no. 19 competed with alpha 4 for binding to DNA, whereas no. 27 neither enhanced nor competed with the binding of the host polypeptide alpha H1 to its binding site in the promoter-regulatory domain of an alpha gene, but did enhance the binding of the alpha H2-alpha H3 protein to its binding site. In contrast to these results, the truncated alpha 4 polypeptide, 825 amino acids long, bound to the viral DNA, whereas a shorter, 519-amino-acid-long, truncated polypeptide did not. The 825-amino-acid polypeptide was previously shown to induce in transient expression of a late (gamma 2) viral gene.  相似文献   

9.
The epitopes for twelve monoclonal antibodies against the cytoplasmic side of the acetylcholine receptor (AChR) alpha subunit were precisely mapped using over 300 continuously overlapping synthetic peptides attached on poly(ethylene) rods. mAb cross-reactive between Torpedo and human AChR generally bound to the homologous peptides from both species. Epitopes 4-10-residues long were identified. One mAb could bind to either arm on both sides of a beta-turn structure. Five mAb bound to a very-immunogenic cytoplasmic epitope on alpha 373-380 (VICE-alpha). Three of the mAb against VICE-alpha were earlier found to cross-react with non-AChR protein(s), present in thymomas from myasthenia gravis patients but absent in thymomas from non-myasthenics. Since VICE-alpha has a potentially crucial pathogenic role, the antigenic role of each residue within it was subsequently studied by 55 analogues, most having single amino acid substitutions. All the mAb against VICE-alpha bound similarly but not identically to the analogues, thus explaining their known binding heterogeneity. Lys373 proved indispensable for mAb binding. Ile376, Glu377, Gly378 and Lys380 were quite critical, while Ser374, Ala375 and Val379 seemed rather inactive. These data should prove instructive in searches for VICE-alpha-like epitopes carrying autoantigens with potential involvement in myasthenia gravis and should further expand the applications of the anti-(AChR) mAb in AChR studies.  相似文献   

10.
Three regions of the alpha chain of Torpedo californica acetylcholine receptor (AChR), corresponding to residues alpha 262-276, alpha 388, 408 and alpha 427-437 were synthesized, purified and characterized. The first two peptides have been proposed to occupy inter-transmembrane regions while the third represented the C-terminal segment, proposed by various models to be either extracellular or intracellular. Peptide alpha 388-408 stimulated a good response in the AChR-primed T cells of H-2s haplotype mice, a low response in the H-2q haplotype and no response in the H-2b haplotype. Peptide alpha 427-437 stimulated AChR-primed T cells of the H-2s haplotype, but caused no response in the q and b haplotypes. Peptide alpha 262-276 evoked no in vitro stimulation in any of the s, q or b haplotypes. In antibody binding studies, peptide alpha 388-408 bound antibodies raised against free AChR or against membrane-bound AChR. The other two peptides showed little or no binding activity. Further, peptide alpha 388-408 bound specifically both 125I-labelled bungarotoxin and cobratoxin, while the other two peptides had no binding activity. These results were consistent with only one of the models for subunit organization within the membrane.  相似文献   

11.
The nicotinic acetylcholine receptor (AChR) of Torpedo electric organ and vertebrate skeletal muscle is closely associated with a Mr 43,000 protein (43K). In this study, we have examined the effects on the AChR of treatments which remove the 43K protein. We used semiquantitative fluorescence techniques to measure the binding of antibodies to clustered AChR in cultured rat myotubes. We found that labeling by antibodies to the cytoplasmic portions of each of the four receptor polypeptides increased significantly upon extraction of the 43K protein. Labeling by an antibody to an extracellular epitope of the alpha subunits was not affected by removal of the 43K protein, suggesting that changes were restricted to the cytoplasmic domains of the AChR. Increases in labeling by antibodies were more limited following protease treatment, which removes most cytoskeletal structures but leaves the 43K protein bound to the membrane. Competition between an antibody to the beta subunit and an antibody to the gamma and delta subunits suggests that the cytoplasmic portion of the AChR still retains a degree of native structure in the absence of the 43K protein. Our results suggest that, although some of these changes may be due to simply exposing additional epitopes on the AChR, the cytoplasmic portions of all the subunits of the AChR undergo significant conformational changes upon extraction of the 43K protein.  相似文献   

12.
Rabbit antisera were raised against a series of synthetic peptides corresponding to regions of the alpha subunit of lamb kidney (Na+ + K+)-ATPase which chemical labeling studies and hydropathy plots of the amino-acid sequence suggest are exposed, accessible regions of the enzyme and may comprise the cation selectivity region, the ATP and cardiac glycoside binding sites, and the phosphorylation site. Five of six peptides tested (11-15 residues in length) were immunogenic and the antisera to four peptides recognized the intact, electroblotted (Western blot analysis) alpha subunit. Immunization with peptides conjugated to keyhole limpet haemocyanin (KLH) produced antipeptide antibodies for seven of nine conjugates. Antisera to four peptide conjugates recognized the native enzyme, confirming predictions that these sequence regions are exposed regions of the holoenzyme. In addition, a collection of four polyclonal antisera and five monoclonal antibodies raised to native holoenzyme were tested for their ability to bind to the peptide conjugates. In this way, two NH2-terminal sequence regions (1-12 and 16-30) and the putative ATP-binding site region (496-506) were identified as epitopes of the native enzyme. These results confirm some aspects of the transmembrane folding models proposed by Shull et al. and Kawakami et al. for the membrane-bound (Na+ + K+)-ATPase.  相似文献   

13.
Myasthenia gravis (MG) and its animal model, experimental autoimmune MG (EAMG), are T cell-dependent diseases mediated by antibodies against acetylcholine receptor (AChR) on skeletal muscle. Most of the antibodies are directed toward conformation-dependent epitopes on the AChR, whereas T cells recognize denatured AChR. In search of T cell epitopes in EAMG, we tested 24 synthetic peptides covering 62% of the alpha-subunit sequence of Torpedo californica electric organ AChR in the T cell proliferation assay with lymph node cells from rats immunized with AChR. In Lewis rats, 2 of these peptides, [Tyr 100]alpha 100-116 and [Gly 89, Tyr 90]alpha 73-90, strongly stimulated T cells and, of these, [Tyr 100]alpha 100-116 was much more potent; 4 other peptides were weakly mitogenic and 18 were ineffective. None of the 24 synthetic peptides alone stimulated anti-AChR production and, when added to cultures along with AChR, [Tyr 100]alpha 100-116 and [Gly 89, Tyr 90]alpha 73-90 suppressed antibody production. Of twelve cloned T cell lines specific to AChR, 4 responded to [Tyr 100]alpha 100-116, indicating the importance of the epitope in alpha 101-116 in Lewis rats. In three other strains of rats whose responses to AChR and its subunits were similar to those in the Lewis rat, neither [Tyr 100]alpha 100-116 nor [Gly 89, Tyr 90]alpha 73-90 was stimulatory. Instead, completely different sets of peptides stimulated their T cells. When peptides were used as immunogens, each strain (except Lewis rats) responded only to the peptides that stimulated AChR-immune T cells from the same strain. Genetically restricted T cell recognition of AChR peptides in rats suggests that T cells from MG patients with different major histocompatibility haplotypes may recognize different AChR peptides.  相似文献   

14.
Previous studies by several laboratories have identified a narrow sequence region of the nicotinic acetylcholine receptor (AChR) alpha subunit, flanking the cysteinyl residues at positions 192 and 193, as containing major elements of, if not all, the binding site for cholinergic ligands. In the present study, we used a panel of synthetic peptides as representative structural elements of the AChR to investigate whether additional segments of the AChR sequences are able to bind alpha-bungarotoxin (alpha-BTX) and several alpha-BTX-competitive monoclonal antibodies (mAbs). The mAbs used (WF6, WF5, and W2) were raised against native Torpedo AChR, specifically recognize the alpha subunit, and bind to AChR is inhibited by all cholinergic ligands. WF6 competes with agonists, but not with low mol. wt. antagonists, for AChR binding. The synthetic peptides used in this study were approximately 20 residue long, overlapped each other by 4-6 residues, and corresponded to the complete sequence of Torpedo AChR alpha subunit. Also, overlapping peptides, corresponding to the sequence segments of each Torpedo AChR subunit homologous to alpha 166-203, were synthesized. alpha-BTX bound to a peptide containing the sequence alpha 181-200 and also, albeit to a lesser extent, to a peptide containing the sequence alpha 55-74. WF6 bound to alpha 181-200 and to a lesser extent to alpha 55-74 and alpha 134-153. The two other mAbs predominantly bound to alpha 55-74, and to a lesser extent to alpha 181-200. Peptides alpha 181-200 and alpha 55-74 both inhibited binding of 125I-alpha-BTX to native Torpedo AChR. None of the peptides corresponding to sequence segments from other subunits bound alpha-BTX or WF6, or interfered with their binding. Therefore, the cholinergic binding site is not a single narrow sequence region, but rather two or more discontinuous sequence segments within the N-terminal extracellular region of the AChR alpha subunit, folded together in the native structure of the receptor, contribute to form a cholinergic binding region. Such a structural arrangement is similar to the "discontinuous epitopes" observed by X-ray diffraction studies of antibody-antigen complexes [reviewed in Davies et al. (1988)].  相似文献   

15.
Myasthenia gravis (MG) is caused by autoantibodies against the nicotinic acetylcholine receptor (AChR) of the neuromuscular junction. The anti-AChR antibodies are heterogeneous. However, a small region on the extracellular part of the AChR alpha subunit, called the main immunogenic region (MIR), seems to be the major target of the anti-AChR antibodies, but not of the specific T-cells, in experimental animals and possibly in MG patients. The major loop of the overlapping epitopes for all testable anti-MIR monoclonal antibodies (MAbs) was localized within residues 67-76 (WNPADYGGIK for Torpedo and WNPDDYGGVK for human AChR) of the alpha subunit. The N-terminal half of alpha 67-76 is the most critical, Asn68 and Asp71 being indispensable for binding. Yet anti-MIR antibodies are functionally and structurally quite heterogeneous. Anti-MIR MAbs do not affect channel gating, but they are very potent in mediating acceleration of AChR degradation (antigenic modulation) in cell cultures and in transferring experimental MG in animals. Fab fragments of anti-MIR MAbs bound to the AChR prevent the majority of the MG patients' antibodies from binding to and causing loss of the AChR. Whether this inhibition means that most MG antibodies bind on the same small region or is a result of broad steric/allosteric effects is under current investigation.  相似文献   

16.
To test sodium channel structural models, we defined the epitopes for nineteen independently cloned monoclonal antibodies previously generated against purified, detergent-solubilized, adult rat skeletal muscle sodium channel protein using channel proteolysis, synthetic peptides, and fusion proteins. All identified epitopes were continuous and unique to the skeletal muscle subtype α-subunit. Of the nineteen independent clones, seventeen had epitopes located either in the origin of the amino-terminus or in the interdomain 2–3 region while only two antibodies had epitopes located in the mid-portion of the interdomain 1–2 region. No immunogenic regions were identified on the α-subunit's extracellular regions, interdomain 3–4 segment, or carboxyl-terminus or on channel β-subunits. While immune tolerance may explain the lack of immunogenicity of extracellular regions, the lack of immunogenicity of most of the channel's cytoplasmic mass may be due to segment inaccessibility from organization of these regions as globular domains, to insertion of parts of these regions into the membrane phase, or to interaction with other protein elements. The definition of monoclonal antibody epitopes allows us to reinterpret previously reported monoclonal antibody competition studies, providing independent support for our model of sodium channel cytoplasmic domain structure. In addition, these data suggest additional testable hypotheses concerning the interactions of the sodium channel amino- and carboxyl-termini with each other as well as with other protein elements. Received: 4 March 1998/Revised: 15 May 1998  相似文献   

17.
The CD7 gp40 molecule is a member of the Ig gene superfamily and is expressed on T cell precursors before their entry into the thymus during fetal development. N-terminal amino acids 1-107 of CD7 are highly homologous to Ig kappa-L chains whereas the carboxyl-terminal region of the extracellular domain of CD7 is proline-rich and has been postulated to form a stalk from which the Ig domain projects. To define potential functional regions of CD7, we have studied the surface topography of the CD7 Ag by synthesizing peptides corresponding to linear sequences within the CD7 extracellular domains, by raising polyclonal anti-CD7 rabbit sera against these peptides, and by computer analysis of the primary CD7 amino acid sequence. Polyclonal anti-CD7 sera were studied using indirect immunofluorescence, RIA, radioimmunoprecipitation, and Western blot assays. Computer analysis was performed comparing the CD7 sequence with all other known protein sequences. We found that three CD7 epitopes defined by peptides CD7-1A (AA 1-38), CD7-4 (AA 48-74), and CD7-7 (AA 129-146) were available for binding antibody on the surface of the CD7 molecule. Using computer analysis, we transposed the amino acid sequence of the CD7 Ig kappa-like N-terminal domain of CD7 onto the spatial coordinates of REI, a previously reported Ig kappa-molecule highly homologous (48%) to the CD7 N-terminal Ig-like region. Based on computer analysis of this putative CD7 three-dimensional structure, both the CD7-1A and CD7-4 regions protruded from the surface of the N-terminal domain of the CD7 molecule. Finally, comparison of the CD7 transmembrane sequence with CD4 and HIV transmembrane sequences and with respiratory syncytial virus fusion sequences demonstrated similar sequence motifs among these molecules.  相似文献   

18.
Five peptides comprising several potential epitopes of alpha and beta-tubulin were synthesized by solid phase methods and purified to homogeneity by HPLC. These are RRNLDIERPTYTN (corresponding to positions 214-226 of the alpha chain of porcine brain tubulin), KDYEEVGVDSVEGE (alpha, 430-443), EGEFSEAREDMAALEKDYEEVGVDSVEGE (alpha, 415-443), RYPGQLNADLRKLAVN (beta, 241-256) and ESNMNDLVSEYQQYQDATAD (beta, 412-431). Appropriate conjugates with carrier proteins rendered all peptides immunogenic, raising antibodies that were cross-reactive with plate-adsorbed tubulin in ELISA. This reaction was completely inhibited by the corresponding free peptides, which indicates that these antibodies react specifically with the regions of alpha and beta-tubulin encompassed by the peptides. The reaction was also fully inhibited by soluble tubulin in a stabilising buffer. In immunoblotting experiments, the anti-peptide antibodies were useful as specific markers for either alpha- or beta-tubulin in brain extracts. The specificity of the anti-peptide antibodies for cellular microtubules was also examined by indirect immunofluorescence experiments.  相似文献   

19.
The N-terminal extracellular domain (amino acids 1-210; halpha-(1-210)) of the alpha subunit of the human muscle nicotinic acetylcholine receptor (AChR), bearing the binding sites for cholinergic ligands and the main immunogenic region, the major target for anti-AChR antibodies in patients with myasthenia gravis, was expressed in the yeast, Pichia pastoris. The recombinant protein was water-soluble and glycosylated, and fast protein liquid chromatography analysis showed it to be a monomer. halpha-(1-210) bound (125)I-alpha-bungarotoxin with a high affinity (K(d) = 5.1 +/- 2.4 nm), and this binding was blocked by unlabeled d-tubocurarine and gallamine (K(i) approximately 7.5 mm). Interestingly, (125)I-alpha-bungarotoxin binding was markedly impaired by in vitro deglycosylation of halpha-(1-210). Several monoclonal antibodies that show partial or strict conformation-dependent binding to the AChR were able to bind to halpha-(1-210), as did antibodies from a large proportion of myasthenic patients. These results suggest that the extracellular domain of the human AChR alpha subunit expressed in P. pastoris has an apparently near native conformation. The correct folding of the recombinant protein, together with its relatively high expression yield, makes it suitable for structural studies on the nicotinic acetylcholine receptor and for use as an autoantigen in myasthenia gravis studies.  相似文献   

20.
M K Das  J Lindstrom 《Biochemistry》1991,30(9):2470-2477
Concurrent synthesis of overlapping octameric peptides corresponding to the sequence of the Torpedo acetylcholine receptor (AChR) alpha subunit has been carried out on polypropylene supports functionalized with primary amino groups according to a method developed by M. Geysen [(1987) J. Immunol. Methods 102, 259-274]. The peptides on the solid supports have been used in an enzyme-linked immunosorbent assay. Interactions of the synthetic peptides with antibodies are then detected without removing them from the solid support. By this procedure, epitopes of both antisera and monoclonal antibodies to the Torpedo acetylcholine receptor, its subunits, and synthetic peptide fragments have been mapped. Both rat and rabbit antisera to the alpha subunit show major epitopes spanning the residues 150-165, 338-345, and 355-366 on the Torpedo AChR alpha subunit. Epitopes of monoclonal antibodies to these major epitopes and to others have been rather precisely mapped by using this technique with peptides of varying lengths. The specificity of several of these mAbs are of interest because they have been used in mapping the transmembrane orientation of the AChR alpha-subunit polypeptide chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号