首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma membrane vesicles prepared from adipocytes incubated with insulin exhibited accelerated D-glucose transport activity characteristic of insulin action on intact fat cells. Both control and insulin-stimulated D-glucose transport activities were inhibited by cytochalasin B and thiol reagents. Extraction of plasma membranes with dimethylmaleic anhydride eluted 80% of the protein from plasma membrane vesicles. The two major glycoprotein bands (94,000 and 78,000 daltons) and small amounts of a 56,000-dalton band were retained in dodecyl sulfate gels of the extracted membranes. Both control and insulin-activated D-glucose transport activities were retained by plasma membrane vesicles extracted with dimethylmaleic anhydride. Cytochalasin B binding activity was also retained by extracted membrane vescles and D-glucose uptake into extracted vescles derived from untreated or insulin-treated fat cells was inhibited by cytochalasin B. These results suggest that the modification of the adipocyte hexose transport system elicited by insulin action is not altered by a major purification step which involves quantitative extraction of extrinsic membrane proteins.  相似文献   

2.
Purified plasma membrane vesicles from GH3 rat anterior pituitary cells exhibit a Mg2+-ATP-dependent Ca2+ transport activity. Concentrative uptake of Ca2+ is abolished by exclusion of either Mg2+ or ATP or by inclusion of the Ca2+ ionophore A23187. Furthermore, addition of A23187 to vesicles which have reached a steady state of ATP-supported Ca2+ accumulation rapidly and completely discharges accumulated cation. Ca2+ uptake is unaffected by treatment of vesicles with oligomycin, the uncoupler CCCP, or valinomycin and is greatly reduced in non-plasma membrane fractions. Likewise, Ca2+ accumulation is not stimulated by oxalate, consistent with the plasma membrane origin of this transport system. (Na+, K+)-ATPase participation in the Ca2+ transport process (i.e. via coupled Na+/Ca2+ exchange) was eliminated by omitting Na+ and including ouabain in the reaction medium. Ca2+ transport activity in GH3 vesicles has a similar pH dependence as that seen in a number of other plasma membrane systems and is inhibited by orthovanadate in the micromolar range. Inhibition is enhanced if the membranes are preincubated with vanadate for a short time. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ and ATP are 0.7 and 125 microM, respectively. The average Vmax is 3.6 nmol of Ca2+/min/mg of protein at 37 degrees C. Addition of exogenous calmodulin or calmodulin antagonists had no significant effect on these kinetic properties. GH3 plasma membranes also contain a Na+/Ca2+ exchange system. The apparent Km for Ca2+ is almost 10-fold higher in this system than that for ATP-driven Ca2+ uptake. When both processes are compared under similar conditions, the Vmax of the exchanger is approximately 2-3 times that of ATP-dependent Ca2+ accumulation. Similar results are obtained when purified plasma membranes from bovine anterior pituitary glands were investigated. It is suggested that both Na+/Ca2+ exchange and the (Ca2+ + Mg2+)-ATPase are important in controlling intracellular levels of Ca2+ in anterior pituitary cells.  相似文献   

3.
Characterization and Distribution of Transferrin Receptors in the Rat Brain   总被引:7,自引:3,他引:4  
The mechanism of calcium transport across the plasma membrane of chromaffin cells was studied using plasma membrane vesicles prepared from cells of adrenal medulla. Purification of the plasma membrane was about 30-fold, based on the alpha-bungarotoxin binding activity. The isolated membrane vesicles have both Na+/Ca2+ exchange and calcium pump activities. The Na+/Ca2+ exchange activity increased with the free calcium concentration and was not saturated at 1 mM, the highest concentration tried. The K1/2 of the calcium pump for calcium is 0.06 microM. Part of the Na+/Ca2+ exchange activity was inhibited by preincubation of the membrane vesicles with veratridine and the effect of veratridine was reversed by tetrodotoxin. The calcium taken up by the calcium pump was released by 0.005% saponin, but was not affected by oxalate. The calcium taken up by the calcium pump was released by exchanging with the external sodium, which suggests that the two calcium transport systems are located on the same population of membrane vesicles. The above evidence indicates that both calcium transport activities are located on the plasma membrane and not on contaminating organelle membranes. The significance of the two calcium transport systems in regulation of cytosolic calcium concentration of chromaffin cells is discussed.  相似文献   

4.
Sensitivity of the adipocyte D-glucose transport system in intact plasma membranes or following solubilization and reconstitution into phospholipid vesicles to several protein-modifying reagents was investigated. When intact plasma membranes were incubated with N-ethylmaleimide (20 mM) or fluorodinitrobenzene (4 mM), D-glucose transport activity was virtually abolished. However, washing the membranes free of unreacted reagents restored transport activity, indicating that covalent interaction with the membranes did not mediate the transport inhibition. Reaction of [3H] N-ethylmaleimide with plasma membranes under similar conditions resulted in extensive labeling of all protein fractions resolved on dodecyl sulfate gels. Similarly, addition of N-ethyl-maleimide to cholate-solubilized membrane protein had no effect on transport activity in artifical phospholipid vesicles reconstituted under conditions where the membrane protein was free of unreacted N-ethylmaleimide. Transport activity in plasma membranes was also inhibited by both reduced and oxidized dithiothreitol or glutathione (15 mM) in a readily reversible manner, consistent with a noncovalent mode of inhibition. Thus, the insulin-responsive adipocyte D-glucose transport system differs from the red cell hexose transport system in its remarkable insensitivity to modulation by covalent blockade of sulfhydryal or amino groups by the reagents studied.  相似文献   

5.
Transport of reduced glutathione (GSH) was studied in isolated rat liver canalicular membrane vesicles by a rapid filtration technique. The membrane vesicles exhibit uptake of [2-3H]glycine--labeled GSH into an osmotically reactive intravesicular space. Although the canalicular membrane vesicles possess gamma-glutamyltransferase and aminopeptidase M, enzymes that hydrolyze glutathione into component amino acids, inactivation of the vesicle-associated transferase by affinity labeling with L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125) had no effect on the initial rate of GSH transport. Chemical analysis revealed that intact GSH accounted for most of vesicle-associated radioactivity. The initial rate of transport followed saturation kinetics with respect to GSH concentration; an apparent Km of 0.33 mM and V of 1.47 nmol/mg protein in 20 s were calculated. These results indicate that transport of GSH across the canalicular membranes is a carrier-mediated process. Replacement of NaCl in the transport medium by KCl, LiCl or choline chloride had no effect on the transport activity of the vesicles. The rate of GSH uptake by the vesicles was enhanced by valinomycin-induced K+-diffusion potential (vesicle inside-positive) and was inhibited by probenecid, indicating that GSH transport across the canalicular membranes is electrogenic and involves the transfer of negative charge. The transport of GSH was inhibited by oxidized glutathione or S-benzyl-glutathione. This transport system in canalicular plasma membranes may function in biliary secretion of GSH and its derivatives which are synthesized in hepatocytes by oxidative processes or glutathione S-transferase.  相似文献   

6.
Cycloheximide, a potent inhibitor of protein synthesis, has been used to examine the relationship between recruitment of hexose carriers and the activation of glucose transport by insulin in rat adipocytes. Adipocytes were preincubated +/- cycloheximide for 90 min then +/- insulin for a further 30 min. We measured 3-O-methylglucose uptake in intact cells and in isolated plasma membrane vesicles. The concentration of glucose transporters in plasma membranes and low density microsomes was measured using a cytochalasin B binding assay. Cycloheximide had no affect on basal or insulin-stimulated 3-O-methylglucose uptake in intact cells or in plasma membrane vesicles. However, the number of glucose carriers in plasma membranes prepared from cells incubated with cycloheximide and insulin was markedly reduced compared to that from cells incubated with insulin alone (14 and 34 pmol/mg protein, respectively). Incubation of cells with cycloheximide alone did not change the concentration of glucose carriers in either plasma membranes or in low density microsomes compared to control cells. When isolated membranes were analyzed with an antiserum prepared against human erythrocyte glucose transporter, decreased cross-reactivity was observed in plasma membranes prepared from cycloheximide/insulin-treated cells compared to those from insulin cells. The present findings indicate that incubation of adipocytes with cycloheximide greatly reduces the number of hexose carriers in the plasma membrane of insulin-stimulated cells. Despite this reduction, insulin is still able to maximally stimulate glucose uptake. Thus, these data suggest an apparent dissociation between insulin stimulation of glucose transport activity and the recruitment of glucose carriers by the hormone.  相似文献   

7.
Multidrug resistance-associated proteins 1 and 2 (Mrp1 and Mrp2) are thought to mediate low-affinity ATP-dependent transport of reduced glutathione (GSH), but there is as yet no direct evidence for this hypothesis. The present study examined whether livers from the little skate (Raja erinacea) express an Mrp2 homologue and whether skate liver membrane vesicles exhibit ATP-dependent GSH transport activity. Antibodies directed against mammalian Mrp2-specific epitopes labeled a 180-kDa protein band in skate liver plasma membranes and stained canaliculi by immunofluorescence, indicating that skate livers express a homologous protein. Functional assays of Mrp transport activity were carried out using (3)H-labeled S-dinitrophenyl-glutathione (DNP-SG). DNP-SG was accumulated in skate liver membrane vesicles by both ATP-dependent and ATP-independent mechanisms. ATP-dependent DNP-SG uptake was of relatively high affinity [Michaelis-Menten constant (K(m)) = 32 +/- 9 microM] and was cis-inhibited by known substrates of Mrp2 and by GSH. Interestingly, ATP-dependent transport of (3)H-labeled S-ethylglutathione and (3)H-labeled GSH was also detected in the vesicles. ATP-dependent GSH transport was mediated by a low-affinity pathway (K(m) = 12 +/- 2 mM) that was cis-inhibited by substrates of the Mrp2 transporter but was not affected by membrane potential or pH gradient uncouplers. These results provide the first direct evidence for ATP-dependent transport of GSH in liver membrane vesicles and support the hypothesis that GSH efflux from mammalian cells is mediated by members of the Mrp family of proteins.  相似文献   

8.
Photoautotrophically growing cultures of the freshwater cyanobacterium Anacystis nidulans (Synechococcus sp.) became adapted to the presence of 0.4-0.5 M NaCl in the growth medium (about seawater level) with a lag phase of 2 days after which time the growth rate resumed at 80-90% of the control. Major changes in structure and function of the plasma membranes (and, to a much lesser extent, of the thylakoid membranes) were found to accompany the adaptation process. Plasma and thylakoid membranes were separated from crude cell-free extracts of French pressure cell-treated Anacystis by discontinuous sucrose density gradient centrifugation and purified by repeated recentrifugation on fresh gradients. Concentrations of copper, iron, calcium, and magnesium ions were determined by inductively coupled plasma atomic emission spectrometry with EDTA-washed and dialyzed membrane preparations; salt adaptation was found to increase (decrease) the concentration of membrane-bound calcium in plasma (thylakoid) membranes, qualitatively reciprocal results being obtained for magnesium. Levels of plasma membrane-bound copper and iron roughly tripled during the adaptation process; by contrast, corresponding effects on thylakoid membranes were negligible. The size of the membrane vesicles was measured by quasi-elastic laser light-scattering and the electric surface charge of the membranes was measured by laser Doppler velocimetry. Salt adaptation decreased the mean diameter of plasma membrane vesicles to a much higher extent than that of thylakoid membrane vesicles. Overall surface charge densities of resting vesicles were only slightly affected by the salt treatment as was also seen from titration of the electrophoretic mobility of the vesicles with electrolytes. Yet, induction of (photosynthetic or respiratory) electron transport provoked a charge separation across the membrane which was easily measurable in terms of electrophoretic mobility. The results will be discussed with particular emphasis on the stimulated cytochrome c oxidase activity of plasma (but not thylakoid) membranes from salt-adapted cells compared to control cells and also with respect to the decreased ion permeability of the plasma membrane of salt grown cells.  相似文献   

9.
A variety of commercially available cell wall hydrolytic enzyme preparations were screened alone and in various combinations for their ability to degrade the cell wall of Neurospora crassa wild type strain 1A. A combination was found which causes complete conversion of the normally filamentous germinated conidia to spherical structures in about 1.5 h. Examination of these spheroplasts by scanning electron microscopy indicated that, although they are spherical, they retain a smooth coat that can only be removed upon prolonged incubation in the enzyme mixture (about 10 h). The 10-h incubation in the enzyme mixture appears to have no obvious detrimental effects on the integrity of the plasma membrane since the activity and regulatory properties of the glucose active transport system in 10-h spheroplasts are essentially unimpaired. Importantly, plasma membranes can be isolated from the 10-h spheroplasts by an adaptation of the concanavalin A method developed previously in this laboratory for cells of the cell wall-less sl strain, which is not the case for the 1.5-h spheroplasts. The yield of plasma membrane vesicles isolated by this procedure is 18-36% as indicated by surface labeling with diazotized [125I]iodosulfanilic acid, and the preparation is less than 1% contaminated with mitochondrial protein. The chemical composition of the wild type plasma membranes is similar to that previously reported for membranes of the sl strain of Neurospora. The isolated wild type plasma membrane vesicles also exhibit all of the functional properties that have previously been demonstrated for the sl plasma membrane vesicles. The wild type vesicles catalyze MgATP-dependent electrogenic proton translocation as indicated by the concentrative uptake of [14C]SCN- and [14C]imidazole under the appropriate conditions, which indicates that they contain the plasma membrane H+-ATPase previously shown to exist in the sl plasma membranes and that they possess permeability barrier function as well. The vesicles also contain a Ca2+/H+ antiporter as evidenced by their ability to catalyze protonophore-inhibited MgATP-dependent 45Ca2+ accumulation. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analyses of the isolated vesicles indicate that the protein composition of the wild type vesicles is roughly similar to that of the sl plasma membranes with the H+-ATPase present as a major band of Mr approximately 105,000. The wild type plasma membrane ATPase forms a phosphorylated intermediate similar to that of the sl ATPase, and the specific activity of the H+-ATPase in both wild type and sl membranes is approximately 3 mumol of Pi released/mg of protein/min.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Cytoplasmic membrane vesicles prepared by lysis of Escherichia coli W 3110 spheroplasts in a French press at 0 degrees C are heterogeneous with respect to density due to membrane protein aggregation as a result of lateral phase separation of membrane phospholipids and to the presence of more or less outer membrane. These different vesicle classes can be separated on isopycnic density gradients. Assays for various membrane-associated functions show that the membranes differ not only with respect to density and structure but also with respect to function. The proline transport system (as detected by uptake experiments with the artificial electron donor ascorbate-phenazine methosulfate) shows maximal activities in membrane fractions that have considerably higher densities than the normal cytoplasmic membrane. This is always the case, whether vesicles are isolated from membranes that exhibit a temperature-induced protein aggregation or not. A correlation between high proline transport activity and the presence of vesicles with double membranes (consisting of outer and inner membrane) has been established. The possibility that the outer membrane protects the transport system in the cytoplasmic membrane during the isolation of vesicles is discussed.  相似文献   

11.
A rapid procedure for the isolation of membrane vesicles of Bacillus subtilis is described that minimizes the action of proteolytic enzymes, excreted by this organism, on the membrane proteins. The membrane vesicles obtained have, in addition to a low endogenous respiration rate, a low endogenous activity for transport of amino acids and carboxylic acids. In the presence of the electron donor, ascorbate-phenazine methosulfate, the transport activities for these compounds were comparable to the activities of intact cells. In addition, these activities were retained for a prolonged period of time. Electron microscopy examination of thin sections of the vesicles showed that the preparation consisted almost exclusively of membrane vesicles which were not contaminated with other cell components. The membrane vesicles, which are six to seven times smaller in diameter than protoplasts, often enclosed smaller vesicles. Freeze-etching of intact cells, protoplasts, and membrane vesicles showed that the orientation of the membrane of the vesicles was identical to the orientation of the plasma membrane in intact cells and protoplasts. This also held for the majority of the membranes of the enclosed vesicles, only 15% having the opposite orientation.  相似文献   

12.
We have purified unadhered human monocytes in sufficient quantities to prepare monocyte plasma membrane vesicles and study vesicular calcium transport. Monocytes were isolated from plateletpheresis residues by counterflow centrifugal elutriation. By combining this source and procedure, 7 x 10(8) monocytes of over 90% purity were obtained. The membranes, isolated on a sucrose step gradient, had an 18-fold enrichment in Na,K-ATPase, a 29-fold diminution of succinate dehydrogenase activity and were vesicular on transmission electron micrographs. The membrane vesicles loaded with oxalate accumulated calcium only in the presence of Mg and ATP. Calcium uptake did not occur if ATP was replaced by any of five nucleotide phosphates or if Mg was omitted. Calcium transport had a maximal velocity of 4 pmoles calcium/micrograms vesicle protein/min and a Km for calcium of 0.53 microM. The ionophore A23187 completely inhibited calcium accumulation while 5 mM sodium cyanide and 10 microM ouabain had no effect. A calcium-activated ATPase was present in the same plasma membrane vesicles. The calcium ATPase had a maximal velocity of 18.0 pmoles calcium/micrograms vesicle protein/min and a Km for calcium of 0.60 microM. Calcium-activated ATPase activity was absent if Mg was omitted or if (gamma - 32P) GTP replaced (gamma - 32P) ATP. Monocyte plasma membranes that were stripped of endogenous calmodulin by EGTA treatment showed a reduced level of calcium uptake and calcium ATPase activity. The addition of exogenous calmodulin restored the transport activity to that of unstripped monocyte plasma membranes. Thus, monocyte plasma membrane vesicles contain a highly specific, ATP-dependent calcium transport system and a calcium-ATPase with similar high calcium affinities.  相似文献   

13.
Plasma membrane vesicles isolated from nontransformed and Simian virus 40-transformed mouse fibroblast cultures catalyzed carrier-mediated D-glucose transport without detectable metabolic conversion to glucose 6-phosphate. Glucose transport activity was stereospecific, temperature-dependent, sensitive to inactivation by p-chloromercuriphenylsulfonate, and accompanied plasma membrane material during subcellular fractionation. D-Glucose efflux from vesicles was inhibited by phloretin, an inhibitor of glucose uptake in intact cells. Cytochalasin B, a potent inhibitor of glucose uptake when tested with the intact cells used for vesicle isolation did not inhibit glucose transport in vesicles despite the presence of high affinity cytochalasin binding sites in isolated membranes. The enhanced glucose uptake observed in intact cells after viral transformation was not expressed in vesicles: no significant differences in glucose transport specific activity could be detected in vesicle preparations from nontransformed and transformed mouse fibroblast cultures. These findings indicate that cellular components distinct from glucose carriers can mediate changes in glucose uptake in mouse fibroblast cultures in at least two cases: sensitivity to inhibition by cytochalasin B and the enhanced cellular sugar uptake observed after viral transformation.  相似文献   

14.
Cytoplasmic membrane vesicles prepared by lysis of Escherichia coli W 3110 spheroplasts in a French press at 0° C are heterogeneous with respect to density due to membrane protein aggregation as a result of lateral phase separation of membrane phospholipids and to the presence of more or less outer membrane. These different vesicle classes can be separated on isopycnic density gradients. Assays for various membrane-associated functions show that the membranes differ not only with respect to density and structure but also with respect to function.The proline transport system (as detected by uptake experiments with the artificial electron donor ascorbate-phenazine methosulfate) shows maximal activities in membrane fractions that have considerably higher densities than the normal cytoplasmic membrane. This is always the case, whether vesicles are isolated from membranes that exhibit a temperature-induced protein aggregation or not. A correlation between high proline transport activity and the presence of vesicles with double membranes (consisting of outer and inner membrane) has been established. The possibility that the outer membrane protects the transport system in the cytoplasmic membrane during the isolation of vesicles is discussed.  相似文献   

15.
Insulin stimulates translocation of the glucose transporter isoform 4 (Glut4) from an intracellular storage compartment to the plasma membrane in fat and skeletal muscle cells. At present, the nature of the Glut4 storage compartment is unclear. According to one model, this compartment represents a population of preformed small vesicles that fuse with the plasma membrane in response to insulin stimulation. Alternatively, Glut4 may be retained in large donor membranes, and insulin stimulates the formation of transport vesicles that deliver Glut4 to the cell surface. Finally, insulin can induce plasma membrane fusion of the preformed vesicles and, also, stimulate the formation of new vesicles. In extracts of fat and skeletal muscle cells, Glut4 is predominantly found in small insulin-sensitive 60-70 S membrane vesicles that may or may not artificially derive from large donor membranes during cell homogenization. Here, we use a cell-free reconstitution assay to demonstrate that small Glut4-containing vesicles are formed from large rapidly sedimenting donor membranes in a cytosol-, ATP-, time-, and temperature-dependent fashion and, therefore, do not represent an artifact of homogenization. Thus, small insulin-responsive vesicles represent the major form of Glut4 storage in the living adipose cell. Fusion of these vesicles with the plasma membrane may be largely responsible for the primary effect of insulin on glucose transport in fat tissue. In addition, our results suggest that insulin may also stimulate the formation of Glut4 vesicles and accelerate Glut4 recycling to the plasma membrane.  相似文献   

16.
We have applied free flow electrophoresis to separate the canalicular and basolateral (sinusoidal and lateral) domains of rat hepatocyte plasma membranes. Hepatocyte plasma membranes were prepurified by rat zonal and discontinous sucrose gradient centrifugation. In electrophoretic separation, the canalicular membranes were more deflected toward the anode than the basolateral membranes. Na+-dependent taurocholate uptake could be measured in both membrane fractions, transport activity being highest in fractions containing the highest specific activity in the basolateral marker enzyme Na+-K+-ATPase. Thus, differences in electrophoretic mobility permit the separation of functional intact plasma membrane vesicles derived from basolateral and canalicular plasma membrane domains of rat hepatocyte.  相似文献   

17.
Recently, the uptake of 14C-labeled ascorbate (ASC) into highly purified bean (Phaseolus vulgaris L.) plasma membrane vesicles was demonstrated in our laboratory. However, the question of the redox status of the transported molecule (ASC or dehydroascorbate [DHA]) remained unanswered. In this paper we present evidence that DHA is transported through the plasma membrane. High-performance liquid chromatography analysis of the redox status of ASC demonstrated that freshly purified plasma membranes exhibit a high ASC oxidation activity. Although it is not yet clear whether this activity is enzymatic, it complicates the interpretation of ASC-transport experiments in vitro and in vivo. In an attempt to correlate the ASC redox status to transport of the molecule, the ability of different compounds to reduce DHA was analyzed and their effect on ASC-transport activity tested. Administering of various reductants resulted in different levels of inhibition of ASC uptake (dithiothreitol > dithioerythritol > [beta]-mercaptoethanol > [beta]-mercaptopropanol). Glutathione, cysteine, dithionite, and thiourea did not significantly affect ASC transport. Statistical analysis indicated a strong correlation of the Spearman rank correlation coefficient (Rs) of 0.919 (P = 0.0005, n = 9) between the level of ASC oxidation and the amount of transported molecules into the vesicles. The administering of ASC oxidants such as ferricyanide and ASC oxidase resulted in a stimulated ASC uptake into the plasma membrane vesicles. Together, our results demonstrate that a vitamin C carrier in purified bean plasma membranes translocates DHA from the apoplast to the cytosol.  相似文献   

18.
The use of membrane vesicles in transport studies   总被引:3,自引:0,他引:3  
Transport-competent plasma membrane vesicles isolated from mammalian cells provide a system to investigate mechanisms and regulation of nutrient and ion transport systems. The characteristics of membrane vesicle systems to study transport in erythrocytes, renal and epithelial membranes, Ehrlich ascites cells, and mouse fibroblasts are discussed. Studies of Na+-stimulated and Na+-independent amino acid and glucose transport in these systems are evaluated, with emphasis on experimental verification of concepts stated in the Na+ gradient hypothesis. Nucleoside, phosphate, and calcium transport systems in plasma membrane vesicles from mouse fibroblast cultures are discussed. Also, current biochemical approaches to investigate mechanisms of regulation of nutrient transport systems by hormones or cellular proliferative state are described.  相似文献   

19.
Plasma membranes from Candida tropicalis grown on glucose or hexadecane were isolated using a method based on the difference in surface charge of mitochondria and plasma membranes. After mechanical disruption of the cells, a fraction consisting of mitochondrial and plasma membrane vesicles was obtained by differential centrifugation. Subsequently the mitochondria were separated from the plasma membrane vesicles by aggregation of the mitochondria at a pH corresponding to their isoelectric point. Additional purification of the isolated plasma membrane vesicles was achieved by osmolysis. Surface charge densities of mitochondria and plasma membranes were determined and showed substrate-dependent differences. The isolated plasma membranes were morphologically characterized by electron microscopy and, as a marker enzyme, the activity of Mg2+-dependent ATPase was determine. By checking for three mitochondrial marker enzymes the plasma membrane fractions were estimated to be 94% pure with regard to mitochondrial contamination.  相似文献   

20.
The plasma membranes of epithelial cells plasma membranes contain distinct apical and basolateral domains that are critical for their polarized functions. However, both domains are continuously internalized, with proteins and lipids from each intermixing in supranuclear recycling endosomes (REs). To maintain polarity, REs must faithfully recycle membrane proteins back to the correct plasma membrane domains. We examined sorting within REs and found that apical and basolateral proteins were laterally segregated into subdomains of individual REs. Subdomains were absent in unpolarized cells and developed along with polarization. Subdomains were formed by an active sorting process within REs, which precedes the formation of AP-1B-dependent basolateral transport vesicles. Both the formation of subdomains and the fidelity of basolateral trafficking were dependent on PI3 kinase activity. This suggests that subdomain and transport vesicle formation occur as separate sorting steps and that both processes may contribute to sorting fidelity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号