首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several crystal structure analyses of complexes of synthetic polyamine compounds, including N(1)-(2-(2-aminoethylamino))ethyl)ethane-1,2-diamine PA(222) and N(1)-(2-(2-(2-aminoethylamino)ethylamino)ethyl)ethane-1,2-diamine PA(2222), and left-handed Z-DNA d(CGCGCG)(2) have been reported. However, until now, there have been no examples of naturally occurring polyamines bound to the minor groove of the left-handed Z-DNA of d(CGCGCG)(2) molecule. We have found that spermidine, a natural polyamine, is connected to the minor groove of left-handed Z-DNA of d(CGCGCG)(2) molecule in a crystalline complex grown at 10 degrees C. The electron density of the DNA molecule was clear enough to determine that the spermidine was connected in the minor groove of two symmetry related molecules of left-handed Z-DNA d(CGCGCG)(2). This is the first example that a spermidine molecule can form a bridge conformation between two symmetry related molecules of left-handed Z-DNA d(CGCGCG)(2) in the minor groove.  相似文献   

2.
M Egli  L D Williams  Q Gao  A Rich 《Biochemistry》1991,30(48):11388-11402
We describe the three-dimensional X-ray structure of a complex of spermine bound to a Z-DNA duplex, [d(CGCGCG)]2, in the absence of any inorganic polyvalent cations. We have crystallized the DNA hexamer d(CGCGCG) in the exclusion of magnesium and other polyvalent ions and solved its structure at 1.0-A resolution. In the crystal of this pure-spermine form of Z-DNA, the relative orientation, position, and interactions of the DNA differ from the arrangement uniformly observed in over a dozen previously reported Z-DNA hexamers. Moreover, the conformation of the Z-DNA hexamer in this structure varies somewhat from those found in earlier structures. The DNA is compressed along the helical axis, the base pairs are shifted into the major groove, and the minor groove is more narrow. The packing of spermine-DNA complexes in crystals suggests that the molecular basis for the tendency of spermine to stabilize compact DNA structures derives from the capacity of spermine to interact simultaneously with several duplexes. This capacity is maximized by both the polymorphic nature and the length of the spermine cation. The length and flexibility of spermine and the dispersion of charge-charge, hydrogen-bonding, and hydrophobic bonding potential throughout the molecule maximize the ability of spermine to interact simultaneously with different DNA molecules.  相似文献   

3.
The crystal and molecular structure of d(CGUA'CG)2 (where A' is 2-aminoadenine) has been determined and refined to an R factor of 13.8% for data 8.0-1.3 A. The structure is very similar to the original Z-DNA structures with the sequence d(CGCGCG)2 [Gessner, R. V., Frederick, C. A., Quigley, G. J., Rich, A., & Wang, A. H.-J. (1989) J. Biol. Chem. 264, 7921] and shows that the substitution of 2-aminoadenine-uracil base pairs in the two central steps is consistent with Z-DNA formation. In addition, we show how waters mediating intermolecular interactions may help to explain the ZI-ZII conformational pattern found in many Z-DNA structures.  相似文献   

4.
Normal modes of vibration of DNA in the low-frequency region (10-300 cm-1 interval) have been identified from Raman spectra of crystals of B-DNA [d(CGCAAATTTGCG)], A-DNA [r(GCG)d(CGC) and d(CCCCGGGG)], and Z-DNA [d(CGCGCG) and d(CGCGTG)]. The lowest vibrational frequencies detected in the canonical DNA structures--at 18 +/- 2 cm-1 in the B-DNA crystal, near 24 +/- 2 cm-1 in A-DNA crystals, and near 30 +/- 2 cm-1 in Z-DNA crystals--are shown to correlate well with the degree of DNA hydration in the crystal structures, as well as with the level of hydration in calf thymus DNA fibers. These findings support the assignment [H. Urabe et al. (1985) J. Chem. Phys. 82, 531-535; C. Demarco et al. (1985) Biopolymers 24, 2035-2040] of the lowest frequency Raman band of each DNA to a helix mode, which is dependent primarily upon the degree of helix hydration, rather than upon the intrahelical conformation. The present results show also that B-, A-, C-, and Z-DNA structures can be distinguished from one another on the basis of their characteristic Raman intensity profiles in the region of 40-140 cm-1, even though all structures display two rather similar and complex bands centered within the intervals of 66-72 and 90-120 cm-1. The similarity of Raman frequencies for B-, A-, C-, and Z-DNA suggests that these modes originate from concerted motions of the bases (librations), which are not strongly dependent upon helix backbone geometry or handedness. Correlation of the Raman frequencies and intensities with the DNA base compositions suggests that the complex band near 90-120 cm-1 in all double-helix structures is due to in-plane librational motions of the bases, which involve stretching of the purine-pyrimidine hydrogen bonds. This would explain the centering of the band at higher frequencies in structures containing G.C pairs (greater than 100 cm-1) than in structures containing A.T pairs (less than 100 cm-1), consistent with the strengths of G.C and A.T hydrogen bonding.  相似文献   

5.
The DNA oligomer d(CGCGTG) crystallizes as a Z-DNA double helix containing two guanine-thymine base pair mismatches of the wobble type. The crystal diffracts to 1 A resolution and the structure has been solved and refined. At this resolution, a large amount of information is revealed about the organization of the water molecules in the lattice generally and more specifically around the wobble base pairs. By comparing this structure with the analogous high resolution structure of d(CGCGCG) we can visualize the structural changes as well as the reorganization of the solvent molecules associated with wobble base pairing. There is only a small distortion of the Z-DNA backbone resulting from introduction of the GT mismatched base pairs. The water molecules cluster around the wobble base pair taking up all of the hydrogen bonding capabilities of the bases due to wobble pairing. These bridging water molecules serve to stabilize the base-base interaction and, thus, may be generally important for base mispairing either in DNA or in RNA molecules.  相似文献   

6.
Various oligonucleotides containing 8-methylguanine (m8G) have been synthesized and their structures and thermodynamic properties investigated. Introduction Of M8G into DNA sequences markedly stabilizes the Z conformation under low salt conditions. The hexamer d(CGC[M8G]CG)2 exhibits a CD spectrum characteristic of the Z conformation under physiological salt conditions. The NOE-restrained refinement unequivocally demonstrated that d(CGC[m8G]CG)2 adopts a Z structure with all guanines in the syn conformation. The refined NMR structure is very similar to the Z form crystal structure of d(CGCGCG)2, with a root mean square deviation of 0.6 between the two structures. The contribution of m8G to the stabilization of Z-DNA has been estimated from the mid-point NaCl concentrations for the B-Z transition of various m8G-containing oligomers. The presence of m8G in d(CGC[m8G]CG)2 stabilizes the Z conformation by at least deltaG = -0.8 kcal/mol relative to the unmodified hexamer. The Z conformation was further stabilized by increasing the number of m8Gs incorporated and destabilized by incorporating syn-A or syn-T, found respectively in the (A,T)-containing alternating and non-alternating pyrimidine-purine sequences. The results suggest that the chemically less reactive m8G base is a useful agent for studying molecular interactions of Z-DNA or other DNA structures that incorporate syn-G conformation.  相似文献   

7.
The Z-DNA crystal structures of d(CGCGTG) and d(CGCGCG) are compared by laser Raman spectroscopy. Raman bands originating from vibrations of the phosphodiester groups and sensitive to the DNA backbone conformation are similar for the two structures, indicating no significant perturbation to the Z-DNA backbone as a result of the incorporation of G.T mismatches. Both Z structures also exhibit Raman markers at 625 and 670 cm-1, assigned respectively to C3'-endo/syn-dG (internal) and C2'-endo/syn-dG conformers (3' terminus). Additional Raman intensity near 620 and 670 cm-1 in the spectrum of the d(CGCGTG) crystal is assigned to C4'-exo/syn-dG conformers at the mismatch sites (penultimate from the 5' terminus). A Raman band at 1680 cm-1, detected only in the d(CGCGTG) crystal, is assigned to the hydrogen-bonded dT residues and is proposed as a definitive marker of the Z-DNA wobble G.T pair. For aqueous solutions, the Raman spectra of d(CGCGTG) and d(CGCGCG) are those of B-DNA, but with significant differences between them. For example, the usual B-form marker band at 832 cm-1 in the spectrum of d(CGCGTG) is about 40% less intense than the corresponding band in the spectrum of d(CGCGCG), and the former structure exhibits a companion band at 864 cm-1 not observed for d(CGCGCG). The simplest interpretation of these results is that the conventional B-form OPO geometry occurs for only 6 of the 10 OPO groups of d(CGCGTG). The remaining four OPO groups, believed to be those at or near the mismatch site, are in an "unusual B" conformation which generates the 864 cm-1 band.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
The chemotherapeutic agent 5-fluorouracil is a DNA base analogue which is known to incorporate into DNA in vivo. We have solved the structure of the oligonucleotide d(CGCGFG), where F is 5-fluorouracil (5FU). The DNA hexamer crystallizes in the Z-DNA conformation at two pH values with the 5FU forming a wobble base pair with guanine in both crystal forms. No evidence of the enol or ionized form of 5FU is found under either condition. The crystals diffracted X-rays to a resolution of 1.5 A and their structures have been refined to R-factors of 20.0% and 17.2%, respectively, for the pH = 7.0 and pH = 9.0 forms. By comparing this structure to that of d(CGCGCG) and d(CGCGTG), we were able to demonstrate that the backbone conformation of d(CGCGFG) is similar to that of the archetypal Z-DNA. The two F-G wobble base pairs in the duplex are structurally similar to the T-G base pairs both with respect to the DNA helix itself and its interactions with solvent molecules. In both cases water molecules associated with the wobble base pairs bridge between the bases and stabilize the structure. The fluorine in the 5FU base is hydrophobic and is not hydrogen bonded to any solvent molecules.  相似文献   

10.
We succeeded in the crystallization of d(CGCGCG)2 and methylamine Complex. The crystal was clear and of sufficient size to collect the X-ray crystallographic data up to 1.0 A resolution using synchrotron radiation. As a result of X-ray crystallographic analysis of 2Fo-Fc map was much clear and easily traced. It is the first time monoamine co-crystallizes with d(CGCGCG)2. However, methylamine was not found from the complex crystal of d(CGCGCG)2 and methylamine. Five Mg ions were found around d(CGCGCG)2 molecules. These Mg ions neutralized the anion of 10 values of the phosphate group of DNA with five Mg2+. DNA stabilized only by a metallic ion and there is no example of analyzing the X-ray crystal structure like this. Mg ion stabilizes the conformation of Z-DNA. To use monoamine for crystallization of DNA, we found that we can get only d(CGCGCG)2 and Mg cation crystal. Only Mg cation can stabilize the conformation of Z-DNA. The method of using the monoamine for the crystallization of DNA can be applied to the crystallization of DNA of long chain of length in the future like this.  相似文献   

11.
We have determined the single crystal x-ray structure of the synthetic DNA hexamer d(pCpGpCpGpCpG) in two different crystal forms. The hexamer pCGCGCG has the Z-DNA conformation and in both cases the asymmetric unit contains more than one Z-DNA duplex. Crystals belong to the space group C222(1) with a = 69.73, b = 52.63, and c = 26.21 A, and to the space group P2(1) with a = 49.87, b = 41.26, c = 21.91 A, and gamma = 97.12 degrees. Both crystals show new crystal packing modes. The molecules also show striking new features when compared with previously determined Z-DNA structures: 1) the bases in one duplex have a large inclination with respect to the helical axis, which alters the overall shape of the molecule. 2) Some cytosine nitrogens interact by hydrogen bonding with phosphates in neighbor molecules. Similar base-phosphate interactions had been previously detected in some B-DNA crystals. 3) Basepair stacking between the ends of neighbor molecules is variable and no helical continuity is maintained between contiguous hexamer duplexes.  相似文献   

12.
A crystal of d(CGCGCG) in the Z-DNA lattice was soaked with ruthenium(III) hexaammine and its structure refined at 1.2 A resolution. Three unique metal complexes were found absorbed to each hexamer duplex. In addition, two symmetry-related binding sites were located, yielding a total of five ruthenium complexes bound to each d(CGCGCG) duplex. One unique site and its symmetry related site are nearly identical to the binding site of cobalt(III) hexaammine on Z-DNA. At that position, the metal complex bridges the convex surfaces of two adjacent Z-DNA strands by hydrogen bonds to the N7 and O6 functional groups of the guanine bases. The remaining three ruthenium three ruthenium(III) hexaammine binding sites are not present in the cobalt(III) hexaammine Z-DNA structure. Of these, two are related by symmetry and span the gap between the convex outer surface of one Z-DNA strand and the helical groove crevice of a neighboring strand. The third ruthenium site has no symmetry mate and involves interactions with only the deep groove. In this interaction, the metal complex hydrogen bonds to both the phosphate backbone and to a set of primary shell water molecules that extend the hydrogen bonding potential of the deep groove crevice out to the surface of the molecule. Solution studies comparing the circular dichroism spectra of low salt poly(dG-dC).poly(dG-dC) samples in the presence of ruthenium(III) and cobalt(III) hexammine show that the ruthenium complex does stabilize Z-DNA in solution, but not as effectively as the cobalt analogue. This suggests that some of the interactions available for the larger ruthenium complex may not be important for stabilization of the left-handed DNA conformation.  相似文献   

13.
We have solved the single crystal structure to 1.2-A resolution of the Z-DNA sequence d(CGCGCG) soaked with copper(II) chloride. This structure allows us to elucidate the structural properties of copper in a model that mimics a physiologically relevant environment. A copper(II) cation was observed to form a covalent coordinate bond to N-7 of each guanine base along the hexamer duplex. The occurrence of copper bound at each site was dependent on the exposure of the bases and the packing of the hexamers in the crystal. The copper at the highest occupied site was observed to form a regular octahedral complex, with four water ligands in the equatorial plane and a fifth water along with N-7 of the purine base at the axial positions. All other copper complexes appear to be variations of this structure. By using the octahedral complex as the prototype for copper(II) binding to guanine bases in the Z-DNA crystal, model structures were built showing that duplex B-DNA can accommodate octahedral copper(II) complexes at the guanine bases as well as copper complexes bridged at adjacent guanine residues by a reactive dioxygen species. The increased susceptibility to oxidative DNA cleavage induced by copper(II) ions in solution of the bases located 5' to one or more adjacent guanine residues can thus be explained in terms of the cation and DNA structures described by these models.  相似文献   

14.
We present a study of how substituent groups of naturally occurring and modified nucleotide bases affect the degree of hydration of right-handed B-DNA and left-handed Z-DNA. A comparison of poly(dG-dC) and poly(dG-dm5C) titrations with the lipotropic salts of the Hofmeister series infers that the methyl stabilization of cytosines as Z-DNA is primarily a hydrophobic effect. The hydration free energies of various alternating pyrimidine-purine sequences in the two DNA conformations were calculated as solvent free energies from solvent accessible surfaces. Our analysis focused on the N2 amino group of purine bases that sits in the minor groove of the double helix. Removing this amino group from guanine to form inosine (I) destabilizes Z-DNA, while adding this group to adenines to form 2-aminoadenine (A') stabilizes Z-DNA. These predictions were tested by comparing the salt concentrations required to crystallize hexanucleotide sequences that incorporate d(CG), d(CI), d(TA) and d(TA') base pairs as Z-DNA. Combining the current results with our previous analysis of major groove substituents, we derived a thermodynamic cycle that relates the systematic addition, deletion, or substitution of each base substituent to the B- to Z-DNA transition free energy.  相似文献   

15.
Alternating self-complementary oligonucleotides starting with a 5'-pyrimidine usually form left-handed Z-DNA; however, with a 5'-purine start sequence they form the right-handed A-DNA. Here we report the crystal structure of the decamer d(GCGCGCGCGC) with a 5'-purine start in the Z-DNA form. The decamer crystallizes in the hexagonal space group P6(5)22, unit cell dimensions a = b = 18.08 and c = 43.10 A, with one of the following four dinucleotide diphosphates in the asymmetric unit: d(pGpC)/d(GpCp)/d(pCpG)/d(CpGp). The molecular replacement method, starting with d(pGpC) of the isomorphous Z-DNA hexamer d(araC-dG)3 without the 2'-OH group of arabinose, was used in the structure analysis. The method gave the solution only after the sugar-phosphate conformation of the GpC step was manipulated. The refinement converged to a final R value of 18.6% for 340 unique reflections in the resolution range 8.0-1.9 A. A result of the sequence alternation is the alternation in the nucleotide conformation; guanosine is C3'-endo, syn, and cytidine is C2'-endo, anti. The CpG step phosphodiester conformation is the same as ZI or ZII, whereas that of the GpC step phosphodiester is "intermediate" in the sense that zeta (O3'-P bond) is the same as ZII but alpha (P-O5' bond) is the same as ZI. The duplexes generated from the dinucleotide asymmetric unit are stacked one on top of the other in the crystal to form an infinite pseudocontinuous helix. This renders it a quasi-polymerlike structure that has assumed the Z-DNA conformation further strengthened by the long inner Z-forming stretch d(CG)4. An interesting feature of the structure is the presence of water strings in both the major and the minor grooves. In the minor groove the cytosine carbonyl oxygen atoms of the GpC and CpG steps are cross-bridged by water molecules that are not themselves hydrogen bonded but are enclosed by the water rings in the mouth of the minor groove. In the major groove three independent water molecules form a zigzagging continuous water string that runs throughout the duplex.  相似文献   

16.
B Pan  C Ban  M C Wahl    M Sundaralingam 《Biophysical journal》1997,73(3):1553-1561
The crystal structure of the DNA heptamer d(GCGCGCG) has been solved at 1.65 A resolution by the molecular replacement method and refined to an R-value of 0.184 for 3598 reflections. The heptamer forms a Z-DNA d(CGCGCG)2 with 5'-overhang G residues instead of an A-DNA d(GCGCGC)2 with 3'-overhang G residues. The overhang G residues from parallel strands of two adjacent duplexes form a trans reverse Hoogsteen G x G basepair that stacks on the six Z-DNA basepairs to produce a pseudocontinuous helix. The reverse Hoogsteen G x G basepair is unusual in that the displacement of one G base relative to the other allows them to participate in a bifurcated (G1)N2 . . . N7(G8) and an enhanced (G8)C8-H . . . O6(G1) hydrogen bond, in addition to the two usual hydrogen bonds. The 5'-overhang G residues are anti and C2'-endo while the 3'-terminal G residues are syn and C2'-endo. The conformations of both G residues are different from the syn/C3'-endo for the guanosine in a standard Z-DNA. The two cobalt hexammine ions bind to the phosphate groups in both GpC and CpG steps in Z(I) and Z(II) conformations. The water structure motif is similar to the other Z-DNA structures.  相似文献   

17.
In the equilibrium between B-DNA and Z-DNA in poly(dC-dG), the [Co(NH3)6]3+ ion stabilizes the Z form 4 orders of magnitude more effectively than the Mg2+ ion. The structural basis of this difference is revealed in Z-DNA crystal structures of d(CpGpCpGpCpG) stabilized by either Na+/Mg2+ or Na+/Mg2+ plus [Co(NH3)6]3+. The crystals diffract X-rays to high resolution, and the structures were refined at 1.25 A. The [Co(NH3)6]3+ ion forms five hydrogen bonds onto the surface of Z-DNA, bonding to a guanine O6 and N7 as well as to a phosphate group in the ZII conformation. The Mg2+ ion binds through its hydration shell with up to three hydrogen bonds to guanine N7 and O6. Higher charge, specific fitting of more hydrogen bonds, and a more stable complex all contribute to the great effectiveness of [Co(NH3)6]3+ in stabilizing Z-DNA.  相似文献   

18.
The structure of d(CGCGCG) crystallized in the presence of magnesium and sodium ions alone is compared to that of the spermine form of the molecule. The very high resolution nature of these structure determinations allows the first true examination of an oligonucleotide structure in fine detail. The values of bond distances and angles are compared to those derived from small molecule crystal structures. In addition, the interactions of cations and polyamines with the Z-DNA helix are analyzed. In particular, multiple cationic charges appear to offer enhanced stabilization for the Z-DNA conformation. The location of spermine molecules along the edge of the deep groove and also spanning the entrance to the groove emphasizes the importance of polyamines for stabilizing this left-handed structure. On averaging, we obtained very similar structural parameters for the two different structures with standard deviations generally smaller than the deviations of the crystallographic model from ideal values. This indicates a high degree of accuracy of the two structures, which have been refined using different data and different refinement methods. The derived bond lengths and angles may thus be more representative of this polymeric DNA structure than those derived from mono- and dinucleotide structures at a similar accuracy.  相似文献   

19.
The structure of d(CGCGm4CG) were m4C = N4-methylcytosine has been determined by crystallographic methods. The crystals are multifaced prisms, with orthorhombic space group P2(1)2(1)2(1) and unit cell dimensions of a = 17.98, b = 30.77 and c = 44.75A. The asymmetric unit consists of one duplex of hexanucleotide and 49 waters. The R-factor is 0.189 for 1495 reflections with F > or = sigma(F) to a resolution limit of 1.8A. The double helix has a Z-DNA type structure which appears to be intermediate in structure to the two previously characterised structure types for Z-DNA hexamers. The two m4C.G base-pairs adopt structures that are very similar to those of the equivalent base-pairs in the structure of the native sequence d(CGCGCG) except for the presence of the methyl groups which are trans to the N3 atoms of their parent nucleotides and protrude into the solvent region. The introduction of the modified base-pairs into the d(CGCGCG) duplex appears to have a minimal effect on the overall base-pair morphology of the Z-DNA duplex.  相似文献   

20.
The Z-DNA structure has been shown to form in two crystals made from self-complementary DNA hexamers d(CGTDCG) and d(CDCGTG) which contain thymine/2-aminoadenine (TD) base pairs. The latter structure has been solved and refined to 1.3 A resolution and it shows only small conformational changes due to the introduction of the TD base pairs in comparison with the structure of d(CG)3. Spectroscopic studies with these compounds demonstrate that DNA molecules containing 2-aminoadenine residues form Z-DNA slightly more easily than do those containing adenine nucleotides, but not as readily as the parent sequence containing only guanine-cytosine base pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号