首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytoplasmic domain of beta(3) integrin contains tyrosines at positions 747 and 759 in domains that have been implicated in regulation of alpha(v)beta(3) function and that serve as potential substrates for Src family kinases. The phosphorylation level of beta(3) integrin was modulated using a temperature-sensitive v-Src kinase. Increased beta(3) phosphorylation abolished alpha(v)beta(3)- but not alpha(5)beta(1)-mediated adhesion to fibronectin. alpha(v)beta(3)-Mediated cell adhesion was restored by the expression of beta(3) containing Y747F or Y759F mutations but not by wild type beta(3) integrin. Thus, phosphorylation of the cytoplasmic domain of beta(3) is a negative regulator of alpha(v)beta(3)-fibronectin binding strength.  相似文献   

2.
Tyrosine phosphorylation of beta(3) integrins is a permissive stage in the activation of alpha(IIb)beta(3) and alpha(v)beta(3) in platelets and leukocytes, respectively. In this study we demonstrated direct phosphorylation of beta(3) integrins as a result of interaction with soluble monomeric ligand, and we characterized the differential kinetics of beta(3) phosphorylation as a consequence of alpha subunit pairing. We found that beta(3) phosphorylation is initiated by RGD peptide binding in a dose-dependent and saturable fashion with alpha(IIb)beta(3) becoming phosphorylated and dephosphorylated more rapidly than alpha(v)beta(3). Site mapping of phosphate incorporation reveals significant phosphorylation at Tyr-747 in both beta(3) integrin species with incorporation at Tyr-759 found at significant levels only in alpha(IIb)beta(3). Mutation of cytoplasmic beta(3) tyrosine residues in a transfection model prevents cell adhesion via these integrins. These data demonstrate that recognition of ligand is sufficient to induce beta(3) tyrosine phosphorylation and suggests that this event is regulated by the alpha subunit pairing of beta(3).  相似文献   

3.
《The Journal of cell biology》1990,111(6):2795-2800
The vitronectin receptor (alpha v beta 3) is a member of the integrin superfamily of adhesive protein receptors that mediate a wide spectrum of adhesive cellular interactions, including attachment to vitronectin, von Willebrand factor, fibrinogen, and thrombospondin. We have studied the binding of fibronectin to the purified vitronectin receptor, and the role of this receptor in the attachment of cells to fibronectin. A solid-phase microtiter assay was developed to investigate the binding properties of the vitronectin receptor. Purified alpha v beta 3 bound fibronectin with high affinity in a saturable, divalent cation- dependent manner. Binding was inhibited by soluble vitronectin, by RGD- containing peptides, and by LM609, a monoclonal antibody against the vitronectin receptor known to inhibit the binding of adhesive proteins to alpha v beta 3. Immunoinhibition experiments showed that M21 human melanoma cells, which express the fibronectin receptor, alpha 5 beta 1, as well as alpha v beta 3, used both of these integrins to attach and spread on fibronectin. In support of this finding, M21-L cells, a variant cell line that specifically lacks alpha v beta 3 but expresses alpha v beta 1, attached and spread poorly on fibronectin. In addition, alpha v beta 3 from surface-labeled M21 cells was retained, and selectively eluted by RGDS from a fibronectin affinity column. These results indicate that alpha v beta 3 acts in concert with alpha 5 beta 1 in promoting fibronectin recognition by these cells. We conclude that fibronectin binds to the alpha v beta 3 vitronectin receptor specifically and with high affinity, and that this interaction is biologically relevant in supporting cell adhesion to matrix proteins.  相似文献   

4.
Integrin receptors serve as mechanical links between the cell and its structural environment. Using alpha(v)beta3 integrin expressed in K562 cells as a model system, the process by which the mechanical connection between alpha(v)beta3 and vitronectin develops was analyzed by measuring the resistance of these bonds to mechanical separation. Three distinct stages of activation, as defined by increases in the alpha(v)beta3-vitronectin binding strength, were defined by mutational, biochemical, and biomechanical analyses. Activation to the low binding strength stage 1 occurs through interaction with the vitronectin ligand and leads to the phosphorylation of Y747 in the beta3 subunit. Stage 2 is characterized by a 4-fold increase in binding strength and is dependent on stage1 and the phosphorylation of Y747. Stage 3 is characterized by a further 2.5-fold increase in binding strength and is dependent on stage 2 events and the availability of Y759 for interaction with cellular proteins. The Y747F mutant blocked the transition from stage 1 to stage 2, and the Y759F blocked the transition from stage 2 to stage 3. The data suggest a model for tension-induced activation of alpha(v)beta3 integrin.  相似文献   

5.
We describe a novel integrin heterodimer on the surface of the human embryonic kidney cell line 293. This receptor is comprised of alpha v and beta 1 subunits, each of which has been previously found in association with other integrin subunits. This alpha v.beta 1 complex was identified as the predominant vitronectin receptor (VnR) on the surface of 293 cells by immunoprecipitation with antibodies raised against the alpha v subunit. Polymerase chain reaction analysis detected mRNAs for alpha v and beta 1 subunits while no evidence was obtained for beta 2, beta 3, or alpha IIb integrin subunit mRNA. Immunoprecipitation of surface-iodinated proteins with antibodies to alpha v gave bands of 150 and 120 kDa. The 120-kDa band reacted with antibodies to beta 1 in immunoblotting experiments. 293 cells adhere to vitronectin, fibronectin, laminin, and collagen IV, while von Willebrand factor and fibrinogen, known ligands of the VnR (alpha v.beta 3), did not support adhesion. A polyclonal antibody directed against both subunits of the VnR (alpha v, beta 3) inhibits attachment of 293 cells to vitronectin but not to other adhesive proteins. A beta 1-specific monoclonal inhibited attachment to fibronectin, laminin, and collagen IV, known ligands of beta 1 integrins, as well as vitronectin. This novel (alpha v. beta 1) VnR thus appears to mediate cell adhesion exclusively to vitronectin, in contrast to previously described VnRs which have multiple ligands.  相似文献   

6.
Integrins are a complex family of divalent cation-dependent cell adhesion receptors composed of one alpha and one beta subunit noncovalently bound to one another. A subset of integrins contains the alpha v subunit in association with one of several beta subunits (e.g. beta 3, beta 5, beta 1). We have recently identified a novel integrin beta subunit, beta 6, that is present in a number of epithelial cell lines. Using a polyclonal antibody raised against the carboxyl-terminal peptide of beta 6, we have now identified the integrin heterodimer, alpha v beta 6, on the surface of two human carcinoma cell lines. Using affinity chromatography of lysates from the pancreatic carcinoma cell line, FG-2, we demonstrate that alpha v beta 6 binds to fibronectin, but not to vitronectin or collagen I. In contrast, the alpha v beta 5 integrin, which is also expressed on FG-2 cells, binds exclusively to vitronectin. Immobilized collagen I does not interact with alpha v integrins, but binds beta 1-containing integrins. Both alpha v beta 6 and alpha v beta 5 are eluted from their respective immobilized ligands by a hexa-peptide containing the sequence Arg-Gly-Asp (RGD). RGD is highly effective in the presence of Ca2+, somewhat less effective in Mg2+, and virtually inactive in Mn2+. These results suggest that alpha v beta 6 functions as an RGD-dependent fibronectin receptor in FG-2 carcinoma cells. In agreement with this notion, cell adhesion assays show that FG-2 cell attachment to fibronectin is only partially inhibited by anti-beta 1 integrin antibodies, implying that other fibronectin receptors may be involved. Taken together with recent reports on the vitronectin receptor function of alpha v beta 5, our results suggest that the previously described carcinoma cell integrin, alpha v beta x (Cheresh, D. A., Smith, J. W., Cooper, H. M., and Quaranta, V. (1989) Cell 57, 59-69), is a mixture of at least two different receptors: alpha v beta 5, mediating adhesion to vitronectin, and alpha v beta 6, mediating adhesion to fibronectin.  相似文献   

7.
Carcinoma cells express a novel integrin involved in cell adhesion to vitronectin, but not to fibrinogen or von Willebrand factor, whereas melanoma and endothelial cells express a vitronectin receptor (alpha v beta 3) that promotes cell attachment to all of these matrix components. The integrin responsible for this adhesive phenotype of carcinoma cells is composed of an alpha subunit that is indistinguishable from the alpha v of the vitronectin receptor and a beta subunit (beta x) that is distinct from any known integrin beta subunit. Accordingly, Northern blot analysis identifies an mRNA for alpha v, but not for beta 3 in carcinoma cells. This receptor appears to mediate cell adhesion to vitronectin as well as fibronectin since an antibody directed to its alpha subunit blocked carcinoma cell adhesion to both of these matrix proteins. These results suggest that homologous integrins with identical alpha subunits and structurally distinct beta subunits can account for the functional recognition of different matrixes by two cell types.  相似文献   

8.
The ability of leukocytes to self-regulate adhesion during transendothelial and extravascular migration is fundamental to the performance of immune surveillance in complex extracellular matrices. Leukocyte adhesion is regulated through the modulation of integrin receptors such as alpha(v)beta(3). In this study, we examined the activation of alpha(v)beta(3) resulting from attachment to vitronectin or fibronectin. In K562 cells stably expressing transfected alpha(v)beta(3), adhesion to vitronectin required tyrosine phosphorylation of the beta(3) subunit and activation of phosphoinositide 3-kinase and protein kinase C. In contrast, adhesion to fibronectin proceeded without beta(3)-tyrosine phosphorylation or the activities of phosphoinositide 3-kinase or protein kinase C. Firm adhesion to both ligands and actin stress fiber formation required both Syk and Rho activity, suggesting that each ligand employs unique signaling pathways to achieve an active integrin complex, likely merging at a common RhoGEF such as Vav. Distinct signaling by a single integrin species interacting with different ligands permits initiation of additional cellular processes specific to the current task and provides an explanation for what has been described as promiscuous ligand specificity among integrins.  相似文献   

9.
Urokinase-type plasminogen activator receptors (uPARs), up-regulated during tumor progression, associate with beta1 integrins, localizing urokinase to sites of cell attachment. Binding of uPAR to the beta-propeller of alpha3beta1 empowers vitronectin adhesion by this integrin. How uPAR modifies other beta1 integrins remains unknown. Using recombinant proteins, we found uPAR directly binds alpha5beta1 and rather than blocking, renders fibronectin (Fn) binding by alpha5beta1 Arg-Gly-Asp (RGD) resistant. This resulted from RGD-independent binding of alpha5beta1-uPAR to Fn type III repeats 12-15 in addition to type III repeats 9-11 bound by alpha5beta1. Suppression of endogenous uPAR by small interfering RNA in tumor cells promoted weaker, RGD-sensitive Fn adhesion and altered overall alpha5beta1 conformation. A beta1 peptide (res 224NLDSPEGGF232) that models near the known alpha-chain uPAR-binding region, or a beta1-chain Ser227Ala point mutation, abrogated effects of uPAR on alpha5beta1. Direct binding and regulation of alpha5beta1 by uPAR implies a modified "bent" integrin conformation can function in an alternative activation state with this and possibly other cis-acting membrane ligands.  相似文献   

10.
The alpha(v)beta(3) integrin has been shown to bind several ligands, including osteopontin and vitronectin. Its role in modulating cell migration and downstream signaling pathways in response to specific extracellular matrix ligands has been investigated in this study. Highly invasive prostate cancer PC3 cells that constitutively express alpha(v)beta(3) adhere and migrate on osteopontin and vitronectin in an alpha(v)beta(3)-dependent manner. However, exogenous expression of alpha(v)beta(3) in noninvasive prostate cancer LNCaP (beta(3)-LNCaP) cells mediates adhesion and migration on vitronectin but not on osteopontin. Activation of alpha(v)beta(3) by epidermal growth factor stimulation is required to mediate adhesion to osteopontin but is not sufficient to support migration on this substrate. We show that alpha(v)beta(3)-mediated cell migration requires activation of the phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (PKB/AKT) pathway since wortmannin, a PI 3-kinase inhibitor, prevents PC3 cell migration on both osteopontin and vitronectin; furthermore, alpha(v)beta(3) engagement by osteopontin and vitronectin activates the PI 3-kinase/AKT pathway. Migration of beta(3)-LNCaP cells on vitronectin also occurs through activation of the PI 3-kinase pathway; however, AKT phosphorylation is not increased upon engagement by osteopontin. Furthermore, phosphorylation of focal adhesion kinase (FAK), known to support cell migration in beta(3)-LNCaP cells, is detected on both substrates. Thus, in PC3 cells, alpha(v)beta(3) mediates cell migration and PI 3-kinase/AKT pathway activation on vitronectin and osteopontin; in beta(3)-LNCaP cells, alpha(v)beta(3) mediates cell migration and PI 3-kinase/AKT pathway activation on vitronectin, whereas adhesion to osteopontin does not support alpha(v)beta(3)-mediated cell migration and PI 3-kinase/AKT pathway activation. We conclude therefore that alpha(v)beta(3) exists in multiple functional states that can bind either selectively vitronectin or both vitronectin and osteopontin and that can differentially activate cell migration and intracellular signaling pathways in a ligand-specific manner.  相似文献   

11.
Cell-cell and cell-matrix interactions play a critical role in tissue morphogenesis and in homeostasis of adult tissues. The integrin family of adhesion receptors regulates cellular interactions with the extracellular matrix, which provides three-dimensional information for tissue organization. It is currently thought that pancreatic islet cells develop from undifferentiated progenitors residing within the ductal epithelium of the fetal pancreas. This process involves cell budding from the duct, migration into the surrounding mesenchyme, differentiation, and clustering into the highly organized islet of Langerhans. Here we report that alpha(v)beta(3) and alpha(v)beta(5), two integrins known to coordinate epithelial cell adhesion and movement, are expressed in pancreatic ductal cells and clusters of undifferentiated cells emerging from the ductal epithelium. We show that expression and function of alpha(v)beta(3) and alpha(v)beta(5) integrins are developmentally regulated during pancreatic islet ontogeny, and mediate adhesion and migration of putative endocrine progenitor cells both in vitro and in vivo in a model of pancreatic islet development. Moreover, we demonstrate the expression of fibronectin and collagen IV in the basal membrane of pancreatic ducts and of cell clusters budding from the ductal epithelium. Conversely, expression of vitronectin marks a population of epithelial cells adjacent to, or emerging from, pancreatic ducts. Thus, these data provide the first evidence for the contribution of integrins alpha(v)beta(3) and alpha(v)beta(5) and their ligands to morphogenetic events in the human endocrine pancreas.  相似文献   

12.
L-plastin (LPL) is a leukocyte actin binding protein previously implicated in the activation of the integrin alpha(M)beta(2) on polymorphonuclear neutrophils. To determine the role for LPL in integrin activation, K562 cell adhesion to vitronectin via alpha(v)beta(3), a well-studied model for activable integrins, was examined. Cell permeant versions of peptides based on the N-terminal sequence of LPL and the LPL headpiece domain both activated alpha(v)beta(3)-mediated adhesion. In contrast to adhesion induced by treatment with phorbol 12-myristate 13-acetate (PMA), LPL peptide-activated adhesion was independent of integrin beta(3) cytoplasmic domain tyrosines and was not inhibited by cytochalasin D. Also in contrast to PMA, LPL peptides synergized with RGD ligand or Mn(2+) for generation of a conformational change in alpha(v)beta(3) associated with the high affinity state of the integrin, as determined by binding of a ligand-induced binding site antibody. Although LPL and ligand showed synergy for ligand-induced binding site expression when actin depolymerization was inhibited by jasplakinolide, LPL peptide-induced adhesion was inhibited. Thus, both actin depolymerization and ligand-induced integrin conformational change are required for LPL peptide-induced adhesion. We hypothesize that the critical steps of increased integrin diffusion and affinity enhancement may be linked via modulation of the function of the actin binding protein L-plastin.  相似文献   

13.
alpha v beta 1 and alpha v beta 3 are two related members of the integrin family of cell surface receptors both of which interact with their ligands through the Arg-Gly-Asp recognition sequence, alpha v beta 1 and alpha v beta 3 share the same cation-binding subunit, alpha v, suggesting a similar cation requirement for both integrins. Instead, we observed that Ca2+ exerts different effects on their binding function. The attachment of alpha v beta 3-loaded liposomes to vitronectin and the alpha v beta 3-mediated adhesion of U 251 cells to an Arg-Gly-Asp-containing peptide was supported equally well by Ca2+ and Mg2+. However, IMR 32 cells which bind to Arg-Gly-Asp-containing peptides through alpha v beta 1 adhered in Mg2+ but not in Ca2+. In agreement, Ca2+ did not support the attachment of alpha v beta 1-loaded liposomes to the macromolecular ligand fibronectin or the binding of alpha v beta 1 to Gly-Arg-Gly-Asp-Ser-Pro-Lys-Sepharose in affinity chromatography experiments. Furthermore, in the presence of a constant Mg2+ concentration, Ca2+ had opposite effects on the two receptors in that it inhibited the alpha v beta 1-mediated adhesion of IMR 32 cells to the peptide substrate while enhancing alpha v beta 3-mediated adhesion of U251 cells. The Ca2+ effects occurred at physiological cation concentrations and therefore, our data suggest a physiological role for Ca2+ as a regulator of integrin function and indicate a possible involvement of the beta subunits in cation binding.  相似文献   

14.
《The Journal of cell biology》1996,134(5):1313-1322
Integrin-associated protein (IAP/CD47) is physically associated with the alpha v beta 3 vitronectin (Vn) receptor and a functionally and immunologically related integrin on neutrophils (PMN) and monocytes. Anti-IAP antibodies inhibit multiple phagocyte functions, including Arg- Gly-Asp (RGD)-initiated activation of phagocytosis, chemotaxis, and respiratory burst; PMN adhesion to entactin; and PMN transendothelial and transepithelial migration at a step subsequent to tight intercellular adhesion. Anti-IAP antibodies also inhibit binding of Vn- coated particles to many cells expressing alpha v beta 3. However, prior studies with anti-IAP did not directly address IAP function because they could not distinguish between IAP blockade and antibody- induced signaling effects on cells. To better determine the function of IAP, we have characterized and used an IAP-deficient human cell line. Despite expressing alpha v integrins, these cells do not bind Vn-coated particles unless transfected with IAP expression constructs. Increasing the level of alpha v beta 3 expression or increasing Vn density on the particle does not overcome the requirement for IAP. All known splice variants of IAP restore Vn particle binding equivalently. Indeed, the membrane-anchored IAP Ig variable domain suffices to mediate Vn particle binding in this system, while the multiply membrane-spanning and cytoplasmic domains are dispensable. In all cases, adhesion to a Vn- coated surface and fibronectin particle binding through alpha 5 beta 1 fibronectin receptors are independent of IAP expression. These data demonstrate that some alpha v integrin ligand-binding functions are IAP independent, whereas others require IAP, presumably through direct physical interaction between its Ig domain and the integrin.  相似文献   

15.
Integrin alpha(v)beta(3)-mediated adhesion of hematopoietic cells to vitronectin results in activation of the Rho GTPases. Mutation of beta(3) tyrosine residue 747, previously shown to disrupt cell adhesion, results in sustained activation of Cdc42 and diminished Rac and Rho activity. We investigated the role of the hematopoietically restricted guanine nucleotide exchange factor Vav1 in alpha(v)beta(3)-mediated adhesion. We find that Vav1, a guanine nucleotide exchange factor for Rac and Rho, associates with alpha(v)beta(3) upon cell adhesion to vitronectin and that this association requires beta(3) tyrosine phosphorylation. Expression of exogenous Vav1 demonstrates that Y160F, but not wild type or the Vav1Y174F mutant, inhibits Rac and Rho activation during alpha(v)beta(3)-mediated cell adhesion to vitronectin. Cells expressing Vav1Y160F exhibit a sustained Cdc42 activation similar to nonphosphorylatable beta(3) mutants. In addition, cytoskeletal reorganization and cell adhesion are severely suppressed in Vav1Y160F-transfected cells, and Vav1Y160F fails to associate with beta(3) integrins. Furthermore, Vav1 itself is selectively phosphorylated upon tyrosine 160 after alpha(v)beta(3)-mediated adhesion, and the association between Vav1 and beta(3) occurs in specific response to adhesion to substrate. These studies describe a phosphorylation-dependent association between beta(3) integrin and Vav1 which is essential for cell progression to a Rho-dominant phenotype during cell adhesion.  相似文献   

16.
beta 1 integrin containing complexes have been implicated as the primary adhesion structures in many lymphocyte extracellular matrix (ECM) interactions. However, many B lymphocytes lack surface expression of the beta 1 subunit, implying that this subpopulation of lymphoid cells must employ alternate adhesion structures if they are to maintain an interactive capacity with ECM. An examination of the adherence properties of the beta 1 integrin-negative B cell line JY indicated that these cells exhibit little or no basal adherence to any of the ECM components examined. However, these cells could be induced to adhere to the ECM components fibronectin, laminin, and vitronectin following treatment with PMA. Blocking studies with monoclonal antibodies indicated the alpha v beta 3 integrin complex was involved in the attachment to each of these ligands. However, the adherence to fibronectin displayed a complex pattern of inhibition suggesting the involvement of other ECM receptors. The utilization of the alpha v beta 3 complex was not unique to the JY cell line. Other B cell lines were observed to employ alpha v beta 3, and these lines similarly lacked expression of beta 1 integrin. These results indicate that alpha v beta 3 can act as a lymphoid ECM-adhesion structure which may provide an alternative means for lymphocytes to interact with ECM. Furthermore, these studies provide evidence for the presence of lymphoid-associated alpha v beta 3 integrins with regulatable activity, which contrasts with the constitutive adhesive potential of these complexes when present on other cell types.  相似文献   

17.
The integrins are a family of heterodimeric cell surface receptors for extracellular matrix molecules. An analysis of integrin subunits expressed by a number of cell lines identified a novel heterodimer. The alpha subunit of this integrin was immunologically and electrophoretically indistinguishable from the vitronectin receptor alpha subunit (alpha v) and the beta subunit was indistinguishable from beta 1. Affinity chromatography experiments and cell adhesion assays indicated that this receptor complex is a new fibronectin receptor. Its unexpected subunit composition demonstrates the importance of the beta subunit in determining the ligand specificity of integrins and suggests that the current integrin classification scheme needs revision.  相似文献   

18.
The adhesive interactions of circulating blood cells are tightly regulated, receptor-mediated events. To establish a model for studies on regulation of cell adhesion, we have examined the adhesive properties of the HD11 chick myeloblast cell line. Function-perturbing antibodies were used to show that integrins containing the beta 1 subunit mediate HD11 cell attachment to several distinct extracellular matrix proteins, specifically fibronectin, collagen, vitronectin, and fibrinogen. This is the first evidence that an integrin heterodimer in the beta 1 family functions as a receptor for fibrinogen. While the alpha v beta 1 heterodimer has been shown to function as a vitronectin receptor on some cells, this heterodimer could not be detected on HD11 cells. Instead, results suggest that the beta 1 subunit associates with different, unidentified alpha subunit(s) to form receptors for vitronectin and fibrinogen. Results using function-blocking antibodies also demonstrate that on these cells, additional receptors for vitronectin are formed by alpha v beta 3 and alpha v associated with an unidentified 100-kD beta subunit. The adhesive interactions of HD11 cells with these extracellular matrix ligands were shown to be regulated by lipopolysaccharide treatment, making the HD11 cell line attractive for studies of mechanisms regulating cell adhesion. In contrast to primary macrophage which rapidly exhibit enhanced adhesion to laminin and collagen upon activation, activated HD11 cells exhibited reduced adhesion to most extracellular matrix constituents.  相似文献   

19.
Outside-in signaling of beta(3) integrins induces and requires phosphorylation at tyrosine 747 (Tyr(747)) and tyrosine 759 (Tyr(759)) of the beta(3) subunit, but the mechanism for this requirement is unclear. On the other hand, a key consequence of integrin signaling, cell spreading, is inhibited by calpain cleavage of beta(3) cytoplasmic domain. Here we show that beta(3) tyrosine phosphorylation inhibits calpain cleavage. Mutating both tyrosines to phenylalanine sensitizes beta(3) to calpain cleavage. Furthermore, phosphorylation at Tyr(747) and Tyr(759) of beta(3) in the focal adhesion sites and the leading edge of spreading platelets was differentially regulated. Selective dephosphorylation of Tyr(759) is associated with calpain cleavage at Tyr(759). Thus, one mechanism by which tyrosine phosphorylation promotes integrin signaling and cell spreading is its inhibition of calpain cleavage of the beta(3) cytoplasmic domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号