首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cholera bacteriophages have been isolated from 27 lysogenic cultures of V. cholerae O139. As shown the pages under study belong to two morphological groups A1 and F1 and serological types II and XII. The use of prophage typing and the sensitivity test to specific phage made it possible to differentiate V. cholerae strains, serogroup O139.  相似文献   

2.
The toxin-coregulated pilus (TCP) of Vibrio cholerae is a type 4-related fimbrial adhesin and a useful model for the study of type 4 pilus biogenesis and related bacterial macromolecular transport pathways. Transposon mutagenesis of the putative perosamine biosynthesis genes in the rfb operon of V. cholerae 569B eliminates lipopolysaccharide (LPS) O-antigen biosynthesis but also leads to a specific defect in TCP export. Localization of TcpA is made difficult by the hydrophobic nature of this bundle-forming pilin, which floats anomalously in sucrose density gradients, but the processed form of TcpA can be found in membrane and periplasmic fractions prepared from these strains. While TcpA cannot be detected by surface immunogold labelling in transmission electron microscope preparations, EDTA pretreatment facilitates immunofluorescent antibody labelling of whole cells, and ultrathin cryosectioning techniques confirm membrane and periplasmic accumulation of TcpA. Salt and detergent extraction, protease accessibility, and chemical cross-linking experiments suggest that although TcpA has not been assembled on the cell surface, subunit interactions are otherwise identical to those within TCP. In addition, TcpA-mediated fucose-resistant hemagglutination of murine erythrocytes is preserved in whole-cell lysates, suggesting that TcpA has obtained its mature conformation. These data localize a stage of type 4 pilin translocation to the outer membrane, at which stage export failure leads to the accumulation of pilin subunits in a configuration similar to that within the mature fiber. Possible candidates for the outer membrane defect are discussed.  相似文献   

3.
Vibrio cholerae is capable of transforming into a viable but nonculturable (VBNC) state, and, in doing so, undergoes alteration in cell morphology. In the study reported here, Vibrio cholerae O1 and O139 cells were maintained in laboratory microcosms prepared with 1% Instant Ocean and incubated at 4 degrees C, i.e., conditions which induce the VBNC state. Cells were fixed at different stages during entry into the VBNC state and, when no growth was detectable on solid or in liquid media, the ultrastructure of these cells was examined, using both transmission and scanning electron microscopy. As shown in earlier studies, the cells became smaller in size and changed from rod to ovoid or coccoid morphology, with the central region of the cells becoming compressed and surrounded by denser cytoplasm. Because the coccoid morphology, indicative of the VBNC state is common for Vibrio cholerae in the natural environment, as well as in starved cells (Baker et al., 1983; Hood et al., 1986) viability of the coccoid, viable but nonculturable cell was investigated. The percentage of coccoid (VBNC) cells showing metabolic activity and retention of membrane integrity was monitored using direct fluorescence staining (LIVE/DEAD BacLight Bacterial Viability kit), with 75 to 90% of the viable but nonculturable coccoid cells found to be metabolically active by this test. Furthermore, the proportion of actively respiring cells, using the redox dye, 5-cyano-2, 3-ditolyl tetrazolium chloride (CTC), relative to total cells, the latter determined by DAPI staining, ranged from 10 to 50%. VBNC coccoid cells retained the antigenic determinants of Vibrio cholerae O1 and O139, respectively, evidenced by positive reaction with monoclonal fluorescent antibody. Viability was further established by susceptibility of the VBNC cells to chlorine, copper sulfate, zinc sulfate, and formaldehyde. Since retention of cell membrane integrity is a determining characteristic of viable cells, DNA was extracted from VBNC cells in microcosms maintained for two months and for one year. Conservation of cholera toxin and toxin-associated genes, ctxA, toxR, tcpA, and zot in chromosomal DNA of VBNC cells was demonstrated using PCR and employing specific primers. It is concluded that not only do VBNC V cholerae O1 and O139 retain viability up to one year, but genes associated with pathogenicity are retained, along with chromosomal integrity.  相似文献   

4.
Filamentous phage, fs1, was obtained from Vibrio cholerae O139. The lysogenized strains produced a large amount of fs1 phage in the culture supernatant. This phage was previously reported as novel fimbriae of that organism. The genome of the phage was a 6.5 kb single-stranded DNA. The capsid of fs1 consists of a small molecule peptide (about 2.5 kDa).  相似文献   

5.
The pili of a strain of Vibrio cholerae O139 were purified and characterized. They were morphologically, electrophoretically and immunologically indistinguishable from the pili with 16 kDa subunit protein of V. cholerae O1. All 22 strains of V. cholerae O139 examined possessed the pili. The pili were different in hemagglutination inhibition pattern from V. cholerae O1 16K pili.  相似文献   

6.
The organization and distribution of the genes responsible for O antigen biosynthesis in various serogroups of Vibrio cholerae were investigated using several DNA probes derived from various regions of the genes responsible for O1 antigen biosynthesis. Based on the reactivity pattern of the probes against the various serogroups, the cluster of genes responsible for the O1 antigen biosynthesis could be broadly divided into six groups, designated as class 1-6. The class 3 cluster of genes corresponding to gmd to wbeO, wbeT and a part of wbeU was specific for only the O1 serogroup. The other cluster of genes (class 1, 2, 4-6) reacted with other serogroups of V. cholerae. These data indicate that serotype conversion in V. cholerae does not depend on a simple mutational event but may involve horizontal gene transfer not only between V. cholerae strains but also between V. cholerae and species other than V. cholerae.  相似文献   

7.
8.
Purification and characterization of Vibrio cholerae O139 fimbriae   总被引:2,自引:0,他引:2  
Abstract A Vibrio cholerae O139 (strain Al-1841) isolated from a patient with a cholera-like disease in Bangladesh predominantly produced new curved, wavy fimbriae (Al-1841 fimbriae) and small numbers of previously reported V. cholerae non-O1 S7-like pili. The former was purified and characterized. The molecular mass of the Al-1841 fimbrial subunit was less than 2.5 kDa, and it was immunologically different from that of V. cholerae non-O1 S7 pili. This novel fimbrial antigen was detected in all 182 Gram-negative strains from five genera tested but was absent from the Gram-positive bacteria tested. The purified Al-1841 fimbriae did not agglutinate human or rabbit erythrocytes.  相似文献   

9.
It is believed that the correlate of protection for cholera can be determined by the serum vibriocidal assay. The currently available vibriocidal assays, based on the conventional agar plating technique, are labor intensive. We developed a simple and convenient microtiter plate assay for the detection of vibriocidal antibodies that is equally as efficient for Vibrio cholerae O1 and for V. cholerae O139. The addition of succinate and neotetrazolium made it possible to measure the growth of surviving bacterial target cells by monitoring a color change. We evaluated assay parameters (target strains, growth of target cells, complement source and concentration) that may affect the reproducibility of the method for V. cholerae O139. The results obtained with the microtiter plate assay were uniformly similar to those obtained with the conventional agar plating assay, when testing both the Inaba and Ogawa serotypes of V. cholerae O1. The microtiter plate assay was also convenient for measuring the activity of animal sera and mouse monoclonal antibodies.  相似文献   

10.
Abstract Haemaglutinin/protease (HA/P) is one of the virulence factors of Vibrio cholerae O1 and pathogenic strains of V. cholerae non-O1. In this study, we examined protease activity of a new serogroup of Vibrio cholerae recently designated as O139 synonym Bengal. The protease activity was produced by all eight isolates of V. cholerae O139 from Bangladeshi patients. Purification and partial characterization of the protease from V. cholerae O139 demonstrated the purified protease (O139-P) was indistinguishable from that previously reported for HA/P of V. cholerae non-O1 (NAG-HA/P) and V. cholerae O1 (Vc-HA/P). These results prove that V. cholerae O139 produces a protease belonging to solHA/P, and suggest that the protease is another virulence factor found in newly emerged V. cholerae O139, as in V. cholerae O1.  相似文献   

11.
The effects of alum [KAl(SO4)2] on free-living and copepod-associated Vibrio cholerae O1 and O139 were investigated by using plate counts and immunofluorescence direct viable counting (DVC). Growth of alum-treated cells in 0.5/1000 Instant Ocean seawater was inhibited, i.e., no growth was obtained on Luria-Bertani (LB) agar or thiosulfate-citrate-bile salt-sucrose (TCBS) agar. However, a significant number of the inhibited cells maintained viability, as measured by DVC. In comparison, a significant number of V. cholerae organisms associated with zooplankton, most of which were crustacean copepods, were viable but nonculturable, with only a small number of cells retaining culturability on LB and TCBS agar. Both DVC and viable plate counts (CFU) were significantly greater for V. cholerae O1 and O139 associated with zooplankton than for V. cholerae in water alone, i.e., without copepods. It is concluded that alum is an effective coagulant but not an effective killing agent for V. cholerae and that association with copepods offers protection for V. cholerae O1 and O139 against alum and chlorine treatments.  相似文献   

12.
The action of nitrosoguanidine (NG) on the culture of V. cholerae O139 P-16064 resulted in the appearance of mutant 16064 NG6, not agglutinating with commercial diagnostic serum O139. Its incapacity of agglutination was due to the sorption of the specific serum with strains V. cholerae O22 and R-variant RCA-385, which caused the loss of antibodies to common determinants. Experiments with the sorption of immune sera made it possible to suggest that one of the determinants of LPS O139, phosphate-galactose, was absent in NG mutant.  相似文献   

13.
《Gene》1997,192(1):79-85
Several experimental approaches have provided evidence suggesting that a domain within the C-terminal region of the TcpA pilin, delineated by the single disulfide loop, is directly responsible for the colonization function mediated by the toxin coregulated pilus (TCP) of Vibrio cholerae. This evidence includes the mapping of domains recognized by protective monoclonal antibodies to this region, the ability of peptides from within this region to elicit cholera protective antibody, the construction of tcpA missense mutations that abolish TCP function, and the requirement of a periplasmic disulfide isomerase to produce functional TCP.  相似文献   

14.
霍乱弧菌是引起人和动物烈性肠道传染病霍乱的病原体。在霍乱弧菌的200多个血清群中,只有O1群和O139群霍乱弧菌能引起霍乱。快速准确检测O1群和O139群霍乱弧菌是霍乱防治的关键。表面抗原在O1群和O139群霍乱弧菌检测中发挥着重要作用。简要综述了O1群和O139群霍乱弧菌的脂多糖、霍乱肠毒素、外膜蛋白W、毒素共调菌毛和甘露糖敏感血凝素等5种主要抗原的研究进展。  相似文献   

15.
The results of the serotyping of 244 V. cholerae non O1/O139 cultures isolated from patients in Uzbekistan in 2000 and 2001 are presented. All isolates were studied by the method of molecular probing and in the polymerase chain reaction for the presence of virulence genes and for sensitivity to phages ctx+, ctx- and hemolytic activity. The use of monoreceptor O-sera O2-O83 made it possible to determine vibrios of 32 serogroups with the dominating role in the etiology of acute enteric diseases belonging to serogroups O18, O62, O82, O37. Genes ctx AB were detected in none of the isolates, 5 of them contained gene tcp A. A group of cultures, sensitive to phage ctx+ and belonging mainly to enteropathogenic serogroups, was detected.  相似文献   

16.
Abstract Vibrio cholerae O139, a causative agent of a large epidemic of cholera-like illness, has suddenly emerged and spread widely over several months. To investigate the characteristics unique to O139, traditional typing techniques for V. cholerae , such as biochemical characteristics, antibiotic susceptibility and detection of toxin production, were performed, with the result that 145 O139 strains, except for two O139 strains isolated from Argentina and Germany, were indistinguishable from O1 strains. Thus, in order to clarify the genetical relatedness among O139 strains, and between O139 and O1 strains, the RAPD (random amplified polymorphic DNA) DNA fingerprinting method was undertaken. Although the RAPD arrays in five O139 isolates from Vellore with one arbitrary primer were slightly different from the other O139 strains, the RAPD patterns of the 145 forty-five O139 strains except for two O139 strains from Argentina and Germany were quite similar to each other, but were different from those of O1 strains, indicating that those O139 epidemic strains are closely related to each other regardless of their place of isolation. Furthermore, the RAPD patterns of the O139 strains resembled those of E1 Tor strains rather than classical strain, and a small change in the RAPD pattern of O139 strains occurred during subculture for 200 generations. These results taken together suggested that O139 V. cholerae have emerged from a common origin associated with the E1 Tor strain.  相似文献   

17.
The toxin-co-regulated pilus (TCP), a type 4 pilus that is expressed by epidemic strains of Vibrio cholerae O1 and O139, is required for colonization of the human intestine. The TCP structure is assembled as a polymer of repeating subunits of TcpA pilin that form long fibres, which laterally associate into bundles. Previous passive immunization studies have suggested that the C-terminal region of TcpA is exposed on the surface of the pilus fibre and has a critical role in mediating the colonization functions of TCP. In the present study, we have used site-directed mutagenesis to delineate two domains within the C-terminal region that contribute to TCP structure and function. Alterations in the first domain, termed the structural domain, result in altered pilus stability or morphology. Alterations in the second domain, termed the interaction domain, affect colonization and/or infection by CTX-bacteriophage without affecting pilus morphology. In vitro and in vivo analyses of the tcpA mutants revealed that a major function of TCP is to mediate bacterial interaction through direct pilus-pilus contact required for microcolony formation and productive intestinal colonization. The importance of this function is supported by the finding that intragenic suppressor mutations that restore colonization ability to colonization-deficient mutants simultaneously restore pilus-mediated bacterial interactions. The alterations resulting from the suppressor mutations also provide insight into the molecular interactions between pilin subunits within and between pilus fibres.  相似文献   

18.
19.
To find out stable and effective producers of major protective antigens intended for use as components of cholera chemical vaccine against V. cholerae strains of serogroups O and O139, the comparative analysis of the production of cholera toxin, toxin-coregulated pili (TCP), antigens O1 and O139, polysaccharide capsule and outer membrane protein OmpU in different V. cholerae strains groups O1 and O139 has been made. V. cholerae strain KM68, serogroup O1, has been found capable of the production of antigen O1, serovar Ogawa, protein OmpU at a sufficiently high level and the hyperproduction of cholera toxin and TCP, and thus suitable for use in the manufacture of cholera bivalent vaccine as the source of these antigens. Specially selected alysogenic noncapsular strain KM137 of serogroup O139, characterized by a high and stable level of the biosynthesis of this somatic antigen when grown in both laboratory and production conditions, may serve as the produces of antigen O139.  相似文献   

20.
A cholera-like enterotoxin was purified from Vibrio cholerae O139 strain AI-1841 isolated from a diarrheal patient in Bangladesh. Its characteristics were compared with that of cholera toxins (CTs) of classical strain 569B and El Tor strain KT25. Al-1841 produced as much toxin as O1 strains. The toxins were indistinguishable in terms of their migration profiles in conventional polyacrylamide gel disc electrophoresis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectrofocusing as well as their affinity for hydroxyapatite. The skin permeability factor activity and the fluid accumulation induced in rabbit ileal loops of the toxin of AI-1841 were identical to those of the CTs. Three toxins equally reacted against anti-569B CT antiserum in Western blotting, and their B subunits formed a precipitin line against any anti-B subunit antiserum by double gel immunodiffusion. Anti-569B CTB antibody neutralized the three toxins in their PF activities and enterotoxicities. The amino acid sequence of 1841 toxin B subunit was identical with that of KT25 CTB, corresponding to the DNA sequence of ctxB from El Tor strains of the seventh pandemic. We concluded 1841 toxin was identical to CT of the seventh pandemic El Tor vibrios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号