首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physical mapping has been rediscovered as an important component of large-scale sequencing projects. Restriction maps provide landmark sequences at defined intervals, and high-resolution restriction maps can be assembled from ensembles of single molecules by optical means. Such optical maps can be constructed from both large-insert clones and genomic DNA, and are used as a scaffold for accurately aligning sequence contigs generated by shotgun sequencing.  相似文献   

2.
Rapid construction of high-resolution physical maps requires accurate information about overlap between DNA clones and the size of gaps between clones or clone contigs. We recently developed a procedure termed ‘quantitative DNA fiber mapping’ (QDFM) to help construct physical maps by measuring the overlap between clones or the physical distance between non-overlapping contigs. QDFM is based on hybridization of non-isotopically labeled probes onto DNA molecules that were bound to a solid support and stretched homogeneously to ~2.3 kb/µm. In this paper, we describe the design of probes that bind specifically to the cloning vector of DNA recombinants to facilitate physical mapping. Probes described here delineate the most frequently used cloning vectors such as BACs, P1s, PACs and YACs. As demonstrated in representative hybridizations, vector-specific probes provide valuable information about molecule integrity, insert size and orientation as well as localization of hybridization domains relative to specifically-marked vector sequences.  相似文献   

3.
A new system for high-resolution DNA sequence mapping interphase pronuclei   总被引:3,自引:0,他引:3  
B Brandriff  L Gordon  B Trask 《Genomics》1991,10(1):75-82
Cosmid clones containing human or hamster inserts have been hybridized in situ and localized with fluorescent reporter molecules in interphase nuclei (pronuclei) obtained after fusion of hamster eggs with either human or hamster sperm. Hamster egg cytoplasm processes the tightly packaged sperm DNA into large diffuse networks of chromatin fiber bundles, providing hybridization targets more extended than those available in somatic interphase cell nuclei. Pronuclear physical distances between hybridization signals were measured in micrometers and correlated to genomic distances determined by restriction fragment analyses, using cosmids from the Chinese hamster DHFR region and from the human Factor VIII/color vision pigment gene region (Xq28). The mean pronuclear distances between hybridization sites were about three times as large as those measured in somatic interphase cells for equivalent genomic distances. The relationship between physical and genomic distances was linear from less than 50 kb to at least 800 kb. The results show that physical distance in the sperm-egg system promises to extend the mapping range obtainable in somatic interphase nuclei below 50 kb and up to at least 800 kb.  相似文献   

4.
Conti C  Bensimon A 《Genomics》2002,80(2):135-137
High-resolution physical maps can be used as a scaffold for several subsequent studies, such as sequencing projects and positional cloning of disease genes and genetic elements that regulate gene expression. Here we describe a method for fast, high-resolution physical mapping on stretched DNA molecules, based on a combinatorial multi-FISH approach. Fluorescent labels are assigned to a binary code and probes are identified by a binary tag according to their labeling. To validate the approach, we have mapped eight probes covering a region of about 300 kb on human chromosome 11 with three hybridization assays. This approach enables one to determine the structural organization of a large region by means of the order of its clones, without ambiguities. The structure established in a control cell constitutes a reference for further studies, to detect rearrangements displayed by disease cells and to find differences shown by different cell types and organisms.  相似文献   

5.
Characterization and application of soybean YACs to molecular cytogenetics   总被引:3,自引:0,他引:3  
Yeast artificial chromosomes (YACs) are widely used in the physical analysis of complex genomes. In addition to their value in chromosome walking for map-based cloning, YACs represent excellent probes for chromosome mapping using fluorescence in situ hybridization (FISH). We have screened such a library for low-copy-number clones by hybridization to total genomic DNA. Four clones were chosen for chromosome tagging based upon their low or moderate signal. By using degenerate oligonucleotide-primed PCR (DOP-PCR), we were able to use relatively small amounts of soybean YAC DNA, isolated directly by preparative pulsed-field gel electrophoresis, as FISH probes for both metaphase chromosome spreads and interphase nuclei. FISH chromosomal analysis using the three of the clones as probes resulted in relatively simple hybridization patterns consistent with a single homologous locus or two homoeologous loci. The fourth YAC probe resulted in a diffuse hybridization pattern with signal on all metaphase chromosomes. We conclude that YACs represent a valuable source of probes for chromosomal analysis in soybean.  相似文献   

6.
In-situ hybridization to interphase nuclei and chromosomes of Arabidopsis thaliana (2n= 10) shows that there are four sites of rDNA in a diploid nucleus. The sites are located on chromosomes 2 and 4, and the strength of hybridization indicates that copy number is similar at both pairs of sites. Hybridization to trisomic line 4 revealed five hybridization sites. Silver staining of nucleoli demonstrates that all four loci can be active in diploid interphase nuclei. The tandemly repeated probe pAL1 hybridizes near to the centromeres of all five chromosome pairs. In diploid interphase nuclei, 10 sites of hybridization are detected, while 15 are seen in triploid nuclei. The sites of hybridization co-localize with the centromeric heterochromatin visualized by staining DNA with the fluorochrome DAPI. The results demonstrate that molecular cytogenetics can be applied to A. thaliana and high resolution physical chromosome maps can be generated. Both probes may be useful for interphase cytogenetics, where they enable chromosome number and aneuploidy to be examined in tissues without divisions. The physical localization of these hybridization sites provides a starting point for linking RFLP and physical chromosome maps.  相似文献   

7.
Jiming Jiang  Bikram S Gill 《Génome》2006,49(9):1057-1068
Fluorescence in situ hybridization (FISH), which allows direct mapping of DNA sequences on chromosomes, has become the most important technique in plant molecular cytogenetics research. Repetitive DNA sequence can generate unique FISH patterns on individual chromosomes for karyotyping and phylogenetic analysis. FISH on meiotic pachytene chromosomes coupled with digital imaging systems has become an efficient method to develop physical maps in plant species. FISH on extended DNA fibers provides a high-resolution mapping approach to analyze large DNA molecules and to characterize large genomic loci. FISH-based physical mapping provides a valuable complementary approach in genome sequencing and map-based cloning research. We expect that FISH will continue to play an important role in relating DNA sequence information to chromosome biology. FISH coupled with immunoassays will be increasingly used to study features of chromatin at the cytological level that control expression and regulation of genes.  相似文献   

8.
The chromatin in interphase nuclei is much less condensed than are metaphase chromosomes, making the resolving power of fluorescence in situ hybridization (FISH) two orders of magnitude higher in interphase nuclei than on metaphase chromosomes. In mammalian species it has been demonstrated that within a certain range the interphase distance between two FISH sites can be used to estimate the linear DNA distance between the two probes. The intephase mapping strategy has never been applied in plant species, mainly because of the low sensitivity of the FISH technique on plant chromosomes. Using a CCD (charge-coupled device) camera system, we demonstrate that DNA probes in the 4 to 8 kb range can be detected on both metaphase and interphase chromosomes in maize. DNA probes pA1-Lc and pSh2.5·SstISalI, which contain the maize locia1 andsh2, respectively, and are separated by 140 kb, completely overlapped on metaphase chromosomes. However, when the two probes were mapped in interphase nuclei, the FISH signals were well separated from each other in 86% of the FISH sites analyzed. The average interphase distance between the two probes was 0.50 µm. This result suggests that the resolving power of interphase FISH mapping in plant species can be as little as 100 kb. We also mapped the interphase locations of another pair of probes, ksu3/4 and ksu16, which span theRp1 complex controlling rust resistance of maize. Probes ksu3/4 and ksu16 were mapped genetically approximately 4 cM apart and their FISH signals were also overlapped on metaphase chromosomes. These two probes were separated by an average of 2.32 µm in interphase nuclei. The possibility of estimating the linear DNA distance between ksu3/4 and ksu16 is discussed.  相似文献   

9.
Quantitative DNA fiber mapping (QDFM) allows rapid construction of near-kilobase-resolution physical maps by hybridizing specific probes to individual stretched DNA molecules. We evaluated the utility of QDFM for the large-scale physical mapping of a rather unstable, repeat-rich 850-kb region encompassing the immunoglobulin λ variant (IGLV) gene segments. We mapped a minimal tiling path composed of 32 cosmid clones to three partially overlapping yeast artificial chromosome (YAC) clones and determined the physical size of each clone, the extent of overlap between clones, and contig orientation, as well as the sizes of gaps between adjacent contigs. Regions of germline DNA for which we had no YAC coverage were characterized by cosmid to cosmid hybridizations. Compared to other methods commonly used for physical map assembly, QDFM is a rapid, versatile technique delivering unambiguous data necessary for map closure and preparation of sequence-ready minimal tiling paths.  相似文献   

10.
The comparative mapping and sequencing of vertebrate genomes is now a key priority for the Human Genome Project. In addition to finishing the human genome sequence and generating a `working draft' of the mouse genome sequence, significant attention is rapidly turning to the analysis of other model organisms, such as the laboratory rat (Rattus norvegicus). As a complement to genome-wide mapping and sequencing efforts, it is often important to generate detailed maps and sequence data for specific regions of interest. Using an adaptation of our previously described approach for constructing mouse comparative and physical maps, we have established a general strategy for targeted mapping of the rat genome. Specifically, we constructed a framework comparative map of human Chromosome (Chr) 7 and the orthologous regions of the rat genome, as well as two large (>1-Mb) P1-derived artificial chromosome (PAC)-based physical maps. Generation of these physical maps involved the use of mouse-derived probes that cross-hybridized with rat PAC clones. The first PAC map encompasses the cystic fibrosis transmembrane conductance regulator gene (Cftr), while the second map allows a three-species comparison of a genomic region containing intra- and inter-chromosomal evolutionary rearrangements. The studies reported here further demonstrate that cross-species hybridization between related animals, such as rat and mouse, can be readily used for the targeted construction of clone-based physical maps, thereby accelerating the analysis of biologically interesting regions of vertebrate genomes. Received: 5 December 2000 / Accepted: 27 February 2001  相似文献   

11.
To link the cytogenetic map for mouse chromosome 16 (Chr 16) to the more detailed recombinational and physical maps, multiple probes were mapped by fluorescence in situ hybridization (FISH). Sixteen large insert clones (YACs, BACs, and PACs) containing markers that have been assigned to the Chr 16 recombinational map were localized to a cytogenetic band or subband by high-resolution FISH. This linkage of the cytogenetic and recombinational maps provides a useful tool for assigning new probe locations and for defining breakpoints in mice with chromosomal rearrangements. A direct application of these probes is demonstrated by identifying mice trisomic for distal Chr 16 using FISH analysis of interphase nuclei.  相似文献   

12.
Danilova TV  Birchler JA 《Chromosoma》2008,117(4):345-356
To study the correlation of the sequence positions on the physical DNA finger print contig (FPC) map and cytogenetic maps of pachytene and somatic maize chromosomes, sequences located along the chromosome 9 FPC map approximately every 10 Mb were selected to place on maize chromosomes using fluorescent in situ hybridization (FISH). The probes were produced as pooled polymerase chain reaction products based on sequences of genetic markers or repeat-free portions of mapped bacterial artificial chromosome (BAC) clones. Fifteen probes were visualized on chromosome 9. The cytological positions of most sequences correspond on the pachytene, somatic, and FPC maps except some probes at the pericentromeric regions. Because of unequal condensation of mitotic metaphase chromosomes, being lower at pericentromeric regions and higher in the arms, probe positions are displaced to the distal ends of both arms. The axial resolution of FISH on somatic chromosome 9 varied from 3.3 to 8.2 Mb, which is 12-30 times lower than on pachytene chromosomes. The probe collection can be used as chromosomal landmarks or as a "banding paint" for the physical mapping of sequences including transgenes and BAC clones and for studying chromosomal rearrangements.  相似文献   

13.
Y L Chang  Q Tao  C Scheuring  K Ding  K Meksem  H B Zhang 《Genetics》2001,159(3):1231-1242
The genome of the model plant species Arabidopsis thaliana has recently been sequenced. To accelerate its current genome research, we developed a whole-genome, BAC/BIBAC-based, integrated physical, genetic, and sequence map of the A. thaliana ecotype Columbia. This new map was constructed from the clones of a new plant-transformation-competent BIBAC library and is integrated with the existing sequence map. The clones were restriction fingerprinted by DNA sequencing gel-based electrophoresis, assembled into contigs, and anchored to an existing genetic map. The map consists of 194 BAC/BIBAC contigs, spanning 126 Mb of the 130-Mb Arabidopsis genome. A total of 120 contigs, spanning 114 Mb, were anchored to the chromosomes of Arabidopsis. Accuracy of the integrated map was verified using the existing physical and sequence maps and numerous DNA markers. Integration of the new map with the sequence map has enabled gap closure of the sequence map and will facilitate functional analysis of the genome sequence. The method used here has been demonstrated to be sufficient for whole-genome physical mapping from large-insert random bacterial clones and thus is applicable to rapid development of whole-genome physical maps for other species.  相似文献   

14.
15.
Basic to the development of long-range physical maps of DNA are the detection and localization of landmarks within recombinant clones. Sequence-tagged sites (STSs), which are short stretches of DNA that can be specifically detected by the polymerase chain reaction (PCR), can be used as such landmarks. Our interest is to construct physical maps of whole human chromosomes by localizing STSs within yeast artificial chromosome (YAC) clones. Here we describe a generalized strategy for the systematic generation of large numbers of STSs specific for human chromosome 7. These STSs can be detected by PCR assays developed following the sequencing of anonymous pieces of chromosome 7 DNA, which was derived from flow-sorted chromosomes or from lambda clones made from DNA of a human-hamster hybrid cell line. Our approach for STS generation is tailored for the development of PCR assays capable of screening a large YAC library. In this study, we report the generation of 100 new STSs specific to human chromosome 7.  相似文献   

16.
Linking clones contain sequences flanking recognition sites for enzymes cutting rarely in mammalian DNA. They can be used to obtain and correlate both physical and genetic mapping information over subregions of mammalian chromosomes. We have constructed and used a NotI linking clone library representing unmethylated NotI sites from HHW693 DNA, a hamster hybrid cell line containing 4p15-4pter and a fragment of 5p as its only human chromosome contribution. Human clones were identified by hybridisation with a cloned human repeat sequence, and localised further to subregions of human chromosome 4p15-4pter using a panel of additional hybrids. Clones from the region distal to the DNA probes (D4S10, D4S43, D4S95) linked to the Huntington's disease mutation, were further analysed. Four markers close to the HD gene: D4S111, D4S113, D4S114 and clone 417 are described here. In addition to serving as markers in physical and genetic mapping experiments, these linking clones provide probes next to cleavable NotI sites, and can therefore be used to screen NotI based chromosome jumping libraries. They also provide indications for potential gene sequences, identifiable as evolutionarily conserved sequences.  相似文献   

17.
We have developed a data management system, `HOSEpipe' (High Output STS Evaluation pipeline) to aid sample tracking and data analysis in STS content mapping projects. The system is based around a World Wide Web (WWW) server that provides a number of pages including forms for sample processing and data entry accessible via a standard WWW browser application. The system is split into two main modules: firstly, a sequence evaluation and annotation module that takes de novo sequence for a potential STS, screens it against existing STSs and DNA sequence databases, followed by appropriate primer sequence design; secondly, a module that handles YAC library STS screening and includes facilities for both sample tracking and experimental data analysis. We present the design and rationale of the HOSEpipe system and its development to support a whole chromosomal physical mapping project. This software and design approach is potentially applicable to physical mapping projects of varying sizes and resolution and to similar projects, such as sample sequencing and the construction of sequence-ready maps. Received: 18 November 1996 / Accepted: 19 March 1997  相似文献   

18.
19.
We have used the proximity of probe hybridization sites in interphase chromatin to derive the order of DNA sequences in a 2-3-Mbp region of human chromosome Xq28. The map generated bridges the results of genetic and pulsed-field gel electrophoresis mapping to produce a more complete map of Xq28 than possible with either of these other techniques alone. Two-color fluorescence in situ hybridization (FISH) was used to detect the positions of two or more probes in G1 male interphase nuclei. We show that cosmids that are 50 kbp to 2-3 Mbp apart can be ordered rapidly with two alternative approaches: (1) by comparing the average measured distance between two probes and (2) simply by scoring the order of red and green fluorescent dots after detection of three or more probes with two fluorochromes. The validity of these approaches is demonstrated using five cosmids from a region spanning approximately 800 kbp that includes the factor VIII (F8), glucose-6-phosphate dehydrogenase (G6PD), and color-vision pigment (CV) genes. The cosmid map derived from interphase mapping is consistent with the map determined by restriction-fragment analysis. The two interphase mapping approaches were then used (1) to orient the F8/CV cluster relative to two markers, c1A1 and st14c, which we show by metaphase mapping to be proximal to the F8/CV cluster, (2) to position st14c (DXS52) between c1A1 and F8, and (3) to orient the CV gene cluster relative to G6PD by using two CV-flanking cosmids, 18b41 and fr7. The probe order in Xq28 derived from interphase proximity is cen-c1A1-st14c-5'F8 (p624-p542-p625)-G6PD-18b41-3' green-green-red-fr7-tel. We also show that, to determine their order by using metaphase chromosomes, sequences must be at least 1 Mbp apart, an order of magnitude greater than required in interphase chromatin. The data show that FISH mapping is a simple way to order sequences separated by greater than or equal to 50 kbp for the construction of long-range maps of mammalian genomes.  相似文献   

20.
47个早期人胚胎低丰度表达基因ESTs筛选及结果分析   总被引:1,自引:0,他引:1  
构建高质量cDNA文库在基因克隆、mRNA差异展示、表达序列标签测序和基因定位等研究中具有十分重要的作用。为了从早期胚胎中分离人类新基因,构建了受精后3周龄的人cDNA文库,用标记的一链cDNA探针对该文库的6508个克隆子进行菌落原位杂交,得到1677个无任何杂交信号的低丰度表达克隆子,从中随机挑选了47个进行5′端部分测序,将测序结果与三大基因库进行序列同源性比较,发现18个克隆(38.3%)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号