首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Padlock oligonucleotides as a tool for labeling superhelical DNA   总被引:2,自引:1,他引:1       下载免费PDF全文
Labeling of a covalently closed circular double-stranded DNA was achieved using a so-called ‘padlock oligonucleotide’. The oligonucleotide was targeted to a sequence which is present in the replication origin of phage f1 and thus in numerous commonly used plasmids. After winding around the double-stranded target DNA sequence by ligand-induced triple helix formation, a biotinylated oligonucleotide was circularized using T4 DNA ligase and in this way became catenated to the plasmid. A gel shift assay was developed to measure the extent of plasmid modification by the padlock oligonucleotide. A similar assay showed that a modified supercoiled plasmid was capable of binding one streptavidin molecule thanks to the biotinylated oligonucleotide and that this binding was quantitative. The catenated complex was visualized by electron and atomic force microscopies using streptavidin conjugates or single strand-binding proteins as protein tags for the padlock oligonucleotide. This method provides a versatile tool for plasmid functionalization which offers new perspectives in the physical study of supercoiled DNA and in the development of improved vectors for gene therapy.  相似文献   

2.
C Neves  G Byk  D Scherman  P Wils 《FEBS letters》1999,453(1-2):41-45
The nuclear localization signal (NLS) of the SV40 large T antigen efficiently induces nuclear entry of proteins. We have developed a strategy for covalent coupling of one or a controlled number of NLS peptides to plasmid DNA at a specific site by triple helix formation. A psoralen-oligonucleotide-NLS peptide conjugate was synthesized and characterized by proteolysis with trypsin. This conjugate was used to covalently associate one NLS peptide to plasmid DNA by triple helix formation and photoactivation. The oligonucleotide-NLS peptide conjugate interacted with the NLS-receptor importin alpha. The reporter gene was expressed after transfection of the modified plasmid in NIH 3T3 cells, indicating no loss of the gene expression functionality of the plasmid. On the other hand, no increase in expression was observed as a result of the NLS peptide. This site-specific coupling technology can be used to couple to a plasmid other ligands targeting to a specific receptor.  相似文献   

3.
Summary In this chapter, we describe an approach using a peptide nucleic acid (PNA) clamp to directly and irreversibly modify plasmid DNA, without affecting either its supercoiled conformation or its ability to be efficiently transcribed. This strategy enables investigators to 'functionalize' their gene of interest by direct coupling of ligands (fluorophores, peptide, proteins, sugars or oligonucleotides) to plasmid DNA. This approach provides versatile tools to study the mechanisms of gene delivery and to circumvent some of the main obstacles of synthetic gene delivery systems, such as specific targeting and efficient delivery. The proof-of-principal of PNA-dependent gene chemistry (PDGC) was demonstrated with a fluorescently labeled PNA that allowed generation of a highly fluorescent preparation of plasmid DNA that was functionally and conformationally intact. Fluorescent-PNA/DNA was used to identify critical parameters involved in naked DNA and non-viral gene delivery technology. The greatest potential of PDGC lies in the ability to attach specific ligands (e.g., peptides, proteins) to the plasmid DNA in order to overcome cellular barriers of non-viral gene delivery systems. In this regard, specific examples of ligands coupled to DNA are described and their effect on increasing the efficacy of gene therapy is presented.  相似文献   

4.
In this chapter, we describe an approach using a peptide nucleic acid (PNA) clamp to directly and irreversibly modify plasmid DNA, without affecting either its supercoiled conformation or its ability to be efficiently transcribed. This strategy enables investigators to `functionalize' their gene of interest by direct coupling of ligands (fluorophores, peptide, proteins, sugars or oligonucleotides) to plasmid DNA. This approach provides versatile tools to study the mechanisms of gene delivery and to circumvent some of the main obstacles of synthetic gene delivery systems, such as specific targeting and efficient delivery. The proof-of-principal of PNA-dependent gene chemistry (PDGC) was demonstrated with a fluorescently labeled PNA that allowed generation of a highly fluorescent preparation of plasmid DNA that was functionally and conformationally intact. Fluorescent-PNA/DNA was used to identify critical parameters involved in naked DNA and non-viral gene delivery technology. The greatest potential of PDGC lies in the ability to attach specific ligands (e.g., peptides, proteins) to the plasmid DNA in order to overcome cellular barriers of non-viral gene delivery systems. In this regard, specific examples of ligands coupled to DNA are described and their effect on increasing the efficacy of gene therapy is presented.  相似文献   

5.
One of the major steps limiting nonviral gene transfer efficiency is the entry of plasmid DNA from the cytoplasm into the nucleus of the transfected cells. The nuclear localization signal (NLS) of the SV40 large T antigen is known to efficiently induce nuclear targeting of proteins. We have developed two chemical strategies for covalent coupling of NLS peptides to plasmid DNA. One method involves a site-specific labeling of plasmid DNA by formation of a triple helix with an oligonucleotide–NLS peptide conjugate. After such modification with one NLS peptide per plasmid molecule, plasmid DNA remained fully active in cationic lipid-mediated transfection. In the other method, we randomly coupled 5–115 p-azidotetrafluorobenzyllissamine–NLS peptide molecules per plasmid DNA by photoactivation. Oligonucleotide–NLS and plasmid–lissamine–NLS conjugates interacted specifically with the NLS-receptor importin . Plasmid–lissamine–NLS conjugates were not detected in the nucleus, after cytoplasmic microinjection. Plasmids did not diffuse from the site of injection and plasmid–lissamine–NLS conjugates appeared to be progressively degraded in the cytoplasm. The process of plasmid DNA sequestration/degradation stressed in this study might be as important in limiting the efficiency of nonviral gene transfer as the generally recognized entry step of plasmid DNA from the cytoplasm into the nucleus  相似文献   

6.
Parallel, highly specific analysis methods are required to take advantage of the extensive information about DNA sequence variation and of expressed sequences. We present a scalable laboratory technique suitable to analyze numerous target sequences in multiplexed assays. Sets of padlock probes were applied to analyze single nucleotide variation directly in total genomic DNA or cDNA for parallel genotyping or gene expression analysis. All reacted probes were then co-amplified and identified by hybridization to a standard tag oligonucleotide array. The technique was illustrated by analyzing normal and pathogenic variation within the Wilson disease-related ATP7B gene, both at the level of DNA and RNA, using allele-specific padlock probes.  相似文献   

7.
Summary In this chapter, we describe an approach using a peptide nucleic acid (PNA) clamp to directly and irreversibly modify plasmid DNA, without affecting either its supercoiled conformation or its ability to be efficiently transcribed. This strategy enables investigators to functionalize their gene of interest by direct coupling of ligands (fluorophores, peptide, proteins, sugars or oligonucleotides) to plasmid DNA. This approach provides versatile tools to study the mechanisms of gene delivery and to circumvent some of the main obstacles of synthetic gene delivery systems, such as specific targeting and efficient delivery. The proof-of-principal of PNA-dependent gene chemistry (PDGC) was demonstrated with a fluorescently labeled PNA that allowed generation of a highly fluorescent preparation of plasmid DNA that was functionally and conformationally intact. Fluorescent-PNA/DNA was used to identify critical parameters involved in naked DNA and non-viral gene delivery technology. The greatest potential of PDGC lies in the ability to attach specific ligands (e.g., peptides, proteins) to the plasmid DNA in order to overcome cellular barriers of non-viral gene delivery systems. In this regard, specific examples of ligands coupled to DNA are described and their effect on increasing the efficacy of gene therapy is presented  相似文献   

8.
Hairpin DNA sequences are widely used as probes for oligonucleotides in a broad range of assays, often as "molecular beacons". A potential disadvantage of the standard methodology for molecular beacon design is the need to add several self-complementary bases to each end of the probe, since these do not correspond to the target sequence. We describe a conceptually new method of hairpin DNA probe identification, in which a secondary structure prediction algorithm is employed to identify oligonucleotide sequences within an expressed gene having the requisite hairpin structure. Intuitively, such probes should have significantly improved performance over "traditional" hairpin probes, because they are fully complementary with the target. We present experimental evidence verifying this hypothesis for a series of hairpin probes targeting the pag gene of Bacillus anthracis.  相似文献   

9.
A useful strategy directed to the isolation of a required gene with a high GC content is reported. Using a degenerate oligonucleotide probe, deduced from the amino terminus of a protein, it is possible to obtain a fragment of DNA containing its encoding gene by PCR amplification. Furthermore, the cloning of a desired gene can be accomplished in two steps by using an oligonucleotide deduced (i) from an internal sequence, (ii) from a consensus sequence, or (iii) from a DNA sequence adjacent to a disrupting element (transposon, insertion sequence, cassette). This method, which could be applied to a bacteriophage, plasmid, or cosmid genomic library, has been successfully used for cloning several genes from different biological systems.  相似文献   

10.
Base-specific hydrogen bonding between an oligonucleotide and the purines in the major groove of a DNA duplex provide an approach to selective inhibition of gene expression. Oligonucleotide-mediated triplex formation in vivo may be enhanced by a number of different chemical modifications. We have previously described an in vitro analysis of triplex formation using oligonucleotides containing internucleoside phosphate linkages modified with the cation N , N -diethyl-ethylenediamine (DEED). When compared with unmodified oligonucleotides of identical base composition, DEED-modified oligonucleotides were better able to form DNA triplexes under conditions that approximate the pH, magnesium and potassium levels found in vivo . Here we report the ability of DEED-modified oligonucleotides to inhibit the expression of plasmid DNA injected into Xenopus oocytes. Inhibition is specific to plasmids containing a triplex formation target and sensitive to sequence alteration in the triplex forming target site. Inhibition of gene expression was nearly complete when oligonucleotide and plasmid were mixed together prior to injection. Inhibition was partial when oligonucleotide was injected first and not evident when plasmid was injected and allowed to form chromatin prior to oligonucleotide injection. Thus, access to DNA is a determining factor in effective triplex inhibition of gene expression.  相似文献   

11.
Poly(DMAEMA-NVP)-b-PEG-galactose as gene delivery vector for hepatocytes   总被引:4,自引:0,他引:4  
A block copolymer composed of cationic polymer and poly(ethylene glycol) (PEG) was used as a DNA carrier. Poly(2-(dimethylamino)ethyl methacrylate (DMAEMA)-co-N-vinyl-2-pyrrolidone (NVP)) having a terminal carboxylic group was synthesized by free radical polymerization using an initiator, 4,4'-azobis(4-cyanovaleric acid). The terminal carboxylic acid was activated by N-hydroxysuccinimide (NHS) with dicyclohexylcarbodiimide (DCC) and then conjugated with PEG-bis(amine). For specific gene targeting to asialoglycoprotein receptor of hepatocytes, a galactose moiety was incorporated into the PEG terminal end of poly(DMAEMA-NVP)-b-PEG by reductive coupling using lactose and sodium cyanoborohydride. RSV luciferase plasmid was used as a reporter gene, and in vitro gene transfection efficiency was measured in HepG2 human hepatocarcinoma cells. Poly(DMAEMA-NVP)-b-PEG-galactose/DNA complexes formed at 0.5-2 polymer/plasmid weight ratio had compacted structures around 200 nm particle size and exhibited slightly negative surface charge. These complexes were coated with a cationic, pH sensitive, endosomolytic peptide, KALA, to generate positively charged poly(DMAEMA-NVP)-b-PEG-galactose/DNA/KALA complex particles. In the presence of serum proteins, both the PEG block and the galactose moiety of poly(DMAEMA-NVP)-b-PEG-galactose greatly enhanced the gene transfection efficiency, which was very close to that of Lipofectamine plus. Irrespective of the presence of serum proteins, as the KALA/DNA weight ratio increased, the transfection efficiency of poly(DMAEMA-NVP)-b-PEG-galactose was enhanced due to the pH dependent endosomal disruptive property of KALA. This study demonstrates that sufficient transfection efficiency as high as that of commercial agent could be attained by judicious formulation of molecular engineered poly(DMAEMA-NVP)-b-PEG-galactose in combination with an endosomolytic peptide, KALA.  相似文献   

12.
DNA isolated from a newly described taeniid from Taiwan which shows adult characters indistinguishable from those of Taenia saginata was compared to DNA from T. saginata and nine other cestodes by restriction endonuclease digestion of genomic DNA and Southern blot analysis using 32P-labeled total cestode RNA and cloned ribosomal RNA gene fragments as probes. Hybridization patterns of Taiwan Taenia DNA revealed distinct variations from that of T. saginata and Taenia solium as well as all other cestode DNAs examined; however, similarities in restriction maps and sequence data between cloned ribosomal gene fragments from Taiwan Taenia (pTTr 3.1) and T. saginata (pTSgr 3.1 and PTSgr 2.4, respectively) suggest close evolutionary relatedness between these two taeniids. DNA sequence amplification from genomic DNA using oligonucleotide primers homologous to regions on both the 2.4- and 3.1-kb fragments was able to delineate between Taiwan Taenia and T. saginata by generating 1.0- and 0.29-kb fragments, respectively. Results demonstrated that Taiwan Taenia is not exclusive to Taiwan but exists in other parts of Eastern Asia and that adult morphology is insufficient for its detection in other locations. Results further support biological data indicating that Taiwan Taenia and T. saginata, although similar morphologically, are distinct genotypes.  相似文献   

13.
14.
An oligonucleotide probe corresponding to the 9 C-terminal residues encoded by a complementary DNA of a rat peptide related to salmon melanin concentrating hormone (MCH) was synthetized. It specifically hybridized to the neurons stained by antisera to MCH in the rat posterior hypothalamus, as seen by coupling in situ hybridization and immunocytochemical methods. This result validates our sequence determination. This oligonucleotide will be useful to establish the complete sequence of the rat MCH precursor molecule. It will also constitute a valuable tool to study physiological or experimentally-induced changes in the expression of the rat MCH gene.  相似文献   

15.
Cell penetrating peptides are useful tools for intracellular delivery of nucleic acids. Delivery of plasmid DNA, a large nucleic acid, poses a challenge for peptide mediated transport. The paper investigates and compares efficacy of five novel peptide designs for complexation of plasmid DNA and subsequent delivery into cells. The peptides were designed to contain reported DNA condensing agents and basic cell penetrating sequences, octa‐arginine (R8) and CHK6HC coupled to cell penetration accelerating peptides such as Bax inhibitory mutant peptide (KLPVM) and a peptide derived from the Kaposi fibroblast growth factor (kFGF) membrane translocating sequence. A tryptophan rich peptide, an analogue of Pep‐3, flanked with CH3 on either ends was also a part of the study. The peptides were analysed for plasmid DNA complexation, protection of peptide–plasmid DNA complexes against DNase I, serum components and competitive ligands by simple agarose gel electrophoresis techniques. Hemolysis of rat red blood corpuscles (RBCs) in the presence of the peptides was used as a measure of peptide cytotoxicity. Plasmid DNA delivery through the designed peptides was evaluated in two cell lines, human cervical cancer cell line (HeLa) and (NIH/3 T3) mouse embryonic fibroblasts via expression of the secreted alkaline phosphatase (SEAP) reporter gene. The importance of hydrophobic sequences in addition to cationic sequences in peptides for non‐covalent plasmid DNA complexation and delivery has been illustrated. An alternative to the employment of fatty acid moieties for enhanced gene transfer has been proposed. Comparison of peptides for plasmid DNA complexation and delivery of peptide–plasmid DNA complexes to cells estimated by expression of a reporter gene, SEAP. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
The phosphoenolpyruvate mutase gene from Tetrahymena pyriformis has been cloned and overexpressed in Escherichia coli. To our knowledge, this is the first Tetrahymena gene to be expressed in E. coli, a task made more complicated by the idiosyncratic codon usage by Tetrahymena. The N-terminal amino acid sequence of phosphoenolpyruvate mutase purified from T. pyriformis has been used to generate a precise oligonucleotide probe for the gene, using in vitro amplification from total genomic DNA by the polymerase chain reaction. Use of this precise probe and oligo(T) as primers for in vitro amplification from a T. pyriformis cDNA library has allowed the cloning of the mutase gene. A similar amplification strategy from genomic DNA yielded the genomic sequence, which contains three introns. The sequence of the DNA that encodes 10 amino acids upstream of the N-terminal sequence of the isolated protein was found by oligonucleotide hybridization to a subgenomic library. These 10 N-terminal amino acids are cleanly removed in Tetrahymena in vivo. The full mutase gene sequence codes for a protein of 300 amino acids, and it includes two amber (TAG) codons in the open reading frame. In Tetrahymena, TAG codes for glutamine. When the two amber codons are each changed to a glutamine codon (CAG) that is recognized by E. coli and the gene is placed behind a promoter driven by the T7 RNA polymerase, expression in E. coli is observed. The mutase gene also contains a large number of arginine AGA codons, a codon that is very rarely used by E. coli. Cotransformation with a plasmid carrying the dnaY gene [which encodes tRNA(Arg)(AGA)] results in more than 4-fold higher expression. The mutase then comprises about 25% of the total soluble cell protein in E. coli transformants. The mutase gene bears significant similarity to one other gene in the available data bases, that of carboxyphosphonoenolpyruvate mutase from Streptomyces hygroscopicus, an enzyme that catalyzes a closely related transformation. Due to the large evolutionary distance between Tetrahymena and Streptomyces, this similarity can be interpreted as the first persuasive evidence that the biosynthesis of phosphonates is an ancient metabolic process.  相似文献   

17.
The flexible pilus of Aeromonas hydrophila is a morphologically and biochemically unique organelle which binds eukaryotic cell surfaces and whose expression is induced by specific physiochemical conditions. fxp, the structural gene coding for the flexible pilus subunit, was localized on a 7.6kb plasmid of A. hydrophila strain AH26. A putative Shine-Dalgarno sequence and -10 and -35 regions were identified, a signal peptide sequence delineated, and the coding sequence compared with other bacterial sequences and found to be unique. Plasmid and chromosomal DNA was prepared from 66 other Aeromonas strains and 12 strains from other bacterial genera and examined by Southern blot hybridization using a labelled fxp oligonucleotide and the 7.6kb plasmid as probes. No hybridizing sequences were identified except in the original strain, AH26. It is proposed that fxp codes for a highly evolved organelle, possibly widely distributed in nature, but that it is carried on a genetic element that is rapidly lost from most strains upon in vitro cultivation and storage.  相似文献   

18.
19.
A major immunodominant surface protein (the 75-kDa protein) of Porphyromonas (Bacteroides) gingivalis 381 has been purified and its amino-terminal amino acid sequence has been determined. Using oligonucleotide probes corresponding to the sequence, we identified a recombinant plasmid clone carrying a single 4.2-kb BamHI fragment from pUC19 libraries of P. gingivalis. The BamHI fragment transferred to the bacteriophage T7 RNA polymerase/promoter expression vector system produced a slightly larger (77-kDa) protein, a precursor form, immunoreactive to the antibody against the 75-kDa protein, suggesting that the cloned DNA fragment probably carried an entire gene for the 75-kDa protein. Genomic Southern analysis revealed a single copy of the 75-kDa protein gene per genome among all P. gingivalis strains tested, and that no homologous genes are present in other black-pigmented Bacteroides species. These observations suggest that the 75-kDa protein gene may be useful as a specific DNA probe to classify or to detect this organism.  相似文献   

20.
Prospects of chimeric RNA-DNA oligonucleotides in gene therapy   总被引:3,自引:0,他引:3  
A strategy called targeted gene repair was developed to facilitate the process of gene therapy using a chimeric RNA-DNA oligonucleotide. Experiments demonstrated the feasibility of using the chimeric oligonucleotide to introduce point conversion in genes in vitro and in vivo. However, barriers exist in the low and/or inconstant frequency of gene repair. To overcome this difficulty, three main aspects should be considered. One is designing a more effective structure of the oligonucleotide. Trials have included lengthening the homologous region, displacing the mismatch on the chimeric strand and inventing a novel thioate-modified single-stranded DNA, which was demonstrated to be more active than the primary chimera in cell-free extracts. The second aspect is optimizing the delivery system. Producing synthetic carriers for efficient and specific transfection is demanding, especially for treatment in vivo where targeting is difficult. The third and most important aspect lies in the elucidation of the mechanism of the strategy. Investigation of the mechanism of strand exchange between the oligonucleotide molecule and double-stranded DNA in prokaryotes may greatly help to understand the mechanism of gene repair in eukaryotes. The development of this strategy holds great potential for the treatment of genetic defects and other purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号