首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Aim Modern biodiversity peaks in the tropics and declines poleward, a pattern that is potentially driven by climate. Although this latitudinal biodiversity gradient (LBG) also characterizes the marine invertebrate fossil record, distributions of ancient terrestrial faunas are poorly understood. This study utilizes data on the dinosaur fossil record to examine spatial patterns in terrestrial biodiversity throughout the Mesozoic. Location We compiled data on fossil occurrences across the globe. Methods We compiled a comprehensive dataset of Mesozoic dinosaur genera (738), including birds. Following the utilization of sampling standardization techniques to mediate for the uneven sampling of the fossil record, we constructed latitudinal patterns of biodiversity from this dataset. Results The dominant group of Mesozoic terrestrial vertebrates did not conform to the modern LBG. Instead, dinosaur diversity was highest at temperate palaeolatitudes throughout the 160 million year span of dinosaurian evolutionary history. Latitudinal diversity correlates strongly with the distribution of land area. Late Cretaceous sauropods and ornithischians exhibit disparate LBGs. Main conclusions The continuity of the palaeotemperate peak in dinosaur diversity indicates a diminished role for climate on the Mesozoic LBG; instead, dinosaur diversity may have been driven by the amount of land area among latitudinal belts. There is no evidence that the tropics acted as a cradle for dinosaur diversity. Geographical partitioning among major clades of herbivorous dinosaurs in the Late Cretaceous may result from the advanced stages of continental fragmentation and/or differing responses to increasing latitudinal climatic zonation. Our results suggest that the modern‐day LBG on land was only established 30 million years ago, following a significant post‐Eocene recalibration, potentially related to increased seasonality.  相似文献   

2.

The very different frequency of dinosaurs during the Mesozoic can be allied to the correlation between global sea level cyclicity and fossilization. This is based upon the sedimentary situation in the inner shelf, the area of predominant fossil record of dinosaurs, and sea level fluctuations. A rich fossil record is found in times of high sea level, and vice versa. Due to natural laws acting on sea level stands, the fossil record of dinosaurs and other terrestrial tetrapods is incomplete. This is causally explainable in the sequence stratigraphy. Among causes of global sea level fluctuations, the change from warm to cold times has been accorded greatest probability even in the Mesozoic. Consequently, the problem of dinosaur evolution and distribution should not be confused with the pattern of their fossil record. The latter, however, is so far nearly always used for all interpretations. The context presented here results in basic modifications.

During the phases of reduced to missing fossil record (low sea level, cold times), dinosaurs existed at least in circumequatorial regions in high diversity. Highly diverse faunas recorded exceptionally in the Upper Jurassic, Middle and Late Cretaceous, were each time the result of a long previous evolution and not the result of short term radiations at these times. Phases of sea level highstand and warm times caused an increased fossil record and poleward distribution. Cretaceous dinosaurs in paleolatitudes of 70° to 80° N and S are no proof for endothermy, but are only the effect of favorable climatic conditions at limited times. Any endothermy of the dinosaurs is not coincident with the supposedly uniformly warm equable climate of the Mesozoic, but with the opposite. Cold times did not hamper the existence of dinosaurs, but led in extreme cases (Aalenian and Valanginian) to the global lack of their fossil record. The situation at the Cretaceous‐Tertiary boundary is also explainable in this context. According to the sea level cyclicity, no extreme sea level fall and no globablly cold time were present in the critical time segment. The regression in the late Maastrichtian is found to belong to a sequence of third‐order cycles beginning in the Campanian. Every one of the cycle boundaries with regression and transgression produced apparent extinction effects which in reality are only gaps in the fossil record. After the late Maastrichtian regression the dinosaurs persisted with six lineages. The so far youngest dinosaur fauna in the Puercan (basal Paleocene) lies in a phase of sea level highstand of minor amplitude and duration with comparatively minor chances for a fossil record. The occurrences in the Puercan are governed by natural law, and, thus, dinosaurs are untied from the short term problems of the Cretaceous‐Tertiary boundary. Why dinosaurs are then missing at the next highstand, remains an open question. Anyhow, mechanisms which control fossil record, diversification and distribution, including global cold periods, do not belong to the direct causes of extinction, because identical occurrences happened many times during the Mesozoic without inducing extinction.  相似文献   

3.
A prominent hypothesis in the diversification of placental mammals after the Cretaceous–Palaeogene (K/Pg) boundary suggests that the extinction of non-avian dinosaurs resulted in the ecological release of mammals, which were previously constrained to small body sizes and limited species richness. This ‘dinosaur incumbency hypothesis’ may therefore explain increases in mammalian diversity via expansion into larger body size niches, that were previously occupied by dinosaurs, but does not directly predict increases in other body size classes. To evaluate this, we estimate sampling-standardized diversity patterns of terrestrial North American fossil mammals within body size classes, during the Cretaceous and Palaeogene. We find strong evidence for post-extinction diversity increases in all size classes. Increases in the diversity of small-bodied species (less than 100 g, the common body size class of Cretaceous mammals, and much smaller than the smallest non-avialan dinosaurs (c. 400 g)) were similar to those of larger species. We propose that small-bodied mammals had access to greater energetic resources or were able to partition resources more finely after the K/Pg mass extinction. This is likely to be the result of a combination of widespread niche clearing due to the K/Pg mass extinctions, alongside a suite of biotic and abiotic changes that occurred during the Late Cretaceous and across the K/Pg boundary, such as shifting floral composition, and novel key innovations among eutherian mammals.  相似文献   

4.
It has been hypothesized that a high reproductive output contributes to the unique gigantism in large dinosaur taxa. In order to infer more information on dinosaur reproduction, we established allometries between body mass and different reproductive traits (egg mass, clutch mass, annual clutch mass) for extant phylogenetic brackets (birds, crocodiles and tortoises) of extinct non-avian dinosaurs. Allometries were applied to nine non-avian dinosaur taxa (theropods, hadrosaurs, and sauropodomorphs) for which fossil estimates on relevant traits are currently available. We found that the reproductive traits of most dinosaurs conformed to similar-sized or scaled-up extant reptiles or birds. The reproductive traits of theropods, which are considered more bird-like, were indeed consistent with birds, while the traits of sauropodomorphs conformed better to reptiles. Reproductive traits of hadrosaurs corresponded to both reptiles and birds. Excluding Massospondylus carinatus , all dinosaurs studied had an intermediary egg to body mass relationship to reptiles and birds. In contrast, dinosaur clutch masses fitted with either the masses predicted from allometries of birds (theropods) or to the masses of reptiles (all other taxa). Theropods studied had probably one clutch per year. For sauropodomorphs and hadrosaurs, more than one clutch per year was predicted. Contrary to current hypotheses, large dinosaurs did not have exceptionally high annual egg numbers (AEN). Independent of the extant model, the estimated dinosaur AEN did not exceed 850 eggs (75,000 kg sauropod) for any of the taxa studied. This estimated maximum is probably an overestimation due to unrealistic assumptions. According to most AEN estimations, the dinosaurs studied laid less than 200 eggs per year. Only some AEN estimates obtained for medium to large sized sauropods were higher (200-400 eggs). Our results provide new (testable) hypotheses, especially for reproductive traits that are insufficiently documented or lacking from the fossil record. This contributes to the understanding of their evolution.  相似文献   

5.
Explanations of the distributions of terrestrial vertebrates during the Mesozoic are currently vigorously contested and debated in palaeobiogeography. Recent studies focusing on dinosaurs yield conflicting hypotheses. Dispersal, coupled with regional extinction or vicariance driven by continental break-up, have been cited as the main causal factors behind dinosaur distributions in the Mesozoic. To expand the scope of the debate and test for vicariance within another terrestrial group, I herein apply a cladistic biogeographical method to a large sample of Cretaceous crocodyliform taxa. A time-slicing methodology is employed and a refinement made to account for the divergence times of the analysed clades. The results provide statistically significant evidence that Gondwana fragmentation affected crocodyliform diversification during the Mid-Late Cretaceous. Detection of a vicariant pattern within crocodyliforms is important as it helps corroborate vicariance hypotheses in other fossil and extant groups as well as furthers the move towards more taxonomically diverse approaches to palaeobiogeographical research.  相似文献   

6.

Background

There have been numerous studies on dinosaur biogeographic distribution patterns. However, these distribution data have not yet been applied to ecological questions. Ecological studies of dinosaurs have tended to focus on reconstructing individual taxa, usually through comparisons to modern analogs. Fewer studies have sought to determine if the ecological structure of fossil assemblages is preserved and, if so, how dinosaur communities varied. Climate is a major component driving differences between communities. If the ecological structure of a fossil locality is preserved, we expect that dinosaur assemblages from similar environments will share a similar ecological structure.

Methodology/Principal Findings

This study applies Ecological Structure Analysis (ESA) to a dataset of 100+ dinosaur taxa arranged into twelve composite fossil assemblages from around the world. Each assemblage was assigned a climate zone (biome) based on its location. Dinosaur taxa were placed into ecomorphological categories. The proportion of each category creates an ecological profile for the assemblage, which were compared using cluster and principal components analyses. Assemblages grouped according to biome, with most coming from arid or semi-arid/seasonal climates. Differences between assemblages are tied to the proportion of large high-browsing vs. small ground-foraging herbivores, which separates arid from semi-arid and moister environments, respectively. However, the effects of historical, taphonomic, and other environmental factors are still evident.

Conclusions/Significance

This study is the first to show that the general ecological structure of Late Jurassic dinosaur assemblages is preserved at large scales and can be assessed quantitatively. Despite a broad similarity of climatic conditions, a degree of ecological variation is observed between assemblages, from arid to moist. Taxonomic differences between Asia and the other regions demonstrate at least one case of ecosystem convergence. The proportion of different ecomorphs, which reflects the prevailing climatic and environmental conditions present during fossil deposition, may therefore be used to differentiate Late Jurassic dinosaur fossil assemblages. This method is broadly applicable to different taxa and times, allowing one to address questions of evolutionary, biogeographic, and climatic importance.  相似文献   

7.
Eriksson, M.E., Lindgren, J., Chin, K. & Månsby, U. 2011: Coprolite morphotypes from the Upper Cretaceous of Sweden: novel views on an ancient ecosystem and implications for coprolite taphonomy. Lethaia, Vol. 44, pp. 455–468. Coprolites (fossilized faeces) are common, yet previously unreported, elements in the Campanian (Upper Cretaceous) shallow‐marine strata of Åsen, southern Sweden. They are associated with a diverse vertebrate fauna and comprise at least seven different morphotypes that suggest a variety of source animals. Their faecal origin is corroborated by several lines of evidence, including chemical composition (primarily calcium phosphate), external morphology and nature of the inclusions. Preservation in a fossil coquina, interpreted as a taphocoenosis, suggests early lithification promoted by rapid entombment. This would have prevented disintegration of the faecal matter and facilitated transportation and introduction to the host sediment. The coprofabrics can generally be correlated to specific gross morphologies, supporting a morphology‐determined coprolite classification. Moreover, having been deposited under presumably comparable taphonomic conditions, variations in coprofabrics infer differences in diet and/or digestive efficiency of the host animal. Size and morphology of the coprolites imply that most, if not all, were produced by vertebrates and the largest specimens infer a host animal of considerable size. Two spiralled coprolite morphotypes yield bone fragments and scales of bony fish, suggesting that the producers were piscivorous sharks. Other coprolites contain inclusions interpreted as the remains of shelled invertebrates, thus indicating that they may have derived from durophagous predators and/or scavengers. The occurrence of small scrapes, tracks and traces on several specimens suggest manipulation of the faeces by other (presumably coprophagous) organisms after deposition. The collective data from the Åsen coprolites provide new insights into a shallow‐water Late Cretaceous marine ecosystem hitherto known solely from body fossils. □ Coprolites, vertebrates, coprofabrics, taphonomy, trophic levels, Upper Cretaceous, Sweden.  相似文献   

8.
Some aquatic snails are able to use chemical cues (kairomones) to differentiate between predators that have fed on snails and predators that have eaten other prey. However, it is unknown if terrestrial snails are able to differentiate between snail-fed predators and predators that have not recently consumed snails. Here we document diet-based chemical discrimination of a predator, the ground beetle Carabus carabus, by a terrestrial snail Theba pisana. When exposed to the feces of snail-fed beetles, snails initially stopped all movements and then increased climbing speed. The snails also decreased the time to deposition of their egg clutch. The snails did not react to an extract of crushed snails. Snails had only a partial reaction to the feces of beetles that had fed on chicken (Gallus domesticus) livers—they decreased climbing speed but did not alter egg laying times. These responses may be adaptive in that they allow snails to differentiate between individual beetles that may pose an immediate threat and beetles that may not. This is one of only a few studies to examine predator-diet effects on reproductive behavior.  相似文献   

9.
Achatinella mustelina is a critically endangered tree snail that subsists entirely by grazing microbes from leaf surfaces of native trees. Little is known about the fundamental aspects of these microbe assemblages: not taxonomic composition, how this varies with host plant or location, nor whether snails selectively consume microbes. To address these questions, we collected 102 snail faecal samples as a proxy for diet, and 102 matched‐leaf samples from four locations. We used Illumina amplicon sequencing to determine bacterial and fungal community composition. Microbial community structure was significantly distinct between snail faeces and leaf samples, but the same microbes occurred in both. We conclude that snails are not ‘picky’ eaters at the microbial level, but graze the surface of whatever plant they are on. In a second experiment, the gut was dissected from non‐endangered native tree snails in the same family as Achatinella to confirm that faecal samples reflect gut contents. Over 60% of fungal reads were shared between faeces, gut and leaf samples. Overall, location, sample type (faeces or leaf) and host plant identity all significantly explained the community composition and variation among samples. Understanding the microbial ecology of microbes grazed by tree snails enables effective management when conservation requires captive breeding or field relocation.  相似文献   

10.
The effect of irradiation on the reproductive ability of the orchid snail, Zonitoides arboreus, a serious pest of potted orchids in Hawaii, was investigated. Weekly egg production averaged between 0.8 and 1.9 over a 9–wk period for snails not exposed to irradiation, and egg hatch averaged 61%. In comparison to untreated controls, irradiation of snails at the lowest dose tested (34–37 Gy) reduced egg production and egg hatch by 63% and 94%, respectively over a 9–wk period. None of the snails treated with levels of irradiation ≥ 69 Gy produced viable eggs. This is the first study measuring the effect of ionising irradiation on a terrestrial snail or slug species using sterilising doses. Overall, the results show that the reproductive ability of this snail species is affected by irradiation in a similar manner as for Biomphalaria glabrata, an aquatic snail for which the effects of irradiation have been studied in detail.  相似文献   

11.
Abstract.  1. Colonisation of ephemeral aquatic habitats via oviposition by invertebrates may be influenced by a variety of factors, such as the quality of aquatic habitat and the characteristics of the surrounding terrestrial environment. The water-holding bracts of Heliconia caribaea , a subtropical herb that produces ephemeral aquatic habitats, are colonised by a variety of aquatic invertebrates. To date, no experiments have been conducted to identify the cues that affect colonisation patterns via oviposition selection in Heliconia .
2. Artificial bracts were used to assess the influence of two types of resources found in bracts (plant produced carbohydrates and terrestrial snail faeces) on oviposition site-selection by invertebrate taxa via a replicated factorial design at four locations in the Luquillo Experimental Forest of Puerto Rico, U.S.A. Eleven microsite characteristics thought to affect oviposition were measured for each experimental container.
3. Most taxa responded in a minor way to microsite characteristics, whereas site selection by the most numerically dominant groups (e.g. Syrphidae) were influenced principally by resources within artificial bracts. Overall, the greatest response by particular taxa was to the presence of snail faeces. At the community level, total abundance, richness, and evenness of invertebrates increased with increasing biomass of faeces. Variation in sugar produced a more complex response.
4. In general, the terrestrial matrix surrounding these aquatic habitats was only a secondary determinant of population and community attributes; the principal factor affecting site selection was the quality of the aquatic habitat.  相似文献   

12.
New dinosaur tracks have been found near Bisceglie (Bari, Apulia), on loose blocks ascribed to the Corato Member (late Bedoulian to early Gargasian) of the Calcare di Bari Fm. The material consists of isolated footprints as well as of short trackways of quadrupedal and bipedal dinosaurs. The new tracksite has yielded a quite differentiated dinosaur ichnocoenosis, including theropod, sauropod, thyreophoran and ornithopod footprints.The discovery of early Aptian dinosaur footprints in the limestone of the carbonate platform of southern Italy gives new insights on dinosaur distribution, and new palaeontological constraints for the palaeogeographic reconstruction of the Mediterranean Tethys during the Cretaceous. The analysis of this and others ichnosites of the periadriatic carbonate platforms, gives evidence of repeated emersions and of widespread land-vertebrates dwelling. The characteristics of the associations suggest that the trackmakers did not constitute a real coevolved association but the occasional co-occurrence of taxa after migration.The results emphasize the need of both structural and environmental continuity and walking ways between a southern continent and the periadriatic carbonate platforms during the Early Cretaceous.  相似文献   

13.
The largest specimen of the four‐winged dromaeosaurid dinosaur Microraptor gui includes preserved gut contents. Previous reports of gut contents and considerations of functional morphology have indicated that Microraptor hunted in an arboreal environment. The new specimen demonstrates that this was not strictly the case, and offers unique insights into the ecology of nonavian dinosaurs early in the evolution of flight. The preserved gut contents are composed of teleost fish remains. Several morphological adaptations of Microraptor are identified as consistent with a partially piscivorous diet, including dentition with reduced serrations and forward projecting teeth on the anterior of the dentary. The feeding habits of Microraptor can now be understood better than that of any other carnivorous nonavian dinosaur, and Microraptor appears to have been an opportunistic and generalist feeder, able to exploit the most common prey in both the arboreal and aquatic microhabitats of the Early Cretaceous Jehol ecosystem.  相似文献   

14.
Abstract: The Cretaceous dinosaur fauna of Indo‐Pakistan has remained poorly understood because of a lack of associated and articulated remains, proliferation of named species, and an incomplete understanding of the dinosaur clades present (e.g. abelisaurid theropods; titanosaur sauropods). Continued work on existing collections, and new discoveries of dinosaur material from India, Pakistan and elsewhere in Gondwana, has begun to resolve the composition and affinities of Indo‐Pakistani dinosaurs. Here, we provide archival evidence that documents associations between postcranial remains of a sauropod collected from Chhota Simla, India by C. A. Matley in the 1930s and later described as ‘Titanosaurus sp.’ This partial skeleton, which represents only the fifth such documented association from Indo‐Pakistan, is referable to Jainosaurus cf. septentrionalis and provides a fuller understanding of its anatomy and phylogenetic affinities.  相似文献   

15.
Klug, S. & Kriwet, J. (2010). Timing of deep‐sea adaptation in dogfish sharks: insights from a supertree of extinct and extant taxa. —Zoologica Scripta, 39, 331–342. Dogfish sharks (Squaliformes) constitute a monophyletic group of predominantly deep‐water neoselachians, but the reasons and timing of their adaptation to this hostile environment remain ambiguous. Late Cretaceous dogfish sharks, which generally would be associated with deep‐water occur predominantly in shallow water environments. Did the end‐Cretaceous mass extinction event that eliminated large numbers of both terrestrial and aquatic taxa and clades including sharks trigger the evolutionary adaptation of present deep‐water dogfish sharks? Here, we construct, date, and analyse a genus‐level phylogeny of extinct and living dogfish sharks to bring a new perspective to this question. For this, eleven partial source trees of dogfish shark interrelationships were merged to create a comprehensive phylogenetic hypothesis. The resulting supertree is the most inclusive estimate of squaliform interrelationships that has been proposed to date containing 23 fossil and extant members of all major groups. ?Eoetmopterus represents the oldest dalatoid. ?Microetmopterus, ?Paraphorosoides, ?Proetmopterus and ?Squaliogaleus are stem‐group dalatoids in which bioluminescence most likely was not developed. According to our analyses, bioluminescence in dogfish sharks was already developed in the early Late Cretaceous indicating that these sharks adapted to deep‐water conditions most likely at about 100 Mya. The advantage of this reconstruction is that the fossil record is used directly for age node estimates rather than employing molecular clock approaches.  相似文献   

16.
Mateus, O., Dyke, G.J., Motchurova-Dekova, N., Kamenov, G.D. & Ivanov, P. 2010: The first record of a dinosaur from Bulgaria. Lethaia, Vol. 43, pp. 88–94.
A portion of a left humerus from the Upper Maastrichtian of Vratsa district (NW Bulgaria) is shown to be from a non-avian theropod dinosaur: this is the first record of a dinosaur from Bulgaria. We describe this bone, suggest that it most likely pertains to an ornithomimosaur, and discuss the fossil record of other similar taxa of Late Cretaceous age that have been reported from Europe. To investigate the taphonomy of this fossil, rare earth element (REE) analysis is combined with strontium (Sr) isotope data to confirm that this Bulgarian dinosaur bone was initially fossilized in a terrestrial environment, then later re-worked into late Maastrichtian marine sediments. □ Bulgaria , Dinosauria , Late Cretaceous , Ornithomimosauria , rare earth elements , Sr isotopes , taphonomy , Theropoda .  相似文献   

17.
Multiple, small, cylindrical scroll coprolites having rounded and tapering ends and pertaining to a new ichnotaxon have been recovered from the Upper Triassic Tiki Formation of India. This is the first record of scroll coprolites from the Mesozoic. Based on cross‐sectional geometry, external surface textures, and internal morphology, these coprolites are subdivided into three morphotypes. The coprolites contain several kinds of undigested food material in the form of ganoid fish scales, teeth, lower jaw and skeletal remains of various osteichthyans, chondrichthyans, archosauriforms and indeterminate reptiles. These inclusions are embedded in the groundmass separated by thin mucosal layers. The groundmass contains abundant gas vesicles, and secondarily‐filled shrinkage cracks. EDS analysis shows that the overall composition of the coprolites reflects Ca, P, C and O, suggesting calcium phosphate mineralogy, though other elements such as Fe, Mn, Al, Si are present in lesser proportions. Based on their similarity with the scrolled faeces of extant euryhaline hammerhead sharks, it is deduced that these coprolites were produced by euryhaline hybodontid sharks. At least two hybodontid taxa, Lonchidion and Pristrisodus, show high prevalence in the Tiki vertebrate fauna, suggesting that these were the possible producers. As the coprolite inclusions contain remains of other aquatic animals, these carnivorous hybodonts constituted the dominant predators of the Tiki aquatic ecosystem.  相似文献   

18.
Ornithischia is a morphologically and taxonomically diverse clade of dinosaurs that originated during the Late Triassic and were the dominant large‐bodied herbivores in many Cretaceous ecosystems. The early evolution of ornithischian dinosaurs is poorly understood, as a result in part of a paucity of fossil specimens, particularly during the Triassic. The most complete Triassic ornithischian dinosaur yet discovered is Eocursor parvus from the lower Elliot Formation (Late Triassic: Norian–Rhaetian) of Free State, South Africa, represented by a partial skull and relatively complete postcranial skeleton. Here, the anatomy of Eocursor is described in detail for the first time, and detailed comparisons are provided to other basal ornithischian taxa. Eocursor is a small‐bodied taxon (approximately 1 m in length) that possesses a plesiomorphic dentition consisting of unworn leaf‐shaped crowns, a proportionally large manus with similarities to heterodontosaurids, a pelvis that contains an intriguing mix of plesiomorphic and derived character states, and elongate distal hindlimbs suggesting well‐developed cursorial ability. The ontogenetic status of the holotype material is uncertain. Eocursor may represent the sister taxon to Genasauria, the clade that includes most of ornithischian diversity, although this phylogenetic position is partially dependent upon the uncertain phylogenetic position of the enigmatic and controversial clade Heterodontosauridae. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 648–684.  相似文献   

19.
Non‐avian dinosaurs went extinct 66 million years ago, geologically coincident with the impact of a large bolide (comet or asteroid) during an interval of massive volcanic eruptions and changes in temperature and sea level. There has long been fervent debate about how these events affected dinosaurs. We review a wealth of new data accumulated over the past two decades, provide updated and novel analyses of long‐term dinosaur diversity trends during the latest Cretaceous, and discuss an emerging consensus on the extinction's tempo and causes. Little support exists for a global, long‐term decline across non‐avian dinosaur diversity prior to their extinction at the end of the Cretaceous. However, restructuring of latest Cretaceous dinosaur faunas in North America led to reduced diversity of large‐bodied herbivores, perhaps making communities more susceptible to cascading extinctions. The abruptness of the dinosaur extinction suggests a key role for the bolide impact, although the coarseness of the fossil record makes testing the effects of Deccan volcanism difficult.  相似文献   

20.
Were some dinosaurs gregarious?   总被引:1,自引:0,他引:1  
A careful survey of the dinosaur footprints and trackways (identified as Eubrontes, Anchisauripus and Grallator) at the Mt. Tom site north of Holyoke, Massachusetts, and plots of their orientations reveal that an improbable percentage (70%) of the tracks are oriented in a nearparallel course. All but one of these coincident ancient traverses were probably made by the same kind of Triassic dinosaur (the footprints of which are referred to as Eubrontes). Comparable trackway orientation patterns have been reported by Albritton (1942) near Comanche, Texas for an Early Cretaceous dinosaur (iguanodobntid?) and Bird (1941, 1944) cited paralled sauporod trackways of Early Cretaceous age near the Paluxy River in Texas. Probability dictates that these sub-parallel traverses were not independent events and the presence of other deviating trackways at all three sites indicates that the trackmakers probably were not confined in their passage by physical barriers. Furthermore, the coincidental occurrence of such natural barriers at all of the sites mentioned here seems highly improbable. the combinedevidence of the Massachusetts site and the two Texas localities, together with the apparently widespread occurrence of dinosaur trackway lineation, strongly indicates gregarious habits for several different kinds of dinosaurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号