共查询到20条相似文献,搜索用时 12 毫秒
1.
Lisa A. Freed James S. Acierno?Jr. Daisy Dai Maire Leyne Jane E. Marshall Francesca Nesta Robert A. Levine Susan A. Slaugenhaupt 《American journal of human genetics》2003,72(6):1551-1559
Mitral valve prolapse (MVP) is a common cardiovascular abnormality in the United States, occurring in approximately 2.4% of the general population. Clinically, patients with MVP exhibit fibromyxomatous changes in one or both of the mitral leaflets that result in superior displacement of the leaflets into the left atrium. Although often clinically benign, MVP can be associated with important accompanying sequelae, including mitral regurgitation, bacterial endocarditis, congestive heart failure, atrial fibrillation, and even sudden death. MVP is genetically heterogeneous and is inherited as an autosomal dominant trait that exhibits both sex- and age-dependent penetrance. In this report, we describe the results of a genome scan and show that a locus for MVP maps to chromosome 11p15.4. Multipoint parametric analysis performed by use of GENEHUNTER gave a maximum LOD score of 3.12 for the chromosomal region immediately surrounding the four-marker haplotype D11S4124-D11S2349-D11S1338-D11S1323, and multipoint nonparametric analysis (NPL) confirms this finding (NPL=38.59; P=.000397). Haplotype analysis across this region defines a 4.3-cM region between the markers D11S1923 and D11S1331 as the location of a new MVP locus, MMVP2, and confirms the genetic heterogeneity of this disorder. The discovery of genes involved in the pathogenesis of this common disease is crucial to understanding the marked variability in disease expression and mortality seen in MVP. 相似文献
2.
Ulrich Finckh Suying Xu Govindasamy Kumaramanickavel Manfred Schürmann J.K Mukkadan S.Tony Fernandez Sheila John James L Weber Michael J Denton Andreas Gal 《Genomics》1998,48(3):341
Autosomal recessive retinitis pigmentosa (arRP) is a genetically and clinically heterogeneous and progressive degenerative disorder of the retina, leading usually to severe visual handicap in adulthood. To date, disease loci/genes have been mapped/identified only in a minority of cases. DNA samples were collected from 20 large consanguineous Indian families, in which arRP segregated and that were suitable for homozygosity mapping of the disease locus. After excluding linkage to all known arRP loci, a genome-wide scan was initiated. In two families, homozygosity mapping, haplotype analysis, and linkage data mapped the disease locus (RP22) in an approximately 16-cM region between D16S287 and D16S420 on the proximal short arm of chromosome 16. No mutation has been found by direct sequencing in the gene (CRYM) encoding μ crystallin, which maps in the critical region. 相似文献
3.
Anna-Lena Volckmar Jie-Yun Song Ivonne Jarick Carolin Pütter Maria G?bel Lucie Horn Christoph Struve Katharina Haas Nadja Knoll Harald Grallert Thomas Illig Thomas Reinehr Hai-Jun Wang Johannes Hebebrand Anke Hinney 《PloS one》2015,10(5)
IntroductionLarge-scale genome-wide association studies (GWASs) have identified 97 chromosomal loci associated with increased body mass index in population-based studies on adults. One of these SNPs, rs7359397, tags a large region (approx. 1MB) with high linkage disequilibrium (r²>0.7), which comprises five genes (SH2B1, APOBR, sulfotransferases: SULT1A1 and SULT1A2, TUFM). We had previously described a rare mutation in SH2B1 solely identified in extremely obese individuals but not in lean controls.MethodsThe coding regions of the genes APOBR, SULT1A1, SULT1A2, and TUFM were screened for mutations (dHPLC, SSCP, Sanger re-sequencing) in 95 extremely obese children and adolescents. Detected non-synonymous variants were genotyped (TaqMan SNP Genotyping, MALDI TOF, PCR-RFLP) in independent large study groups (up to 3,210 extremely obese/overweight cases, 485 lean controls and 615 obesity trios). In silico tools were used for the prediction of potential functional effects of detected variants.ResultsExcept for TUFM we detected non-synonymous variants in all screened genes. Two polymorphisms rs180743 (APOBR p.Pro428Ala) and rs3833080 (APOBR p.Gly369_Asp370del9) showed nominal association to (extreme) obesity (uncorrected p = 0.003 and p = 0.002, respectively). In silico analyses predicted a functional implication for rs180743 (APOBR p.Pro428Ala). Both APOBR variants are located in the repetitive region with unknown function.ConclusionVariants in APOBR contributed as strongly as variants in SH2B1 to the association with extreme obesity in the chromosomal region chr16p11.2. In silico analyses implied no functional effect of several of the detected variants. Further in vitro or in vivo analyses on the functional implications of the obesity associated variants are warranted. 相似文献
4.
I. A. Meijer C. K. Hand K. K. Grewal M. G. Stefanelli E. J. Ives G. A. Rouleau 《American journal of human genetics》2002,70(3):763-769
The hereditary spastic ataxias (HSA) are a group of clinically heterogeneous neurodegenerative disorders characterized by lower-limb spasticity and generalized ataxia. HSA was diagnosed in three unrelated autosomal dominant families from Newfoundland, who presented mainly with severe leg spasticity, dysarthria, dysphagia, and ocular-movement abnormalities. A genomewide scan was performed on one family, and linkage to a novel locus for HSA on chromosome 12p13, which contains the as-yet-unidentified gene locus SAX1, was identified. Fine mapping confirmed linkage in the two large families, and the third, smaller family showed LOD scores suggestive of linkage. Haplotype construction by use of 13 polymorphic markers revealed that all three families share a disease haplotype, which key recombinants and overlapping haplotypes refine to about 5 cM, flanked by markers D12S93 and GATA151H05. SAX1 is the first locus mapped for autosomal dominant HSA. 相似文献
5.
Tomita Ha Nagamitsu S Wakui K Fukushima Y Yamada K Sadamatsu M Masui A Konishi T Matsuishi T Aihara M Shimizu K Hashimoto K Mineta M Matsushima M Tsujita T Saito M Tanaka H Tsuji S Takagi T Nakamura Y Nanko S Kato N Nakane Y Niikawa N 《American journal of human genetics》1999,65(6):1688-1697
Paroxysmal kinesigenic choreoathetosis (PKC), the most frequently described type of paroxysmal dyskinesia, is characterized by recurrent, brief attacks of involuntary movements induced by sudden voluntary movements. Some patients with PKC have a history of infantile afebrile convulsions with a favorable outcome. To localize the PKC locus, we performed genomewide linkage analysis on eight Japanese families with autosomal dominant PKC. Two-point linkage analysis provided a maximum LOD score of 10.27 (recombination fraction [theta] =.00; penetrance [p] =.7) at marker D16S3081, and a maximum multipoint LOD score for a subset of markers was calculated to be 11.51 (p = 0.8) at D16S3080. Haplotype analysis defined the disease locus within a region of approximately 12.4 cM between D16S3093 and D16S416. P1-derived artificial chromosome clones containing loci D16S3093 and D16S416 were mapped, by use of FISH, to 16p11.2 and 16q12.1, respectively. Thus, in the eight families studied, the chromosomal localization of the PKC critical region (PKCR) is 16p11.2-q12.1. The PKCR overlaps with a region responsible for "infantile convulsions and paroxysmal choreoathetosis" (MIM 602066), a recently recognized clinical entity with benign infantile convulsions and nonkinesigenic paroxysmal dyskinesias. 相似文献
6.
Mapping of Charcot-Marie-Tooth Disease Type 1C to Chromosome 16p Identifies a Novel Locus for Demyelinating Neuropathies 总被引:4,自引:0,他引:4 下载免费PDF全文
Valerie A. Street Jeff D. Goldy Alana S. Golden Bruce L Tempel Thomas D. Bird Phillip F. Chance 《American journal of human genetics》2002,70(1):244-250
Charcot-Marie-Tooth (CMT) neuropathy represents a genetically heterogeneous group of diseases affecting the peripheral nervous system. We report genetic mapping of the disease to chromosome 16p13.1-p12.3, in two families with autosomal dominant CMT type 1C (CMT1C). Affected individuals in these families manifest characteristic CMT symptoms, including high-arched feet, distal muscle weakness and atrophy, depressed deep-tendon reflexes, sensory impairment, slow nerve conduction velocities, and nerve demyelination. A maximal combined LOD score of 14.25 was obtained with marker D16S500. The combined haplotype analysis in these two families localizes the CMT1C gene within a 9-cM interval flanked by markers D16S519 and D16S764. The disease-linked haplotypes in these two pedigrees are not conserved, suggesting that the gene mutation underlying the disease in each family arose independently. The epithelial membrane protein 2 gene (EMP2), which maps to chromosome 16p13.2, was evaluated as a candidate gene for CMT1C. 相似文献
7.
We have isolated and sequenced cDNA clones for the human 43-kDa acetylcholine receptor-associated protein rapsyn. The cDNA encodes a 412-amino-acid protein that has a predicted molecular mass of 46,330 Da and shows 96% sequence identity with mouse rapsyn. Analysis of PCR amplifications, first from somatic cell hybrids and subsequently from radiation hybrids, localizes the human RAPSN gene locus to chromosome 11p11.2–p11.1 in close proximity to ACP2. 相似文献
8.
A Third Locus for Autosomal Dominant Cerebellar Ataxia Type 1 Maps to Chromosome 14q24.3-qter: Evidence for the Existence of a Fourth Locus 下载免费PDF全文
Giovanni Stevanin Eric Le Guern Nicole Ravis Herv Chneiweiss Alexandra Dürr Graldine Cancel Alain Vignal Anne-Laure Boch Merle Ruberg Christiane Penet Yolaine Pothin Isabelle Lagroua Michel Haguenau Grald Rancurel Jean Weissenbach Yves Agid Alexis Brice 《American journal of human genetics》1994,54(1):11-20
The autosomal dominant cerebellar ataxias (ADCA) type I are a group of neurological disorders that are clinically and genetically heterogeneous. Two genes implicated in the disease, SCA1 (spinal cerebellar ataxia 1) and SCA2, are already localized. We have mapped a third locus to chromosome 14q24.3-qter, by linkage analysis in a non-SCA1/non-SCA2 family and have confirmed its existence in a second such family. We suggest designating this new locus “SCA3.” Combined analysis of the two families restricted the SCA3 locus to a 15-cM interval between markers D14S67 and D14S81. The gene for Machado-Joseph disease (MJD), a clinically different form of ADCA type I, has been recently assigned to chromosome 14q24.3-q32. Although the SCA3 locus is within the MJD region, linkage analyses cannot yet demonstrate whether they result from mutations of the same gene. Linkage to all three loci (SCA1, SCA2, and SCA3) was excluded in another family, which indicates the existence of a fourth ADCA type I locus. 相似文献
9.
Autosomal Dominant Postaxial Polydactyly, Nail Dystrophy, and Dental Abnormalities Map to Chromosome 4p16, in the Region Containing the Ellis–van Creveld Syndrome Locus 总被引:1,自引:0,他引:1 下载免费PDF全文
Timothy D. Howard Alan E. Guttmacher Wendy McKinnon Mridula Sharma Victor A. McKusick Ethylin Wang Jabs 《American journal of human genetics》1997,61(6):1405-1412
We have studied a four-generation family with features of Weyers acrofacial dysostosis, in which the proband has a more severe phenotype, resembling Ellis-van Creveld syndrome. Weyers acrofacial dysostosis is an autosomal dominant condition with dental anomalies, nail dystrophy, postaxial polydactyly, and mild short stature. Ellis-van Creveld syndrome is a similar condition, with autosomal recessive inheritance and the additional features of disproportionate dwarfism, thoracic dysplasia, and congenital heart disease. Linkage and haplotype analysis determined that the disease locus in this pedigree resides on chromosome 4p16, distal to the genetic marker D4S3007 and within a 17-cM region flanking the genetic locus D4S2366. This region includes the Ellis-van Creveld syndrome locus, which previously was reported to map within a 3-cM region between genetic markers D4S2957 and D4S827. Either the genes for the condition in our family and for Ellis-van Creveld syndrome are near one another or these two conditions are allelic with mutations in the same gene. These data also raise the possibility that Weyers acrofacial dysostosis is the heterozygous expression of a mutation that, in homozygous form, causes the autosomal recessive disorder Ellis-van Creveld syndrome. 相似文献
10.
PARK7, a Novel Locus for Autosomal Recessive Early-Onset Parkinsonism, on Chromosome 1p36 总被引:20,自引:0,他引:20
C. M. van?Duijn M. C. J. Dekker V. Bonifati R. J. Galjaard J. J. Houwing-Duistermaat P. J. L. M. Snijders L. Testers G. J. Breedveld M. Horstink L. A. Sandkuijl J. C. van?Swieten B. A. Oostra P. Heutink 《American journal of human genetics》2001,69(3):629-634
Although the role of genetic factors in the origin of Parkinson disease has long been disputed, several genes involved in autosomal dominant and recessive forms of the disease have been localized. Mutations associated with early-onset autosomal recessive parkinsonism have been identified in the Parkin gene, and recently a second gene, PARK6, involved in early-onset recessive parkinsonism was localized on chromosome 1p35-36. We identified a family segregating early-onset parkinsonism with multiple consanguinity loops in a genetically isolated population. Homozygosity mapping resulted in significant evidence for linkage on chromosome 1p36. Multipoint linkage analysis using MAPMAKER-HOMOZ generated a maximum LOD-score of 4.3, with nine markers spanning a disease haplotype of 16 cM. On the basis of several recombination events, the region defining the disease haplotype can be clearly separated, by > or =25 cM, from the more centromeric PARK6 locus on chromosome 1p35-36. Therefore, we conclude that we have identified on chromosome 1 a second locus, PARK7, involved in autosomal recessive, early-onset parkinsonism. 相似文献
11.
12.
Investigation of a Family with Autosomal Dominant Dilated Cardiomyopathy Defines a Novel Locus on Chromosome 2q14-q22 总被引:4,自引:0,他引:4 下载免费PDF全文
Martin Jung Imke Poepping Andreas Perrot Annette E. Ellmer Thomas F. Wienker Rainer Dietz André Reis Karl Josef Osterziel 《American journal of human genetics》1999,65(4):1068-1077
Dilated cardiomyopathy (DCM) is a leading cause of heart failure and the most frequent indication for heart transplantation in young patients. Probably >25% of DCM cases are of familial etiology. We report here genetic localization in a three-generation German family with 12 affected individuals with autosomal dominant familial DCM characterized by ventricular dilatation, impaired systolic function, and conduction disease. After exclusion of known DCM loci, we performed a whole-genome screen and detected linkage of DCM to chromosome 2q14-q22. Investigation of only affected individuals defines a 24-cM interval between markers D2S2224 and D2S2324; when unaffected individuals are also included, the critical region decreases to 11 cM between markers D2S2224 and D2S112, with a peak LOD score of 3.73 at recombination fraction 0 at D2S2339. The identification of an additional locus for familial autosomal dominant DCM underlines the genetic heterogeneity and may assist in the elucidation of the causes of this disease. 相似文献
13.
Shangxi Xiao Xiurong Wang Bingyin Qu Minghua Yang Guiyu Liu Lei Bu Ying Wang Liqin Zhu Hao Lei Landian Hu Xuejun Zhang Jing Liu Guoping Zhao Xiangyin Kong 《Genomics》2000,68(3):247
Hereditary gingival fibromatosis (HGF, MIM 135300; approved gene symbol GINGF) is an oral disease characterized by enlargement of gingiva. Recently, a locus for autosomal dominant HGF has been mapped to an 11-cM region on chromosome 2p21. In the current investigation, we genotyped four Chinese HGF families using polymorphic microsatellite markers on 2p21. The HOMOG test provided evidence for genetic homogeneity, with evidence for linkage in four families (heterogeneity versus homogeneity test HOMOG, χ2 = 0.00). A cumulative maximum two-point lod score of 5.04 was produced with marker D2S390 at a recombination frequency of θ = 0 in the four linked families. Haplotype analysis localized the hereditary gingival fibromatosis locus within the region defined by D2S352 and D2S2163. This region overlaps by 3.8 cM with the previously reported HGF region. Single-strand conformation polymorphism and sequence analysis of the coding region of cytochrome P450 1B1 (CYP1B1) excluded it as a likely candidate gene. 相似文献
14.
15.
John B. Kerrison Vronique J. Arnould M. Michael Barmada Robert K. Koenekoop Barbara J. Schmeckpeper Irene H. Maumenee 《Genomics》1996,33(3):523
Congenital nystagmus is an idiopathic disorder characterized by bilateral ocular oscillations usually manifest during infancy. Vision is typically decreased due to slippage of images across the fovea. As such, visual acuity correlates with nystagmus intensity, which is the amplitude and frequency of eye movements at a given position of gaze. X-linked, autosomal dominant, and autosomal recessive pedigrees have been described, but no mapping studies have been published. We recently described a large pedigree with autosomal dominant congenital nystagmus. A genome-wide search resulted in six markers on 6p linked by two-point analysis at θ = 0 (D6S459, D6S452, D6S465, FTHP1, D6S257, D6S430). Haplotype analysis localizes the gene for autosomal dominant congenital motor nystagmus to an 18-cM region between D6S271 and D6S455. 相似文献
16.
Rabia Habib Muhammad Ansar Manuel Mattheisen Muhammad Shahid Ghazanfar Ali Wasim Ahmad Regina C. Betz 《PloS one》2015,10(6)
Ectodermal dysplasias (EDs) are a large heterogeneous group of inherited disorders exhibiting abnormalities in ectodermally derived appendages such as hair, nails, teeth and sweat glands. EDs associated with reticulated pigmentation phenotype are rare entities for which the genetic basis and pathophysiology are not well characterized. The present study describes a five generation consanguineous Pakistani family segregating an autosomal recessive form of a novel type of ectodermal dysplasia. The affected members present with sparse and woolly hair, severe nail dystrophy and reticulate skin pigmentation. After exclusion of known gene loci related with other skin disorders, genome-wide linkage analysis was performed using Illumina HumanOmniExpress beadchip SNP arrays. We linked this form of ED to human chromosome 18p11.32-p11.31 flanked by the SNPs rs9284390 (0.113Mb) and rs4797100 (3.14 Mb). A maximum two-point LOD score of 3.3 was obtained with several markers along the disease interval. The linkage interval of 3.03 Mb encompassed seventeen functional genes. However, sequence analysis of all these genes did not discover any potentially disease causing-variants. The identification of this novel locus provides additional information regarding the mapping of a rare form of ED. Further research, such as the use of whole-genome sequencing, would be expected to reveal any pathogenic mutation within the disease locus. 相似文献
17.
Ralf Sudbrak Vincent Procaccio Monica Klausnitzer Julie L. Curran Koen Monsieurs Christine Van Broeckhoven Richard Ellis Luc Heyetens Edmund J. Hartung Geneviéve Kozak-Ribbens Dorit Heilinger Jean Weissenbach Frank Lehman-Horn Clemens R. Mueller Thomas Deufel Alistair D. Stewart Jo?l Lunardi 《American journal of human genetics》1995,56(3):684-691
Malignant hyperthermia (MH) is a potentially lethal pharmacogenetic disease for which MH susceptibility (MHS) is transmitted as an autosomal dominant trait. A potentially life-threatening MH crisis is triggered by exposure to commonly used inhalational anesthetics and depolarizing muscle relaxants. The first malignant hyperthermia susceptibility locus (MHS1) was identified on human chromosome 19q13.1, and evidence has been obtained that defects in the gene for the calcium-release channel of skeletal muscle sarcoplasmic reticulum (ryanodine receptor; RYR1) can cause some forms of MH. However, MH has been shown to be genetically heterogeneous, and additional loci on chromosomes 17q and 7q have been suggested. In a collaborative search of the human genome with polymorphic microsatellite markers, we now found linkage of the MHS phenotype, as assessed by the European in vitro contracture test protocol, to markers defining a 1-cM interval on chromosome 3q13.1. A maximum multipoint lod score of 3.22 was obtained in a single German pedigree with classical MH, and none of the other pedigrees investigated in this study showed linkage to this region. Linkage to both MHS1/RYR1 and putative loci on chromosome 17q and 7q were excluded. This study supports the view that considerable genetic heterogeneity exists in MH. 相似文献
18.
19.
The Severe Perinatal Form of Autosomal Recessive Polycystic Kidney Disease Maps to Chromosome 6p21.1-p12: Implications for Genetic Counseling 总被引:7,自引:1,他引:7 下载免费PDF全文
L. M. Guay-Woodford G. Muecher S. D. Hopkins E. D. Avner G. G. Germino A. P. Guillot J. Herrin R. Holleman D. A. Irons W. Primack P. D. Thomson F. B. Waldo P. W. Lunt K. Zerres 《American journal of human genetics》1995,56(5):1101-1107
Autosomal recessive polycystic kidney disease (ARPKD) is a one of the most common hereditary renal cystic diseases in children. Its clinical spectrum is widely variable with most cases presenting in infancy. Most affected neonates die within the first few hours of life. At present, prenatal diagnosis relies on fetal sonography, which is often imprecise in detecting even the severe form of the disease. Recently, in a cohort of families with mostly milder ARPKD phenotypes, an ARPKD locus was mapped to a 13-cM region of chromosome 6p21-cen. To determine whether severe perinatal ARPKD also maps to chromosome 6p, we have analyzed the segregation of seven microsatellite markers from the ARPKD interval in 22 families with the severe phenotype. In the majority of the affected infants, ARPKD was documented by histopathology. Our data confirm linkage and refine the ARPKD region to a 3.8-cM interval, delimited by the markers D6S465/D6S427/D6S436/D6S272 and D6S466. Taken together, these results suggest that, despite the wide variability in clinical phenotypes, there is a single ARPKD gene. These linkage data and the absence of genetic heterogeneity in all families tested to date have important implications for DNA-based prenatal diagnoses as well as for the isolation of the ARPKD gene. 相似文献
20.
M A Pritchard E Baker S A Whitmore G R Sutherland R L Idzerda L S Park D Cosman N A Jenkins D J Gilbert N G Copeland 《Genomics》1991,10(3):801-806
The chromosomal location of both the human and the mouse interleukin-4 receptor (IL4R) genes have been determined. The human gene was localized to 16p11.2-16p12.1 by in situ hybridization and confirmed by Southern blot analysis of DNA from a panel of mouse-human hybrid somatic cell lines. The mouse homolog was positioned in the distal region of chromosome 7 by interspecific backcross analysis. The results suggest that the IL4R locus is unlinked to other members of the hematopoietin receptor family. Interestingly, the position on human chromosome 16 suggests that the IL4R may be a candidate for rearrangements, as 12;16 translocations are often associated with myxoid liposarcomas. 相似文献