首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Disturbance is thought to be a major factor influencing patterns of biodiversity. In addition, disturbance can modify community composition if there are species specific trade-offs between fitness and disturbance tolerance. Here, we examine the role of disturbance on the evolution of coexisting biofilm-forming morphotypes of Pseudomonas fluorescens maintained in spatially structured laboratory microcosms. We identified four heritably stable ecotypes that varied significantly in their competitiveness under different disturbance treatments. Furthermore, we identified significant trade-offs in competitiveness across disturbance treatments for three of four of these ecotypes. These trade-offs modified dominance relationships between strains and thus altered community composition, with a peak of ecotype diversity occurring at intermediate disturbance frequencies.  相似文献   

2.
  总被引:9,自引:2,他引:9  
Coexistence mechanisms that require environmental variation to operate contribute importantly to the maintenance of biodiversity. One famous hypothesis of diversity maintenance under disturbance is the intermediate disturbance hypothesis (IDH). The IDH proposes patterns of peaked diversity under intermediate disturbance regimes, based on a tension between competitively superior species and species which can rapidly colonize following disturbance. We review the literature, and describe recent research that suggests that more than one underlying mechanism can generate this unimodal diversity pattern in disturbed environments. Several exciting emerging research areas are identified, including interactions between disturbance types, operation of the IDH in multi‐trophic systems, and changes in disturbance regimes. However, empirical work is still focussed on describing the IDH pattern, with little emphasis on identifying its mechanistic basis. We discuss how to extend methods for identifying different coexistence mechanisms, developed in the theoretical literature, to experimental research. In an attempt to operationalize these various ideas we outline a hypothetical IDH research programme. A solid understanding of the life history attributes of the component species and their responses to disturbance will facilitate identification of the coexistence mechanism(s) underlying the IDH pattern, and provide a framework by which empirical and theoretical results can be more fully integrated.  相似文献   

3.
SUMMARY 1. The effects of physical disturbance in terms of wave exposure, shore slope and substrate mobility on the presence, species richness, cover and depth limits of the low‐growing, shallow water macrophyte community (called the low mixed community) were examined at 41 shore sites in Lake Wanaka, South Island, New Zealand. 2. Wave exposure at a site was described by the previous year's maximum depth of sediment motion and maximum vertical extension of waves, determined from a computer wave model. Shore slope at each site was recorded from ?1 to 0 m depth, and sediment stability was assessed as the cover of small gravel. 3. The low mixed community was only present on sites where the previous year's maximum depth of sediment motion was <8 m, maximum wave run‐up was <0.3 m, shore slope <0.12 m m?1, and small gravel cover <78%. 4. Species richness, cover and depth limits of the low mixed community decreased with increasing disturbance on the sites. Sixty‐two percentage of the variation in species richness could be explained by physical disturbance variables when all sites were included (N=41). When only sites with a low mixed community were included (N=22), only 18% of the variation was explained. Species richness within sites supporting a low mixed community is thus poorly explained by physical disturbance, whereas presence or absence is better explained. There was no evidence to support the intermediate disturbance hypothesis in this study. 5. Disturbance as a result of waves explained 86% of the variation in cover among sites with a low mixed community and accounted for 68 and 58% of the variation in upper and lower depth limit of the low mixed community, respectively. 6. The models obtained in this study can be used as predictive models for the low mixed community in New Zealand lakes in relation to natural physical disturbance on the shore. By integrating these results with previous studies on the effect of water level fluctuation, we describe a generalised optimum physical habitat for the low mixed community in New Zealand lakes.  相似文献   

4.
Abstract Disturbance is an important factor in species coexistence. Disturbance models require knowledge about whether disturbed patches must be colonized anew from dispersal or whether species left behind can dominate, hence altering recovery trajectories of patches. The red, filamentous alga Audouinella hermannii Roth is a common macroalgal species present at sites in the Steavenson River, a stony, upland stream in south‐eastern Australia. We conducted an experiment in which we contrasted the recovery trajectory of the alga on overturned rocks compared with those that were not overturned, and for rocks that had remnants of the alga left behind compared with others where the alga was scrubbed off completely. Rocks had either a rough or smooth texture. Experimental rocks were set out in riffles and algal recovery monitored in 8 × 8 cm quadrats at approximately 4–6 weekly intervals for 8 months. We found that overturning caused a lasting impact on A. hermannii cover, whereas rocks that were abraded by scrubbing recovered very quickly, suggesting that this alga can re‐grow quickly from fragments (a result confirmed by a second experiment). Both surface texture and resident algae affected recovery on abraded substrata. Quadrats surrounded by resident algae on rough‐textured rocks had lower algal cover compared with all other treatments. We hypothesize this effect is caused by higher densities and grazing intensities of herbivorous macroinvertebrates on those sorts of substrata, analogous to findings for marine habitats. Abrasion does not kill A. hermannii, whereas overturning likely does, necessitating new colonization. Floods often create a mix of abrasion and overturning, producing a mosaic of patches, the complexity of which is not represented well by measures of average disturbance intensity over a whole site. The use of the latter may explain some recent contradictory results among stream disturbance studies. A patch‐level perspective is needed when disturbance creates mosaics over the landscape.  相似文献   

5.
6.
    
Most ecosystems are affected by anthropogenic or natural pulse disturbances, which alter the community composition and functioning for a limited period of time. Whether and how quickly communities recover from such pulses is central to our understanding of biodiversity dynamics and ecosystem organisation, but also to nature conservation and management. Here, we present a meta‐analysis of 508 (semi‐)natural field experiments globally distributed across marine, terrestrial and freshwater ecosystems. We found recovery to be significant yet incomplete. At the end of the experiments, disturbed treatments resembled controls again when considering abundance (94%), biomass (82%), and univariate diversity measures (88%). Most disturbed treatments did not further depart from control after the pulse, indicating that few studies showed novel trajectories induced by the pulse. Only multivariate community composition on average showed little recovery: disturbed species composition remained dissimilar to the control throughout most experiments. Still, when experiments revealed a higher compositional stability, they tended to also show higher functional stability. Recovery was more complete when systems had high resistance, whereas resilience and resistance were negatively correlated. The overall results were highly consistent across studies, but significant differences between ecosystems and organism groups appeared. Future research on disturbances should aim to understand these differences, but also fill obvious gaps in the empirical assessments for regions (especially the tropics), ecosystems and organisms. In summary, we provide general evidence that (semi‐)natural communities can recover from pulse disturbances, but compositional aspects are more vulnerable to long‐lasting effects of pulse disturbance than the emergent functions associated to them.  相似文献   

7.
    
Aims and Methods Disturbance is supposed to play an important role for biodiversity and ecosystem stability as described by the intermediate disturbance hypothesis (IDH), which predicts highest species richness at intermediate levels of disturbances. In this study, we tested the effects of artificial soil disturbances on diversity of annual and perennial vascular plants and bryophytes in a field experiment in 86 agricultural grasslands differing in land use in two regions of Germany. On each grassland, we implemented four treatments: three treatments differing in application time of soil disturbances and one control. One year after experimental disturbance, we recorded vegetation and measured biomass productivity and bare ground. We analysed the disturbance response taking effects of region and land-use-accompanied disturbance regimes into account.Important findings Region and land-use type strongly determined plant species richness. Experimental disturbances had small positive effects on the species richness of annuals, but none on perennials or bryophytes. Bare ground was positively related to species richness of bryophytes. However, exceeding the creation of 12% bare ground further disturbance had a detrimental effect on bryophyte species richness, which corresponds to the IDH. As biomass productivity was unaffected by disturbance our results indicate that the disturbance effect on species richness of annuals was not due to decreased overall productivity, but rather due to short-term lowered inter- and intraspecific competition at the newly created microsites. Generally, our results highlight the importance of soil disturbances for species richness of annual plants and bryophytes in agricultural grasslands. However, most grasslands were disturbed naturally or by land-use practices and our additional experimental soil disturbances only had a small short-term effect. Overall, total plant diversity in grasslands seemed to be more limited by the availability of propagules rather than by suitable microsites for germination. Thus, nature conservation efforts to increase grassland diversity should focus on overcoming propagule limitation, for instance by additional sowing of seeds, while the creation of additional open patches by disturbance might only be appropriate where natural disturbances are scarce.  相似文献   

8.
9.
Diversity-disturbance relationships: frequency and intensity interact   总被引:1,自引:0,他引:1  
An influential ecological theory, the intermediate disturbance hypothesis (IDH), predicts that intermediate levels of disturbance will maximize species diversity. Empirical studies, however, have described a wide variety of diversity-disturbance relationships (DDRs). Using experimental populations of microbes, we show that the form of the DDR depends on an interaction between disturbance frequency and intensity. We find that diversity shows a monotonically increasing, unimodal or flat relationship with disturbance, depending on the values of the disturbance aspects considered. These results confirm recent theoretical predictions, and potentially reconcile the conflicting body of empirical evidence on DDRs.  相似文献   

10.
This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects.Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of disturbance, total community biomass, colonization, the species pool and spatial heterogeneity. The structure of the model leads to two main expectations: (1) while community biomass is important, multivariate approaches will be required to understand patterns of variation in species density, and (2) species density will be more highly correlated with light penetration to the soil surface, than with above-ground biomass, and even less well correlated with plant growth rates (productivity) or habitat fertility. At present, data are insufficient to evaluate the relative importance of the processes controlling species density. Much more work is needed if we are to adequately predict the effects of environmental changes on plant communities and species diversity.  相似文献   

11.
The intermediate disturbance hypothesis (IDH) predicts a hump-shaped relationship between regional diversity and the disturbance rate. We tested the IDH for the megabenthos inhabiting the Antarctic sea floor, which is disturbed by iceberg scouring. We used models based on the empirical knowledge of succession to calculate the IDH curve for this system and to extrapolate the presently observable range of the IDH curve to higher and lower disturbance rates. Although the hump-shaped relationship has been found for a purely theoretical (extremely large) disturbance range, within the feasible disturbance range (assumed as realistic in the Antarctic region under climate change), the regional diversity of successional stages due to iceberg scouring strongly decreases with lower disturbance rates but levels off only slowly with higher disturbance rates. The reason is the unevenness in the lifetimes of the successional stages, in that early stages are short-lived whereas late stages are long-lived. With such unevenness, increasing disturbances support the early stages without jeopardizing the later ones. Additionally, we converted this regional diversity of stages to the regional diversity of taxa using a transformation formula based on empirical knowledge of the number and mean abundance of taxa in the particular stages. Our results suggest that a decrease in iceberg scouring due to climate change would be more detrimental to the diversity of the Antarctic megabenthos than an increase.  相似文献   

12.
Fire severity is thought to be an important determinant of landscape patterns of post‐fire regeneration, yet there have been few studies of the effects of variation in fire severity at landscape scales on floristic diversity and composition, and none within alpine vegetation. Understanding how fire severity affects alpine vegetation is important because fire is relatively infrequent in alpine environments. Globally, alpine ecosystems are at risk from climate change, which, in addition to warming, is likely to increase the severity and frequency of fire in south‐eastern Australia. Here we examine the effects of variation in fire severity on plant diversity and vegetation composition, 5 years after the widespread fires of 2003. We used floristic data from two wide‐spread vegetation types on the Bogong High Plains: open heathland and closed heathland. Three alternative models were tested relating variation in plant community attributes (e.g. diversity, ground cover of dominant species, amount of bare ground) to variation in fire severity. The models were (i) ‘linear’, attributes vary linearly with fire severity; (ii) ‘intermediate disturbance’, attributes are highest at intermediate fire severity and lowest at both low‐ and high‐severity; and (iii) ‘null’, attributes are unaffected by fire severity. In both heathlands, there were few differences in floristic diversity, cover of dominant species and community composition, across the strong fire severity gradient. The null model was most supported in the vast majority of cases, with only limited support for either the linear and intermediate disturbance models. Our data indicate that in both heathlands, vegetation attributes in burnt vegetation were converging towards that of the unburnt state. We conclude that fire severity had little impact on post‐fire regeneration, and that both closed and open alpine heathlands are resilient to variation in fire severity during landscape scale fires.  相似文献   

13.
14.
    
Anthropogenic flow intermittency is considered a severe disturbance for benthic macroinvertebrates with largely unknown impacts on the organization of benthic communities and their food webs. We analysed the community composition (as taxonomic composition and relative abundance of taxa) and food webs of the macroinvertebrates inhabiting the pools and riffles of two Mediterranean streams with contrasting perennial and anthropogenic intermittent flow regimes. Our analyses comprised monthly measurements in two pools and two riffles of the community composition, food‐web topology (the pattern in which specific links are arranged within the network) and food‐web complexity indexes (the number of nodes and links regardless of their identity or arrangement) over 1 year. The food webs revealed a significant annual variation in size, complexity, and diversity within pools and under perennial flow (e.g., number of nodes, number of links, link density). Multivariate analysis showed strong differences in the composition and relative abundance of taxa and food‐web topology of assemblages inhabiting pools and riffles. However, differences between communities inhabiting pools and riffles varied during the year; periods of great similarity were followed by periods in which communities were very different. This annual sequence of differences between pools and riffles was compressed under the anthropogenic flow intermittency regime. The anthropogenic intermittent flow studied here might represent a moderate stressor for Mediterranean communities well‐adapted to dry conditions. Still, the reported deviation of the community composition and food‐web topology from the reference status reflect the detrimental effect of this stressor on the benthic community.  相似文献   

15.
Macrozoobenthic soft-sediment communities of central Arctic Kongsfjorden inhabiting six depth zones between 5 and 30 m were sampled using SCUBA-diving during June–August 2003 and analysed comparatively. About 63 taxa were found, nine of which had not been reported for Kongsfjorden and four for Svalbard. Suspension feeding or surface and sub-surface detritivorous polychaetes and deposit-feeding amphipods were dominant. Only 11 of the 63 taxa (45 species and additional 18 families not further identified) inhabited the complete depth range. Biomass ranged from 3.5 to 25.0 g ash free dry mass m−2 and mean Shannon diversity (Log e) was 2.06. Similarity clustering from abundance and biomass data showed a significant difference between the shallow station (5 m) and the rest. The latter formed two sub-groups (10–20 and 25–30 m). Depth is irrevocably correlated with ice-scouring. Thus the differences in diversity together with the predicted iceberg scour intensity support the ‘intermediate disturbance hypothesis’ indicating that habitats impacted by moderate iceberg scouring enable higher diversity. In contrast, biotopes frequently affected only host pioneer communities, while mature, less diverse assemblages dominate depths of low impact.  相似文献   

16.
17.
土壤生态系统稳定性研究进展   总被引:7,自引:0,他引:7       下载免费PDF全文
李小方  邓欢  黄益宗  王新军  朱永官 《生态学报》2009,29(12):6712-6722
土壤生态系统稳定性是指土壤生态系统对抗人为干扰和自然剧烈变化的能力,可以由抵抗力和恢复力两个方面来表征.土壤生态系统稳定性是土壤健康指标的核心之一,进行稳定性评价对于土壤健康评价尤其是人为污染和物理干扰后土壤的健康评价具有重要参考价值.与地上生态系统研究结论相似,土壤生态系统稳定性的评价,与所选择的干扰性质和土壤过程密切相关.国内外近年来土壤生态系统稳定性方面的研究进展,主要包括:土壤生态系统稳定性的概念,土壤生态系统稳定性的研究方法,土壤生态系统稳定性的影响因素,保持土壤生态系统稳定性的对策,并提出了问题与展望.  相似文献   

18.
    
  1. Despite a general recognition that benthic macroinvertebrates respond to changes in hydrological connectivity within floodplain ecosystems, no consensus about patterns in community structure and ecosystem processes across large scales and different climates has yet been established. Such knowledge is necessary since anthropogenic activities continue to alter the natural hydrogeomorphology of large floodplains, with most consequences for aquatic communities remaining unknown.
  2. Using information from six large rivers located in four different climate regions (humid subtropical, maritime temperate, Mediterranean and dry semi‐arid), we compared benthic macroinvertebrate responses along lateral gradients of hydrological connectivity. We tested hypotheses related to differences among climate regions and to similar hydrological constraints within any one climate. The large geographical scale covered by this study provides the first comprehensive comparison of aquatic community patterns across hydrological gradients under different climatic settings.
  3. Multivariate ordinations demonstrated a higher overlap of trait community composition (50% variance explained by the first two axes) than taxonomic composition (15%) among floodplains, displaying high interclimate trait stability. The taxonomy‐based ordination separated the subtropical floodplain, with an average 86% of non‐insect taxa, from the insect‐dominated temperate, Mediterranean and semi‐arid floodplains (with >50% insect abundance). In the trait‐based ordination, large body size (60% of organisms >4 cm) and long lifespan duration (80% of organisms) discriminated the subtropical from the other five studied floodplains.
  4. Across a gradient of lateral connectivity, linear mixed effect (LME) models supported seven of 15 hypotheses, which suggests remarkably consistent macroinvertebrate patterns in floodplains regardless of the climate regime. Taxon and trait richness were positively related and peaked at sites of intermediate hydrological connectivity. Our predictions about the feeding guilds of macroinvertebrates (e.g. that shredders and scrapers would be more abundant in connected channels, and predators and deposit feeders at isolated sites) were more strongly supported by the data than those about life history (e.g. plurivoltinism and short lifespan would be better represented in connected channels). This difference was related to the influence of extended periods of hydrological disconnection as disturbance in addition to flooding.
  5. Trait stability across hydrological connectivity provides a meaningful ecological context for the comparison of the macroinvertebrate benthos among climatic zones, where taxonomic composition differs strongly. In addition, trait similarities and dissimilarities found in this study suggest that large‐scale biogeographical filters do operate on communities, resulting in different trait combinations in temperate and Mediterranean floodplains when compared to semi‐arid and subtropical environments. The extent to which global macroecological factors (i.e. climate, dispersal history) and local biotic and abiotic factors (i.e. drought frequency, habitat structure, water chemistry) contribute to this difference requires further investigation.
  相似文献   

19.
放牧对藏北紫花针茅高寒草原植物群落特征的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
基于放牧试验,研究了不同放牧强度下藏北地区紫花针茅(Stipa purpurea)高寒草原植物群落特征的变化规律。结果表明,随着放牧强度的增强,植物群落盖度、地上生物量均呈现显著降低的趋势;紫花针茅等禾草类植物的重要值逐渐降低,莎草类中青藏苔草(Carex moorcroftii)、牲畜不喜食的杂类草及有毒有害植物均有增加的趋势;如果持续过度放牧,植物群落表现出由紫花针茅等禾草为建群种的草地型向青藏苔草(Carex moorcroftii)、杂类草(Herbarum variarum)草地型过度的趋势;在中度放牧强度下,紫花针茅高寒草原α物种多样性达到最高水平,而继续增强放牧强度,则造成各项指标的迅速降低。  相似文献   

20.
    
  1. Understanding how increasing risk of frequent and severe fires affects biodiversity and ecosystem function is important for effective conservation and recovery, but large knowledge gaps exist for many taxa in many parts of the world, especially invertebrates.
  2. After Australia's 2019–2020 catastrophic bushfire disaster, estimates of biodiversity loss and government priorities for post-fire conservation activities were focused on vertebrates and plants because of lack of knowledge about invertebrates.
  3. Our synthesis of published evidence reveals a fragmented and ambiguous body of literature on invertebrate responses to fire in Australian ecosystems, limiting the capacity of evidence to inform effective conservation policy in response to extreme fire events. Peer-reviewed studies are available for only six of the more than 30 invertebrate phyla and 88% were on arthropods, predominantly ants.
  4. Nearly all studies (94%) were conducted in terrestrial habitats, with only four studies measuring impacts in freshwater habitats and no studies of impacts on marine invertebrates. The high variation in study designs and treatment categories, as well as the absence of key methodological details in many older observational studies, means that there is substantial opportunity to improve our approach to collating meaningful estimates of general fire effects.
  5. To understand the full ecological effects of catastrophic fire events, and design effective policies that support recovery of ecosystems now and in future, it is critical that we improve understanding of how fire regimes affect invertebrates. We list key priorities for research and policy to support invertebrate conservation and ecosystem recovery in the face of increasing fire risk.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号