首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以解纤维梭菌( Clostridium cellulolyticum)和热纤梭菌( Clostridium thermocellum)为代表的产纤维小体梭菌可以直接完成从木质纤维素原料到乙醇的生物转化,是用于通过整合生物加工技术生产纤维素乙醇的优良候选菌株。然而,这些产纤维小体梭菌的纤维素降解效率及乙醇产量尚不能满足工业化生产的要求,其遗传改造技术的不成熟严重制约了通过定向代谢工程改造提高生产性能的进程。针对这些典型的产纤维小体菌株,各国科学家近年来在基于二类内含子的嗜中温及嗜高温遗传改造平台建立方面取得了较大突破,并通过靶向代谢工程改造,显著提高纤维素乙醇的产量。笔者对这些前期研究工作以及国内外相关研究成果进行系统的总结,并对构建的遗传改造工具的应用前景进行展望。  相似文献   

2.
山西醋醅中醋酸菌的分离及初步鉴定   总被引:1,自引:0,他引:1  
目的从山西省某醋厂能正常发酵的醋醅中分离出优势醋酸菌株并加以鉴定。方法经过菌种的增殖培养,采用稀释涂布法分离菌株,得到127株醋酸菌,再经过初筛和复筛,筛选出9株产醋酸优势菌株,对9株优势菌株进行传代培养。结果筛选出在传代培养过程中,产醋酸酸度高且产量稳定的菌株为L4,其产酸量为66.92 g/L,酒精转化率为72.42%。结论根据菌株L4形态观察及生理生化特征初步判定为醋酸菌属醋化醋杆菌奥尔兰亚种。  相似文献   

3.
添加含有高浓度乙醇的红曲酒至福建传统红曲醋醋母中富集产酸菌株,采用高浓度乙醇平板,依据溶解圈指标从福建传统红曲醋液体循环工艺样品中分离出7株产酸菌株。综合菌株形态、生理生化实验以及16S r DNA序列测定等信息,确定这7株菌株分类地位为变形菌门(Proteobacteria)α-变形菌纲(Alphaproteobacteria)红螺菌目(Rhodospirillales)醋酸菌科(Acetobacteraceae)葡糖酸醋杆菌属(Gluconacetobacter),其中菌株Y5052、Y5054、Y5072、Y5092鉴定为斯氏葡糖酸醋杆菌(Gluconacetobacter swingsii);菌株Y5032、Y5033、Y5071鉴定为欧洲葡糖酸醋杆菌(Gluconacetobacter europaeus)。测定这些菌株的产酸能力,菌株Y5052产酸量最低,7 d达15 g/L;菌株Y5054产酸能力最强,7 d产酸量达57.0 g/L。  相似文献   

4.
目的从甘肃民间地产传统酿造食醋醋醅中分离筛选出一株高产酸醋酸菌并加以鉴定,为醋酸发酵提供新的菌种资源。方法通过透明圈法和产醋酸定性试验等,对其中的醋酸菌进行分离,然后进行产酸量测定比较。结果最终筛选出一株产酸量高且产量稳定的菌株A3,其产酸量为3.6468 g/100 m L。结论根据菌株A3形态观察,再通过一系列生理生化试验,并结合16S rRNA分子生物学鉴定手段,最终鉴定其为醋酸杆菌属中的Acetobacter pomorum。  相似文献   

5.
以解纤维梭菌(Clostridium cellulolyticum)和热纤梭菌(Clostridium thermocellum)为代表的产纤维小体梭菌可以直接完成从木质纤维素原料到乙醇的生物转化,是用于通过整合生物加工技术生产纤维素乙醇的优良候选菌株。然而,这些产纤维小体梭菌的纤维素降解效率及乙醇产量尚不能满足工业化生产的要求,其遗传改造技术的不成熟严重制约了通过定向代谢工程改造提高生产性能的进程。针对这些典型的产纤维小体菌株,各国科学家近年来在基于二类内含子的嗜中温及嗜高温遗传改造平台建立方面取得了较大突破,并通过靶向代谢工程改造,显著提高纤维素乙醇的产量。笔者对这些前期研究工作以及国内外相关研究成果进行系统的总结,并对构建的遗传改造工具的应用前景进行展望。  相似文献   

6.
嗜酸菌及其应用   总被引:7,自引:0,他引:7  
李雅琴   《微生物学通报》1998,25(3):170-172
自然界大多数环境的pH值为5~9,它适合多数微生物生长。嗜酸菌是一种能在低pH条件下生长和繁殖的极端环境微生物[‘-’],通常在pHZ~5生长很好,pHS.5以上生长不好。有些嗜酸菌在中性pH条件下根本不生长,如氧化硫硫杆菌(Thiobacillusthiootidans),酸热硫化叶菌(deghlobusacidocaldarius),酸热芽抱杆菌O沏ciousacidoca儿brius)等,最佳生长pH是2.0~3.0,这些都是专性嗜酸菌。一些真菌也能在pHS.0或更低条件下生长,实际上是耐酸菌。l嗜酸菌生态分布及其对环境适应机制嗜酸菌生长在酸性环境,这主要与硫或硫化物的存在…  相似文献   

7.
研究了嗜碱芽孢杆菌(alkalophilicBaclussp.)NTT33发酵产生胞外碱性β-甘露聚糖酶的条件,其最佳碳源为1%槐豆角,最佳氮源为1%蛋白胨+0.2%酵母膏,发酵培养36h产酶量最高(达61.3υ/mL)。甘油,葡萄糖,甘露糖等对产酶有强的阻遏作用。该菌株经紫外诱变处理后,采用透明圈法初步筛选出在含葡萄糖和不含葡萄糖的槐豆胶培养基上同时产生透明圈的菌株,进一步测定其产酶进程曲线,最后筛选到一株(NTT33-r6)部分消除葡萄糖代谢阻遏高产β-甘露聚糖酶的菌株,其酶活力比出发菌株提高50%,,达到96.3U/ml;。  相似文献   

8.
朱传柳  夏小乐  史伟  王武 《微生物学通报》2017,44(10):2269-2279
【目的】以巴氏醋酸杆菌工业菌株沪酿1.01和模式菌株Acetobacter pasteurianus ATCC33445为研究对象,研究工业菌株与模式菌株在高浓度醋酸胁迫下的产酸发酵时呼吸链酶活、相关基因转录水平的变化规律。【方法】检测两种菌株在0、1%、2%、3%不同初始醋酸浓度下的生物量、产酸以及酶活,并通过实时荧光定量PCR检测呼吸链相关酶合成基因的相对转录水平变化。【结果】两种菌株在1%初始醋酸浓度下产酸能力最强,发酵48 h平均产酸速度达到0.667 g/(L·h);两种菌株的ADH(乙醇脱氢酶)和ALDH(乙醛脱氢酶)酶活也达到最高,平均为12.01和9.77 U/mg;相关酶合成基因的相对转录水平较无底酸均提高。当初始醋酸浓度上升至2%和3%时,菌体酶活、产酸能力逐渐下降,呼吸链上的adh、cyt bd、cyt o和fap A基因转录水平上升,其余基因都降低。【结论】确定了巴氏醋酸杆菌在高初始浓度醋酸条件下,菌体会自发提高adh基因的转录水平,启动底物磷酸化,并将醋酸泵出到胞外;同时aldh基因的表达受到抑制,降低产酸,从而维持体内较低醋酸浓度。此外,呼吸链上其他外排相关酶转录水平也会提升,如cyt bd和cyt o,辅助底物磷酸化进程,加快释放能量。  相似文献   

9.
从食醋生产企业的醋醅中采集样品,以乙醇为唯一碳源,用碳酸钙透明圈平板法分离出185株菌株,然后以产酸量和耐乙醇能力为标准,瓶发酵选育出20株ADH产酶菌株;A5-2产酸量为49.85 g/L,耐乙醇能力强,A5-2的菌种形态学和16S rDNA序列分析初步鉴定为巴斯德醋酸杆菌( Acetobacter pasteurianus);A5-2乙醇脱氢酶酶学性质研究表明:最适作用温度和pH分别为45℃和pH 4.0,具有一定的耐热性和良好的耐酸碱性;A5-2乙醇脱氢酶粗酶制备条件为硫酸铵饱和度70%~80%,回收率84%。  相似文献   

10.
【目的】通过比较不同碳氮营养及其消耗对产漆酶的影响,了解白腐菌模式种黄孢原毛平革菌解除营养阻遏产漆酶代谢的生理生态特性,揭示白腐菌合成漆酶的碳氮生理调控机理。【方法】分别利用限碳限氮(CL-NL)、限碳富氮(CL-NS)、富碳限氮(CS-NL)与富碳富氮(CS-NS)4种条件培养黄孢原毛平革菌野生型(WT)与突变株,比较两者产漆酶动力学、菌体生长、葡萄糖与氨氮消耗差异及其相关性来揭示解除营养阻遏产漆酶调控生理特性,明确C、N营养对产漆酶的生理调控途径。【结果】突变菌株除消耗速率比野生型略慢外,两者氨消耗趋势一致,但对葡萄糖的消耗比野生型快且氨氮浓度对葡萄糖的消耗影响不大。在CL-NL、CL-NS、CS-NL、CS-NS 4种培养条件下,野生型分别在培养后期的第11、14、19和19天的次生代谢时期产生0.107、0.029、12.84和18.05U/L漆酶,启动漆酶合成及酶峰值出现的时间与基质中葡萄糖耗尽或接近耗尽的时刻,或同氨氮消耗至最低值的时刻相对应;与WT产漆酶特性不同,突变株产漆酶伴随整个培养过程且均有两个产酶高峰,分别在培养的第8、7、12天和12天出现298.83、343.14、271.22、251.49U/L漆酶第一个产酶高峰,在培养的第12、13、19和19天产生257.69、298.78、213.81、216.93U/L漆酶的第二个产酶高峰。碳氮营养对产酶的影响显示:两菌株只要初始碳源浓度相同(限碳或富碳),各自产酶动力学趋势基本一致;相反,即使初始氮源浓度相同但其产酶动力学趋势却不同,说明碳源对黄孢原毛平革菌产漆酶的影响比氮源更为重要。【结论】野生型黄孢原毛平革菌产漆酶受碳或氮饥饿调控,碳、氮各自独立发挥作用且在不同的营养条件下由不同营养素所调控,如在限碳条件下产漆酶主要由葡萄糖饥饿启动,而在富碳条件下则由氨氮饥饿所激发,以碳或氮菌体负荷表示是否达到启动酶合成的调控阀值比单纯碳或氮浓度更为合理。突变菌株漆酶合成的启动不受碳、氮营养所阻遏,可能涉及一个全局调控的改变,解除了漆酶合成的营养阻碍。  相似文献   

11.
复合诱变对米曲霉产曲酸的影响   总被引:4,自引:0,他引:4  
发酵法生产曲酸还未实现大规模工业化生产的原因之一是曲酸菌种产酸率较低,本文以平展米曲霉(Aspergillus oryzae effusus)AS32为出现菌株,经UV和^60Co诱变处理,筛选获得一株高产曲酸变异株AUR163,以葡萄糖为碳源,酵母膏为氮源,32℃摇瓶和30L罐发酵培养4天,产酸达6.8g/100mL。平均生产效率为17.0g/L.d最高可达30.5g/L.d比出发菌AS32提高190%以上,这表明UV和^60Co作诱剂,可以大幅度提高米曲霉的曲酸生产效率。  相似文献   

12.
禾谷镰孢菌高产毒菌株的构建   总被引:5,自引:0,他引:5  
为研究禾谷镰孢菌Fusarium graminearum Schw.单端孢霉烯族毒素生物合成基因(产毒基因)在寄主体内的表达,作者构建了带报告基因GUS(β-葡糖苷酸酶基因)的质粒pGUSTRI6P5,并通过对野生型菌株的转化获得禾谷镰孢高产毒菌株,该质粒含有由TRI5(禾谷镰隐单端孢霉的二烯合酶基因)启动子(TRI5 Prom)驱动的GUS基因编码区、潮霉素B抗性基因和拟枝孢镰孢F.sporotrichioides的产毒调控基因TRI6(FSTR16)。用pGUSTRI6P5转化野生型菌株GZ3639后,在含潮霉素B的培养基上选取抗性菌落。单孢分离获单孢菌株(转化子)。在GYEP(葡萄糖-酵母粉-蛋白胨)液体培养基上,转化子B4-1和B16-1的GUS比活力强,15-AcDON(15-乙酰脱氧雪腐镰鼠菌烯醇)产量高,且两者呈正相关(相关系数(r)分别为0.9839和0.9523)。B41-1和B16-1两个转化子可作为研究禾谷镰孢与其寄主相互作用的工具菌株。  相似文献   

13.
陈利锋  Thomas  M  HOHN 《菌物学报》2001,20(3):330-336
为研究禾谷镰孢菌Fusarium graminearum Schw.单端孢霉烯族毒素生物合成基因(产毒基因)在寄主体内的表达,作者构建了带报告基因GUS((-葡糖苷酸酶基因)的质粒pGUSTRI6P5,并通过对野生型菌株的转化获得禾谷镰孢高产毒菌株。该质粒含有由TRI5(禾谷镰孢单端孢霉二烯合酶基因)启动子(TRI5 Prom)驱动的GUS基因编码区、潮霉素B抗性基因和拟枝孢镰孢F. sporotrichioides的产毒调控基因TRI6(FSTRI6)。用pGUSTRI6P5转化野生型菌株GZ3639后,在含潮霉素 B的培养基上选取抗性菌落,单孢分离获单孢菌株(转化子)。在GYEP(葡萄糖-酵母粉-蛋白胨)液体培养基上,转化子B4-1和B16-1的GUS比活力强,15-AcDON(15-乙酰脱氧雪腐镰刀菌烯醇)产量高,且两者呈正相关(相关系数(r)分别为0.9839和0.9523)。B4-1和B16-1两个转化子可作为研究禾谷镰孢与其寄主相互作用的工具菌株。  相似文献   

14.
酪丁酸梭菌Clostridium tyrobutyricum可以利用葡萄糖、木糖、纤维二糖、阿拉伯糖等多种底物进行产酸发酵,主要发酵产物为丁酸和乙酸,是一种适合于木质纤维素同步糖化发酵生产丁酸的菌种。将酪丁酸梭菌乙酸发酵关键基因取代为丁酸发酵关键基因来构建突变株,可使突变株丁酸发酵量增多,乙酸发酵量减少。分别获得来源于丙酮丁醇梭菌的丁酸代谢关键酶基因——乙酰乙酰辅酶A转移酶基因(thl)、来源于酪丁酸梭菌本身的乙酸代谢关键酶基因片段——磷酸转乙酰基酶基因片段(pta)和来源于质粒pIMP1的红霉素抗性基因(em)。将它们与质粒pUC19相连构建为非复制性质粒pUC19-EPT。通过电转化将其导入酪丁酸梭菌中。利用红霉素抗性平板筛选获得转化子,通过PCR验证发现,获得的突变株染色体上pta被thl替换。在以葡萄糖为底物的发酵中,突变株丁酸得率为0.47,较野生型增大了34%,乙酸得率为0.05,较野生型下降了29%。  相似文献   

15.
提出一种可以提高和自由控制丙丁梭菌ABE发酵丙酮浓度与丙酮/丁醇比的方法。(1)通过控制糖化酶用量、反应时间和温度调节玉米培养基初始葡萄糖浓度,使发酵进入到产溶剂期后,残留葡萄糖浓度降至接近于0 g/L的水平;(2)在葡萄糖受限的条件下,诱导丙丁梭菌合成分泌糖化酶,分解寡糖,将葡萄糖维持于低浓度,进而限制梭菌胞内糖酵解途径的碳代谢和NADH生成速度。与此同时,外添乙酸形成葡萄糖/乙酸双底物环境。在能量代谢基本不受破坏、丁醇未达到抑制浓度的条件下,适度抑制丁醇生产,有效地利用外添乙酸强化丙酮合成;(3)在外添乙酸的基础上,添加适量酿酒酵母,形成丙丁梭菌/酿酒酵母混合发酵体系,提高梭菌对高丁醇浓度的耐受能力。整个发酵体系可以将丙酮浓度和丙酮/丁醇比自由控制在5~12 g/L和0.5~1.0的水平,最大丙酮浓度和丙酮/丁醇比达到11.74 g/L和1.02,并可维持丁醇浓度于10~14 g/L的正常水平,充分满足工业ABE发酵对于丙酮和丁醇产品的不同需求。  相似文献   

16.
鞭毛基底体相关FliL家族蛋白(flagellar basal body-associated FliL family protein,fliL)基因编码FliL蛋白,FliL是一种与鞭毛基体相结合的单跨膜蛋白。为研究艰难拟梭菌fliL基因功能,使用非等长同源臂偶联等位交换(allele-coupled exchange,ACE)方法成功构建了fliL基因缺失(ΔfliL)和回补(::fliL)突变株,研究突变菌株与野生型菌株(CD630)生长曲线、抗生素敏感性、pH耐受性、运动能力及产孢能力等表型的差异。结果显示,菌株ΔfliL生长速率及最大生物量均小于菌株CD630,::fliL回补菌株生长情况回复至野生型。与CD630菌株相比,ΔfliL对阿莫西林、氨苄青霉素、诺氟沙星的敏感性提高,对卡那霉素、四环素敏感性降低,::fliL抗生素敏感性部分回复至野生型水平。与CD630菌株相比,ΔfliL游泳运动能力显著降低,::fliL运动能力超越野生型菌株CD630。相比菌株CD630,菌株ΔfliL在pH值为5时耐受能力显著提高,在pH值为9时,耐受能力显著降低。除此之外,ΔfliL产孢能力较CD630显著降低,::fliL产孢能力部分恢复。以上结果表明,艰难拟梭菌fliL基因与其运动能力、抗生素敏感性、环境耐受能力和产孢能力密切相关,可能进一步影响艰难拟梭菌菌株的致病力。  相似文献   

17.
PGDH^L生化突变型谷氨酸生产菌株选育的生化模式   总被引:2,自引:0,他引:2  
以Tbm-3(icl^-,异柠檬酸裂解酶活力的生化突变株)为出发菌株,经紫外一诱变,通过依据生人代谢所设计的选择培养基(L-阿拉伯糖平板与D-葡萄糖酸钠平板)对接的筛选方法,获得磷酸葡萄糖酸脱氢酶(PGDH,E.C.4.2.1.12)忖突变型的生化突变型菌株Tbm3.18,该菌株经摇瓶发酵试验显示,比出发菌株Tbm-3提高产酸率8.9%和转化率8.1%,表明pgdh或pgdh生在变型菌株的选育,对  相似文献   

18.
王文华  金建中 《遗传》1981,3(5):35-39
(十一) 大肠杆菌营养缺陷型菌株的筛选(一) (物理因素诱变)实验原理 在以微生物为材料的遗传学研究中,广泛应用营 养缺陷型。用某些物理因素或化学因素处理细菌,使 基因发生突变,丧失合成某一物质(如氨基酸,维生素, 核昔酸等)的能力,因而它们不能在基本培养基上生 长,必须补充某些物质才能生长。这样从野生型经诱 变筛选得到的菌株,称为营养缺陷型。筛选营养缺陷 型菌株必须经过如下几个步骤:诱变处理,淘汰野生 型、检出缺陷型、鉴定缺陷型。本实验选择紫外线作为 诱变剂,并用青霉素法淘汰野生型,采用逐个测定法检 出缺陷型,最后用生长谱法鉴定缺陷型。实验原理 在以微生物为材料的遗传学研究中,广泛应用营 养缺陷型。用某些物理因素或化学因素处理细菌,使 基因发生突变,丧失合成某一物质(如氨基酸,维生素, 核昔酸等)的能力,因而它们不能在基本培养基上生 长,必须补充某些物质才能生长。这样从野生型经诱 变筛选得到的菌株,称为营养缺陷型。筛选营养缺陷 型菌株必须经过如下几个步骤:诱变处理,淘汰野生 型、检出缺陷型、鉴定缺陷型。本实验选择紫外线作为 诱变剂,并用青霉素法淘汰野生型,采用逐个测定法检 出缺陷型,最后用生长谱法鉴定缺陷型。  相似文献   

19.
一株中度嗜热嗜酸铁氧化细菌特性研究*   总被引:4,自引:0,他引:4  
从我国煤矿废石堆分离到一株中度嗜热嗜酸铁氧化细菌MLY菌株,最适生长温度50℃-54℃,最适pH1.2-1.4。MLY菌株是兼性化能自养菌,能利用酵母粉异养生长。在自养和混合营养条件下,能氧化Fe^2 、黄铁矿(FeS2)和元素硫(S^0)。自养营养时,氧化元素硫较弱。对比研究MLY菌株和氧化亚铁硫杆菌(Thiobacillus ferrooxidans)A10菌株对Fe^2 和黄铁矿的氧化作用,结果表明,MLY比A10的氧化速度快1倍多。  相似文献   

20.
以Tbm-3(icl-,异柠檬酸裂解酶活力丧失的生化突变株)为出发菌株,经紫外线诱变,通过依据生化代谢所设计的选择培养基(L-阿拉伯糖平板与D-葡萄糖酸钠平板)对接的筛选方法,获得磷酸葡萄糖酸脱氢酶(PGDH,E.C.4.2.1.12)渗漏突变型(pgdh1)的生化突变型菌株Tbm3-18.该菌株经摇瓶发酵试验显示,比出发菌株Tbm-3提高产酸率8.9%和转化率8.1%.表明pgdh-或pgdh1生化突变型菌株的选育,对谷氨酸的积累是有利的,该选育生化模式是成功的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号