共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
Inhibition of human immunodeficiency virus type 1 Rev function by a Rev mutant which interferes with nuclear/nucleolar localization of Rev. 下载免费PDF全文
A nonfunctional mutant of human immunodeficiency virus type 1 Rev was created by deleting seven amino acid residues within the nucleolar targeting signal. This mutant Rev remained in the cytoplasm in expressed cells and strongly inhibited the function of Rev by interfering with the nuclear/nucleolar localization of coexpressed Rev. These findings strongly suggest the multimerization of Rev in the cytoplasm before migration to the nucleus/nucleolus, where wild-type Rev functions as a trans-regulator. 相似文献
5.
The Rev proteins of the related but distinct human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) display incomplete functional reciprocity. One possible explanation for this observation is that HIV-2 Rev is unable to interact with the HIV-1 Rev-response element (RRE1). However, an analysis of the biological activity of chimeric proteins derived from HIV-1 and HIV-2 Rev reveals that this target specificity does not map to the Rev RNA binding domain but is instead primarily determined by sequences known to mediate Rev multimerization. Both HIV-1 and HIV-2 Rev are shown to bind the RRE1 in vitro with identical RNA sequence specificity. The observation that HIV-2 Rev can inhibit RRE1-dependent HIV-1 Rev function in trans indicates that the direct interaction of HIV-2 Rev with the RRE1 also occurs in vivo. These data suggest that HIV-2 Rev forms a protein-RNA complex with the RRE1 that leads to only minimal Rev activity. It is hypothesized that this low level of Rev function results from the incomplete and/or aberrant multimerization of HIV-2 Rev on this heterologous RNA target sequence. 相似文献
6.
Mutational definition of the human immunodeficiency virus type 1 Rev activation domain. 总被引:21,自引:36,他引:21 下载免费PDF全文
Replication of human immunodeficiency virus type 1 requires the functional expression of the virally encoded Rev protein. The binding of this nuclear trans activator to its viral target sequence, the Rev-response element, induces the cytoplasmic expression of unspliced viral mRNAs. Mutation of the activation domain of Rev generates inactive proteins with normal RNA binding capabilities that inhibit wild-type Rev function in a trans-dominant manner. Here, we report that the activation domain comprises a minimum of nine amino acids, four of which are critically spaced leucines. The preservation of this essential sequence in other primate and nonprimate lentivirus Rev proteins indicates that this leucine-rich motif has been highly conserved during evolution. This conclusion, taken together with the observed permissiveness of a variety of eukaryotic cell types for Rev function, suggests that the target for the activation domain of Rev is likely to be a highly conserved cellular protein(s) intrinsic to nuclear mRNA transport or splicing. 相似文献
7.
Nuclear preservation and cytoplasmic degradation of human immunodeficiency virus type 1 Rev protein. 总被引:1,自引:3,他引:1 下载免费PDF全文
Rev, a major regulatory protein of human immunodeficiency virus type 1, has been demonstrated to shuttle between the nucleus and cytoplasm of infected cells. The fate of the Rev protein in living cells was evaluated by pulse-chase experiments using a transient Rev expression system. Sixteen hours after chasing with unlabelled amino acids, 45% of the labelled Rev was still present, which clearly indicates a long half-life of Rev in living cells. A Rev mutant which is deficient in the ability to migrate from the nucleus to the cytoplasm was degraded more slowly than the wild-type Rev protein. As well, another Rev mutant protein, which lacks a functional nucleolar targeting signal (NOS) and is unable to enter the cell nucleus, was rapidly degraded and undetectable 16 h after chasing. Nuclear-nucleolar targeting properties provided by a divergent NOS from a related retrovirus, which was used to substitute for the NOS of Rev, increased the intracellular half-life of this Rev mutant. Moreover, coexpression of an intracellular anti-Rev single-chain antibody (SFv), which has been shown to interfere with the nuclear translocation of Rev, accelerated the degradation of the wild-type Rev protein. Differential degradation of Rev in the nucleus and cytoplasm may play a critical role in determining and maintaining different stages of human immunodeficiency virus type 1 infection, in conjunction with the shuttling properties of the Rev protein. 相似文献
8.
We have found that chronically HIV-1(IIIB)-infected H9 cells showed 21-fold resistance to 1-beta-D-arabinofuranosylcytosine (ARA-C) compared with uninfected H9 cells. In the infected H9 cells, a 37% increase of dCTP pool and a 34% increase of dATP were observed, and no alteration of dTTP and dGTP was observed, compared with the uninfected H9 cells. A marked decrease of ARA-CTP generation was observed in the infected H9 cells after 3-h incubation with 0.1-10 microM ARA-C. The level of deoxycytidine kinase activity with ARA-C as substrate was similar in both the infected and the uninfected cells; however, a 37-fold increase of cytidine deaminase activity was observed in the infected H9 cells. These results indicate that the induction of cytidine deaminase activity by HIV-1(IIIB) infection conferred ARA-C resistance to H9 cells. This conclusion was supported by the observation that a marked reversal of ARA-C resistance in the infected H9 cells occurred after treatment with the inhibitor of cytidine deaminase, 3,4,5,6-tetrahydrouridine. The understanding of these cellular alterations in drug sensitivity may facilitate the development of effective therapeutic strategies against HIV-1-infected cells. 相似文献
9.
10.
11.
Human immunodeficiency virus type 1 infection of human brain-derived progenitor cells 总被引:1,自引:0,他引:1 下载免费PDF全文
Although cells of monocytic lineage are the primary source of human immunodeficiency virus type 1 (HIV-1) in the brain, other cell types in the central nervous system, including astrocytes, can harbor a latent or persistent HIV-1 infection. In the present study, we examined whether immature, multipotential human brain-derived progenitor cells (nestin positive) are also permissive for infection. When exposed to IIIB and NL4-3 strains of HIV-1, progenitor cells and progenitor-derived astrocytes became infected, with peak p24 levels of 100 to 500 pg/ml at 3 to 6 days postinfection. After 10 days, virus production was undetectable but could be stimulated by the addition of tumor necrosis factor alpha (TNF-alpha). To bypass limitations to receptor entry, we compared the fate of infection in these cell populations by transfection with the infectious HIV-1 clone, pNL4-3. Again, transfected progenitors and astrocytes produced virus for 7 days but diminished to low levels beyond 8 days posttransfection. During the nonproductive phase, TNF-alpha stimulated virus production from progenitors as late as 5 weeks posttransfection. Astrocytes produced 5- to 20-fold more infectious virus (27 ng of p24/10(6) cells) than progenitors at the peak of 3 days posttransfection. Differentiation of infected progenitors toward an astrocyte phenotype increased virus production to levels consistent with infected astrocytes, suggesting a phenotypic difference in viral replication. Using this cell culture system of multipotential human brain-derived progenitor cells, we provide evidence that progenitor cells may be a reservoir for HIV-1 in the brains of AIDS patients. 相似文献
12.
Human immunodeficiency virus type 1 Vpr induces apoptosis in human neuronal cells 总被引:12,自引:0,他引:12 下载免费PDF全文
Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) causes AIDS dementia complex (ADC) in certain infected individuals. Recent studies have suggested that patients with ADC have an increased incidence of neuronal apoptosis leading to neuronal dropout. Of note, a higher level of the HIV-1 accessory protein Vpr has been detected in the cerebrospinal fluid of AIDS patients with neurological disorders. Moreover, extracellular Vpr has been shown to form ion channels, leading to cell death of cultured rat hippocampal neurons. Based on these previous findings, we first investigated the apoptotic effects of the HIV-1 Vpr protein on the human neuronal precursor NT2 cell line at a range of concentrations. These studies demonstrated that apoptosis induced by both Vpr and the envelope glycoprotein, gp120, occurred in a dose-dependent manner compared to protein treatment with HIV-1 integrase, maltose binding protein (MBP), and MBP-Vpr in the undifferentiated NT2 cells. For mature, differentiated neurons, apoptosis was also induced in a dose-dependent manner by both Vpr and gp120 at concentrations ranging from 1 to 100 ng/ml, as demonstrated by both the terminal deoxynucleotidyltransferase (Tdt)-mediated dUTP-biotin nick end labeling and Annexin V assays for apoptotic cell death. In order to clarify the intracellular pathways and molecular mechanisms involved in Vpr- and gp120-induced apoptosis in the NT2 cell line and differentiated mature human neurons, we then examined the cellular lysates for caspase-8 activity in these studies. Vpr and gp120 treatments exhibited a potent increase in activation of caspase-8 in both mature neurons and undifferentiated NT2 cells. This suggests that Vpr may be exerting selective cytotoxicity in a neuronal precursor cell line and in mature human neurons through the activation of caspase-8. These data represent a characterization of Vpr-induced apoptosis in human neuronal cells, and suggest that extracellular Vpr, along with other lentiviral proteins, may increase neuronal apoptosis in the CNS. Also, identification of the intracellular activation of caspase-8 in Vpr-induced apoptosis of human neuronal cells may lead to therapeutic approaches which can be used to combat HIV-1-induced neuronal apoptosis in AIDS patients with ADC. 相似文献
13.
Human herpesvirus 6 infects dendritic cells and suppresses human immunodeficiency virus type 1 replication in coinfected cultures 下载免费PDF全文
Human herpesvirus 6 (HHV-6) has been implicated as a cofactor in the progressive loss of CD4(+) T cells observed in AIDS patients. Because dendritic cells (DC) play an important role in the immunopathogenesis of human immunodeficiency virus (HIV) disease, we studied the infection of DC by HHV-6 and coinfection of DC by HHV-6 and HIV. Purified immature DC (derived from adherent peripheral blood mononuclear cells in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4) could be infected with HHV-6, as determined by PCR analyses, intracellular monoclonal antibody staining, and presence of virus in culture supernatants. However, HHV-6-infected DC demonstrated neither cytopathic changes nor functional defects. Interestingly, HHV-6 markedly suppressed HIV replication and syncytium formation in coinfected DC cultures. This HHV-6-mediated anti-HIV effect was DC specific, occurred when HHV-6 was added either before or after HIV, and was not due to decreased surface expression or function of CD4, CXCR4, or CCR5. Conversely, HIV had no demonstrable effect on HHV-6 replication. These findings suggest that HHV-6 may protect DC from HIV-induced cytopathicity in AIDS patients. We also demonstrate that interactions between HIV and herpesviruses are complex and that the observable outcome of dual infection is dependent on the target cell type. 相似文献
14.
Feedback regulation of human immunodeficiency virus type 1 expression by the Rev protein. 总被引:28,自引:15,他引:13 下载免费PDF全文
Rev is an essential regulatory protein of the human immunodeficiency virus type 1 (HIV-1) that affects the transport and half-life of certain viral mRNAs. Rev exerts its function via a unique element, the Rev-responsive element (RRE), located within the env region of HIV-1. It has been previously demonstrated that Rev affects the relative levels of RRE-containing and RRE-lacking mRNAs. We have studied the effects of Rev on the expression of the three different groups of small, multiply spliced mRNAs that lack the RRE sequence and encode the regulatory proteins Tat, Rev, and Nef. To monitor the tat, rev, and nef mRNAs we generated specific S1 nuclease mapping probes that distinguish among them. Analysis of all the mRNA species producing Tat, Rev, and Nef revealed that their levels are coordinately regulated by Rev. They are increased in the absence of Rev protein and are down regulated in the presence of Rev. The corresponding proteins were measured by immunoprecipitations, and their levels are in agreement with the RNA levels. These results verify the model proposing that Rev is a general regulator indirectly affecting all the multiply spliced mRNAs to a similar extent. Therefore, Rev down regulates its own expression and the expression of Tat and Nef. 相似文献
15.
RNA aptamers selected to bind human immunodeficiency virus type 1 Rev in vitro are Rev responsive in vivo. 总被引:2,自引:0,他引:2 下载免费PDF全文
RNA aptamers (binding sequences) that can interact tightly and specifically with the human immunodeficiency virus type 1 Rev protein have previously been selected from random sequence pools. Although the selected sequences compete with the wild-type Rev-binding element (RBE) in vitro, it was not known whether they would be able to functionally replace the RBE in vivo. Two aptamers that were different from the wild-type RBE in terms of both primary sequence and secondary structure were inserted into the full-length Rev-responsive element (RRE) in place of the RBE. The hybrid RREs were assayed for their ability to mediate Rev function in vivo using a reporter system. The aptamers were found to be functionally equivalent to the wild-type element when the assay system was saturated with Rev and better than the wild-type element when Rev was limiting. These results demonstrate that the affinity of the primary Rev-binding element rather than its particular sequence may be most responsible for conferring Rev responsiveness on viral mRNAs. Moreover, the fact that increased binding ability can lead to increased Rev responsiveness suggests that cellular factors do not directly influence the Rev:RBE interaction. Finally, since sequences distinct from the RBE are found to be Rev responsive, it may be possible for the RBE to readily mutate in response to drugs or gene therapy reagents that target the Rev:RBE interaction. 相似文献
16.
In vivo binding of wild-type and mutant human immunodeficiency virus type 1 Rev proteins: implications for function. 下载免费PDF全文
The Rev transactivator protein of human immunodeficiency virus type 1 (HIV-1) is required for protein expression from the HIV-1 RNAs which contain a binding site for the Rev protein, termed the Rev-responsive element (RRE). This transactivator acts both at the level of splicing/transport of nuclear RNAs and at the level of translation of cytoplasmic RNAs. We used a monoclonal antibody specific for the HIV-1 Rev protein to immunoprecipitate cellular extracts from HIV-1-infected and -transfected cells. High levels of specific binding of wild-type Rev to the RRE-containing RNAs were found in cytoplasmic, but not nuclear, extracts from these cells. A Rev mutant which lacked both nuclear and cytoplasmic Rev function but retained RNA binding in vivo was generated. This binding was detectable with both nuclear and cytoplasmic extracts. These results verify the existence of direct binding of Rev to HIV-1 RNAs in vivo and conclusively prove that binding of Rev is not sufficient for nuclear or cytoplasmic Rev function. The results also support a direct role for Rev in the nuclear export and translation of HIV-1 RNAs. 相似文献
17.
18.
Human immunodeficiency virus type 1 induces expression of complement factors in human astrocytes 总被引:1,自引:0,他引:1 下载免费PDF全文
Speth C Stöckl G Mohsenipour I Würzner R Stoiber H Lass-Flörl C Dierich MP 《Journal of virology》2001,75(6):2604-2615
Since the brain is separated from the blood immune system by a tight barrier, the brain-resident complement system may represent a central player in the immune defense of this compartment against human immunodeficiency virus (HIV). Chronic complement activation, however, may participate in HIV-associated neurodegeneration. Since the level of complement factors in the cerebrospinal fluid is known to be elevated in AIDS-associated neurological disorders, we evaluated the effect of HIV type 1 (HIV-1) on the complement synthesis of brain astrocytes. Incubation of different astrocytic cell lines and primary astrocytes with HIV-1 induced a marked upregulation of the expression of the complement factors C2 and C3. The synthesis of other secreted or membrane-bound complement proteins was not found to be altered. The enhancement of C3 production was measured both on the mRNA level and as secreted protein in the culture supernatants. HIV-1 laboratory strains as well as primary isolates were capable of inducing C3 production with varied effectiveness. The usage of viral coreceptors by HIV-1 was proved to be a prerequisite for the upregulation of C3 synthesis, which was modulated by the simultaneous addition of cytokines. The C3 protein which is secreted after incubation of the cells with HIV was shown to be biologically active as it can participate in the complement cascade. 相似文献
19.
Human chromosome 12 encodes a species-specific factor which increases human immunodeficiency virus type 1 tat-mediated trans activation in rodent cells. 总被引:19,自引:17,他引:2 下载免费PDF全文
The human immunodeficiency virus type 1 (HIV-1) tat protein functions at a much lower level in rodent cells than in human cells. This species-specific difference in trans activation appears to be due to the lack of a functional homolog of a human cofactor for tat in rodent cells. Using HIV-1 long terminal repeat-driven human growth hormone as a reporter plasmid, we found that the tat-mediated trans activation functions at a level 5- to 20-fold lower in rodent cells than in human cells. Stable rodent-human hybrid cells containing only human chromosome 12 support a dramatically higher degree of trans activation. Thus, human chromosome 12 encodes a species-specific HIV-1 tat cofactor which, at least partially, restores high levels of tat-mediated trans activation. Chromosome 6 also appears to provide an additional factor which enhances HIV-1 tat-mediated trans activation in murine cells. 相似文献