首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-one maiden and 29 pluriparous milking Ankara Saanen goats received either two i.m. injections of PGF(2)alpha (n=25) or intravaginal MAP sponges (n=25) early in November at the start of the breeding season. About twice as many pluriparous goats as maiden goats exhibited estrus after either treatment (87% vs. 47%). Breeding after this induced estrus caused pregnancies in 62% of the pluriparous goats, but only in 24% of the maiden animals. Maximal concentrations of progesterone were reached 11 days after the start of the MAP treatment. Progesterone declined to basal levels two to four days after sponge withdrawal. A significant slower progesterone increase also resulting in lower maximal concentrations could be observed in maiden goats. Luteolysis was evident in all animals within 24 h after PGF(2)alpha injection. Nine goats (six maiden and three pluriparous) did not exhibit Heat after the second injection and showed only a slow increase of progesterone. It seems that noncyclic animals are less sensitive to MAP treatment than to the first PGF(2)alpha injection. Goats at the beginning of the breeding season may react after a premature interruption of corpus luteum function (after second PGF(2)alpha injection) with delayed or inadequate follicular function.  相似文献   

2.
The effects of prostaglandin (PG)F2alpha and PGF2alpha, 1-15 lactone were compared in luteal phase, non-pregnant and in early pregnant rhesus monkeys. Animals treated with either PG after pretreatment with human chorionic gonadotropin (hCG) had peripheral plasma progesterone concentrations that were not statistically different from those in animals treated with hCG and vehicle. However, menstrual cycle lengths in monkeys treated with PGF2alpha, 1-15 lactone were significantly (P less than 0.02) shorter than those in vehicle treated animals. In the absence of hCG pretreatment, plasma progesterone concentrations were significantly (P less than 0.008) lower by the second day after the initial treatment with either PGF2alpha or PGF2alpha, 1-15 lactone than in vehicle treated monkeys. Menstrual cycle lengths in monkeys treated with either PG were significantly (P less than 0.04) shorter than those in animals treated with vehicle. There were no changes in plasma progesterone concentrations in early pregnant monkeys treated with PGF2alpha, and pregnancy was not interrupted. In contrast, plasma progesterone declined and pregnancy was terminated in 5 of 6 early pregnant monkeys treated with PGF2alpha, 1-15 lactone. These data indicate that PGF2alpha, 1-15 lactone decreases menstrual cycle lengths in non-pregnant rhesus monkeys. More importantly, PGF2alpha, 1-15 lactone terminates early pregnancy in the monkey at a dose which is less than an ineffective dose of PGF2alpha.  相似文献   

3.
Blood plasma concentrations of 13,14-dihydro-15-keto PGF2 alpha (PGFM) were measured in groups of mature non-pregnant and pregnant camels to study PGF2 alpha release patterns around the time of luteolysis and the timing of the signal for pregnancy recognition. Injection of each of four camels with 10 and 50 mg of PGF2 alpha showed clearly that five times the dose of exogenous hormone produced five times the amount of PGFM in peripheral plasma, thereby indicating that, as in other animal species, PGFM is the principal metabolite of PGF2 alpha in the camel. Serial sampling of three non-pregnant camels on each of days 8, 10 and 12, and three pregnant camels on day 10, after ovulation for 8 h showed a significant (P < 0.05) rise in mean plasma PGFM concentrations only on day 10 in the non-pregnant, but not the pregnant, animals. A single intravenous injection of 20, 50 or 100 iu oxytocin given to three groups of three non-pregnant camels on day 10 after ovulation did not increase their basal serum PGFM concentrations. However, daily treatment of six non-pregnant camels between days 6 and 15 (n = 3) or 20 (n = 3) after ovulation with 1-2 g of the prostaglandin synthetase inhibitor, meclofenamic acid, inhibited PGF2 alpha release and thereby resulted in continued progesterone secretion throughout the period of meclofenamic acid administration. These results showed that, as in other large domestic animal species, release of PGF2 alpha from, presumably, the endometrium controls luteolysis in the dromedary camel. Furthermore, reduction in the amount of PGF2 alpha released is associated with luteal maintenance and the embryonic signal for maternal recognition of pregnancy must be transmitted before day 10 after ovulation if luteostasis is to be achieved. However, the results also indicate that, in contrast to ruminants, the release of endometrial PGF2 alpha in the non-pregnant camel may not be controlled by the release of oxytocin.  相似文献   

4.
In Exp. 1 non-pregnant female tammars were injected, on Day 26 (the day parturition would normally occur) after removal of pouch young, with saline, 200 micrograms ovine prolactin or 5 mg PG and changes in plasma concentrations of progesterone, prolactin, PGF-2 alpha metabolite (PGFM), oestradiol-17 beta and LH were determined. Luteolysis occurred in females treated with prolactin alone, while treatment with PG first induced a rapid rise in prolactin and subsequently a significant decrease in plasma progesterone. After prolactin treatment the oestradiol peak, oestrus and the LH surge were advanced significantly compared to the saline-treated females. In Exp. 2 the effects of the same treatments as used in Exp. 1 were determined on Day 23 and again on Day 26 after removal of pouch young in non-pregnant females. On Day 23 both prolactin and PG induced significant elevations in plasma progesterone, but luteolysis did not occur. On Day 26 the treatments initially induced significant elevations in plasma progesterone but these were followed by luteolysis within 8-12 h after treatment. PG treatment induced parturient behaviour in the non-pregnant females within 3-21 min and this persisted during the period that plasma concentrations of PGFM were elevated. The results show that PG induces birth behaviour and the release of prolactin, while prolactin first induces an elevation of plasma progesterone concentrations and, in the mature CL on Day 26, subsequently induces luteolysis.  相似文献   

5.
Aba  M.A.  Forsberg  M.  Kindahl  Η.  Sumar  J.  Edqvist  L.-E. 《Acta veterinaria Scandinavica》1995,36(4):489-498
Plasma concentrations of oestradiol-17ß, progesterone, 15-keto–dihydro–PGF2α and luteinizing hormone (LH) were monitored in llamas and alpacas after mating with an intact male. Concentrations of LH and PGF2α metabolite were high immediately after copulation. Ovulation occurred in 92% of the animals. The first significant increases in progesterone were recorded on day 4 after mating. In non-pregnant animals the lifespan of the corpus luteum was estimated to be 8–9 days. Luteolysis occurred in association with the release of PGF2α. In pregnant animals, a transient decrease in progesterone concentrations was observed between days 8 and 18 in both species. No significant changes in PGF2α secretion were registered during this period. Oes– tradiol–17ß concentrations were high on the day of mating, declined to low values on day 4, and started to increase again on day 8. Peak values after luteolysis in non-pregnant animals were significantly higher than those registered in pregnant ones. Furthermore, concentrations of oestradiol-17ß were elevated for a longer period in non–pregnant than in pregnant animals. The results suggest that progesterone from the corpus luteum exerts a negative influence on follicular activity in pregnant animals by reducing oes– tradiol-17ß secretion.  相似文献   

6.
The luteolysis which terminated pseudopregnancy (PSP) in superovulated hamsters was studied. Spontaneous luteolysis occurred before 1100 on Day 7 of PSP and was characterized by a rapid decline in circulating progesterone levels. Luteolysis induced by prostaglandin F2 alpha (PGF2 alpha) on Day 5 of PSP displayed a similar rapid reduction in progesterone over 24 hours. In both cases levels of the progesterone metabolite 20 alpha hydroxypregn-4-ene-3-one (20 alpha-OHP) were less than 2 percent of progesterone levels and declined in a manner similar to progesterone. This suggests that conversion of progesterone or its precursors to 20 alpha-OHP was not a functional aspect of luteolysis in the hamster. Pretreatment with either prolactin (PRL), luteinizing hormone (LH) or follicle stimulating hormone (FSH) failed to prevent PGF2 alpha-induced luteolysis on Day 5 in the superovulated PSP hamster. Combinations of PRL and LH, LH and FSH or PRL and FSH were also unsuccessful in abrogating luteolysis. However, pretreatment with a combination of PRL, FSH and LH prevented luteolysis in 11/14 animals. These results suggest that luteotropic agents can reverse the luteolytic effects of PGF2 alpha in the hamster.  相似文献   

7.
Prostaglandin or prostaglandin analogues have been shown to be luteolytic in the pregnant goat. In this study the temporal changes in the plasma concentrations of progesterone during pregnancy and after administration of PGF2a to pregnant goats are described. PGF2a administration to pregnant goats at 30 and 65 days after breeding induced abortion within 34 to 75 hours. These abortions were accompanied by estrus and profuse muco-hemorrhagic discharges. When PGF2a was administered to pregnant goats 140 or 142 days after breeding, premature parturition occurred within 42 to 76 hours. Live kids were delivered in all cases. The plasma levels of progesterone in all pregnant goats showed dramatic decreases within 24 hours after the prostaglandin injections and continued to decrease gradually until abortions or premature parturition. Thereafter, the progesterone levels remained low for several days.  相似文献   

8.
Plasma prolactin and F-prostaglandins (PGF) were measured anesthetized male Sprague-Dawley rats before and at 15, 30, 45 and 60 minutes following i.v. injection of either PGF2alpha (4 mg/kg), chlorpromazine, 1 mg/kg or chlorpormazine (1 mg/kg) after pretreatment with i.p. indomethacin (2 mg/kg). Following PGF2alpha administration, plasma prolactin levels increased significantly only at 15 and 30 minutes in spite of extremely high PGF levels throughout 60 minutes. Besides the expected rise in plasma prolactin, chlorpromazine caused a transient but statistically significant increase in PGF. Indomethacin blocked the chlorpormazine-induced PGF rise but not prolactin increase. Animals stressed with ether anesthesia showed elevation of plasma prolactin, which was not blocked by indomethacin although PGF concentration fell. Theese results indicate that PGF2alpha can stimulate prolactin release. This effect does not appear to be physiologic since very high PGF levels are required. Furthermore, blockade of prostaglandin synthesis by indomethacin does not prevent the release of prolactin in response to chlorpormazine or stress. Our findings do not support a possible role of PGFs as intermediaries in prolactin release. However, it is possible that PGFs may work through other mechanisms not investigated in our study.  相似文献   

9.
The secretory patterns of progesterone in relation to concentrations of 15-ketodihydro-PGF(2alpha) (PGFM) during the period of luteolysis or of maternal recognition of pregnancy were determined in the blood of llamas mated either with an intact or a vasectomized male. The ability of flunixin meglumine (FM) to postpone luteolysis in non-pregnant llamas was investigated by injecting the drug intravenously every 6 h at a dose of 2.2 mg/kg from days 6 to 12 post-copulation into a group of non-pregnant llamas. A pulsatile pattern of prostaglandin release was recorded during luteolysis in non-pregnant llamas, giving further support to the hypothesis that PGF(2alpha) is the luteolytic agent in llamas. The mean number of peaks per animal rose from 0.3 on day 7 to 3.8 on day 10 and then declined to 1.1 on day 12 with corresponding mean peak amplitude changing from 465 to 1234 and 566 pmol l(-1), respectively. In pregnant llamas, prostaglandin pulsatile release also occurred. The mean number of peaks per animal rose from 0.4 on day 7 to 0.8 on day 10 and then declined to 0.2 on day 11 and 0.6 on day 12, with corresponding mean peak amplitude changing from 494 to 676, 388 and 547 pmol l(-1), respectively. The transient decrease and subsequent recovery in progesterone concentrations was observed to occur in connection with prostaglandin release during early pregnancy. Oestradiol-17beta plasma peak concentrations attained after luteolysis were significantly higher than those recorded in early pregnant animals (around 30 pmol l(-1) and ll pmol l(-1)). Concentrations of PGFM decreased rapidly after the first administration of FM and remained low throughout the first 2 days of treatment. Thereafter, pulsatile release of prostaglandins started, and luteolysis proceeded; but a delay of 1-1.5 days in the progesterone decline was observed. Thus, it might be suggested that a higher dose and/or a more intensive injection schedule is required in llamas than in other ruminants to prevent luteolysis.  相似文献   

10.
When female tammars carrying dormant blastocysts were injected with progesterone at the time of removal of their pouch young the development of the fetus was advanced and parturition occurred 5 days earlier than in the control tammars. In these tammars the prolactin pulse was also advanced by 5 days but the usually concomitant fall in progesterone was not. In non-pregnant tammars similar injections of progesterone did not advance the subsequent fall in progesterone, oestrus, or the LH pulse. In non-pregnant tammars injected with ovine prolactin on Day 26, to mimic the prolactin pulse, plasma progesterone was reduced to basal levels within 12 h, significantly earlier than in controls. Conversely, in 5 pregnant and 1 non-pregnant tammar injected with ovine prolactin on Day 23, to mimic the condition induced by advancing the time of parturition with progesterone, the decline in plasma progesterone was not advanced and the endogenous prolactin pulse, parturition, post-partum ovulation and the LH pulse all occurred after intervals similar to those of controls. The results support the view that the fetus is associated with the pre-partum prolactin pulse in maternal plasma and that a prolactin pulse at this stage is luteolytic in non-pregnant tammars.  相似文献   

11.
The objective of this study was to investigate whether PGF2 alpha, administered to pregnant and pseudopregnant gilts in vivo, would cause an acute increase in serum progesterone concentrations prior to luteolysis. Pregnant (n = 9) and pseudopregnant (n = 4) gilts were fitted with a jugular vein cannula on day 40, were treated with 3 ml vehicle (control) i.m. on day 42 and with 15 mg PGF2 alpha on day 45. Blood samples were collected at frequent (5 and 15 min) intervals from 1 h before until 1 h after control and PGF2 alpha injections, at 15 min intervals for 4 h, and then at 5, 6, 9, 21, 33, 45 and 57 h post injection. Progesterone was measured by radioimmunoassay (RIA) in all samples. Porcine LH was measured by RIA in samples collected frequently in the 1 h pre- and 1 h post-injection periods. Serum progesterone concentrations were unchanged in both pregnant and pseudopregnant animals in response to control injection on day 42. However, in both pregnant and pseudopregnant gilts, PGF2 alpha injection on day 45 resulted in an acute increase (approximately 75-80% above pre-treatment levels; p less than 0.05) in serum progesterone lasting approximately 1 h, followed by a return to pre-treatment levels by 2 h, and then a decline to 1 ng/ml or less by 45-57 h (pregnant) or 21-57 h (pseudopregnant), associated with luteolysis. Serum LH concentrations were unchanged between 1 h pre- and post-treatment periods in response to either control or PGF2 alpha-treatment, in both pregnant and pseuodpregnant gilts. These results indicate that PGF2 alpha-injection produces a rapid and transient increase in serum progesterone concentrations which may result from a rapid and direct stimulatory action of PGF2 alpha on porcine luteal cell progesterone synthesis/secretion in vivo.  相似文献   

12.
The effect of an in vivo prostaglandin F2 alpha (PGF2 alpha) challenge in pregnant and cyclic sows was compared to determine whether PGF2 alpha-induced release of relaxin (RLX) from the corpus luteum (CL) in late pregnancy is also effective during the cycle. Ovarian venous RLX and progesterone were monitored by radioimmunoassay and RLX localized in the CL by immunohistochemistry. In Day 108 pregnant sows, infusion of PGF2 alpha (100 micrograms) into the ovarian artery resulted in an immediate and sustained rise in ovarian venous RLX with an initial decline in progesterone levels by 30 min which then returned to pretreatment levels. In Day 13 or 15 cyclic sows with functional corpora lutea (i.e., elevated progesterone), RLX was undetectable in ovarian venous blood after 100 micrograms of PGF2 alpha. Administration of PGF2 alpha via either the jugular vein or intramuscular route was also ineffective in releasing RLX from the CL of the cycle. The intensity of RLX immunostaining of the CL was similar in saline and PGF2 alpha-treated sows. These studies indicate that the control of RLX release from the sow CL differs in the estrous cycle and pregnancy.  相似文献   

13.
The oxytocin-induced uterine prostaglandin (PG) F2 alpha response and the levels of endometrial oxytocin receptors were measured in ovariectomized ewes after they had been given steroid pretreatment (SP) with progesterone and estrogen to induce estrus (day of expected estrus = Day 0) and had subsequently been treated with progesterone over Days 1-12 and/or PGF2 alpha over Days 10-12 postestrus. The uterine PGF2 alpha response was measured after an i.v. injection of 10 IU oxytocin on Days 13 and 14, using the PGF2 alpha metabolite, 13,14-dihydro-15-keto-PGF2 alpha (PGFM), as an indicator for PGF2 alpha release. The levels of oxytocin receptors in the endometrium were measured on Day 14. During the treatment with progesterone, the peripheral progesterone concentrations were elevated and remained above 1.8 ng/ml until the morning of Day 14. The PGFM responses to oxytocin in untreated controls and SP controls were low on both Days 13 and 14 whereas the levels of endometrial oxytocin receptors in the same ewes were high. Treatment with progesterone either alone or in combination with PGF2 alpha significantly (p less than 0.04) increased the PGFM response on Day 14 and reduced the levels of endometrial oxytocin receptors; treatment with PGF2 alpha alone had no effect. It is concluded that progesterone promotes the PGFM response to oxytocin while simultaneously suppressing the levels of endometrial oxytocin receptors. PGF2 alpha treatment had no effect on either the uterine secretory response to oxytocin or the levels of oxytocin receptors in the endometrium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Using radioimmunoassay procedures, the levels of plasma, uterine and ovarian prostaglandin (PG) F2alpha, and those of plasma estradiol and progesterone were measured in intact, hysterectomized or ovariectomized immature female rats pretreated with PMS and subsequent HCG. Occurrence of ovulation was confirmed at 8 hours after the HCG administration not only in the intact rats but also in the hysterectomzied rats. The levels of plasma estradiol and progesterone, and of uterine and ovarian PGF2alpha rose with the PMS injection alone, but they did not reach the peaks before the HCG administration. Both plasma estradiol and uterine PGF2alpha showed a peak at 2 hours after the HCG injection. These peaks were antecedent 2 or 6 hours before the peaks of ovarian and plasma PGF2alpha, respectively. However, such increase of uterine PGF2alpha does not seem to be indispensable for ovulation, because ovulation could occur in the hysterectomized rats. The levels of ovarian PGF2alpha showed a high plateau from 4 to 8 hours after the HCG injection, and then rapidly decreased after ovulation. The levels of plasma PGF2alpha peaked not only in the intact rats but also in the hysterectomized rats at 8 hours after the HCG treatment. But in the ovariectomized rats, this plasma PGF2alpha peak at 8 hours disappeared and there was no statistical change of plasma PGF2alpha throughout the PMS-HCG treatment. Plasma progesterone gradually increased and reached the maximum at 10 hours after the HCG injection. These results conclude that the main source of increased plasma PGF2alpha during the ovulatory process induced with the PMS-HCG treatment is the ovary, and it is strongly suggested that a rapid increase of PGF2alpha in the ovary may play some important role(s) in the ovulatory process.  相似文献   

15.
Pregnancy regulation in the dog is not yet fully elucidated. Since plasma progesterone concentrations are similar in pregnant versus non-pregnant animals, it is a poor reflection on CL function and progesterone metabolism. Increased progesterone secretion by the CL in pregnant animals follows implantation and relaxin secretion by the feto-placental units. Progesterone is absolutely required to maintain pregnancy and no placental sources of progesterone have been identified. Pregnancy can be artificially maintained by progesterone administration. Prolactin secretion appears to be increased in response to the increase in relaxin production and occurs independent of estrogen production by the CL. The respective roles of LH, FSH and prolactin are still unclear, with considerable conflicting evidence among studies. However, it appears that prolactin is absolutely required, whereas LH is either permissive or facilitates CL function during pregnancy. Pre-implantation events are still poorly defined in the bitch, and no embryonic factors have been isolated or purified, preventing early pregnancy diagnosis. Parturition occurs following luteolysis, which results from the release of prostaglandin F(2alpha), which begins 36h prepartum in a process similar to that observed in other species. The role of estrogens at the time of parturition remains undefined.  相似文献   

16.
The role of progesterone in regulation of uteroovarian venous concentrations of prostaglandins F2 alpha(PGF2 alpha) and E2 (PGE2) during days 13 to 16 of the ovine estrous cycle or early pregnancy was examined. At estrus, ewes were either mated to a fertile ram or unmated. On day 12 postestrus, ewes were laparotomized and a catheter was inserted into a uteroovarian vein. Six mated and 7 unmated ewes received no further treatment. Fifteen mated and 13 unmated ewes were ovariectomized on day 12 and of these, 7 mated and 5 unmated ewes were given 10 mg progesterone sc and an intravaginal pessary containing 30 mg of progesterone. Uteroovarian venous samples were collected every 15 min for 3 h on days 13 to 16 postestrus. Mating resulted in higher mean daily concentrations of PGE2 in the uteroovarian vein than in unmated ewes. Ovariectomy prevented the rise in PGE2 with day in mated ewes but had no effect in unmated ewes. Progesterone treatment restored PGE2 in ovariectomized, mated ewes with intact embryos. Mating had no effect on mean daily concentrations of PGE2 alpha or the patterns of the natural logarithm (1n) of the variance of PGF2 alpha. Ovariectomy resulted in higher mean concentrations and 1n variances of PGF2 alpha on day 13 and lower mean concentrations and 1n variances of PGF2 alpha on days 15 and 16. Replacement with progesterone prevented these changes in patterns of mean concentrations and 1n variances of PGF2 alpha following ovariectomy. It is concluded that progesterone regulates the release of PGF2 alpha from the uterus, maintaining high concentrations while also preventing the occurrence of the final peaks of PGF2 alpha which are seen with falling concentrations of progesterone. This occurs in both pregnant and non-pregnant ewes. Progesterone is also needed to maintain increasing concentrations of PGE2 in mated ewes.  相似文献   

17.
Clenbuterol, as other sympathomimetic drugs, relaxes the myometrium, thus causing a short-term inhibition of labor and the delay of parturition. This study has examined the influence of clenbuterol on the release of prostaglandin F2 alpha (PGF2 alpha) induced by oxytocin alone or with estradiol-17 beta. Five bilaterally ovariectomized heifers, primed with progesterone for 14 days, were used in two experiments. In the first they received two i.v. injections of oxytocin 6h apart, with and without an i.v. injection of clenbuterol before the second oxytocin injection; the second experiment was similar to the first except that the animals were given estradiol-17 beta 30 min after the first oxytocin injection. Frequent blood samples were taken for the measurement of 13,14-dihydro-15-keto-PGF2 alpha by radioimmunoassay. The data show that clenbuterol does not influence PGF2 alpha release in response to oxytocin alone or with estradiol-17 beta, and it does not inhibit the basal release of PGF2 alpha. This suggests that clenbuterol does not act on the endometrium to alter the secretion of PGF2 alpha in the non-pregnant cow.  相似文献   

18.
The objective of this experiment was to determine the effect of a 5-day progesterone priming prior to a GnRH-PGF2alpha treatment on reproductive performance of anestrous goats. Thirty-six Mountain Black goats were randomly assigned in a 2 x 2 factorial arrangement and were administered intravaginally on day -12, either with 300 mg progesterone inserts (CGPE and CGP) or with 0 mg progesterone (GPE and GP) for 5 days. On day -6, the goats were injected with 100 microg GnRH, followed 6 days later by 15 mg PGF2alpha (day 0), the time at which the goats in the CGPE and GPE groups were administered 300 IU eCG injections and those in CGP and GP groups were administered the control solution. The goats were exposed to four fertile bucks at 0 h and were checked for breeding marks at 6-h intervals for 72 h. Blood samples were collected from all goats for progesterone analysis. Progesterone concentrations increased only in CGPE and CGP during the period of device insertion but remained low in GPE and GP groups (P < 0.001). Progesterone levels at the time of GnRH injection on day -6 were basal (0.2 +/- 0.04 ng.mL-1) among the groups and began to increase starting on day -2. Day 0 progesterone concentrations differed (P < 0.05) among groups and were significantly influenced by CIDR-G (P < 0.001). A similar proportion of goats expressed estrus and intervals to detected estrus were shorter (P < 0.05) in the CGPE and GPE groups than in GP with no difference between the CGPE, CGP and GPE or between CGP and GP groups. The number of goats ovulating based upon elevated progesterone levels on day 0 was significantly greater (P = 0.002) in CGPE (9/9) and CGP (9/9) than GPE (6/9) and GP (5/9) groups and was significantly influenced by CIDR-G (P = 0.03). All pregnant goats had elevated progesterone concentration on day 0 and none of the goats with basal progesterone levels became pregnant. Pregnancy and kidding rates, twinning percentage and the number of kids born per goat exposed were greater (P < 0.05) among goats treated with progesterone and eCG. In conclusion, progesterone priming and eCG are essential for producing higher rates of pregnancy and kidding in GnRH-PGF2alpha-treated anestrous goats.  相似文献   

19.
On day 17 postestrus or postmating, heifers were given intrauterine injections of saline (2 pregnant, 2 non-pregnant) or 200 micrograms PGF2 alpha (7 pregnant, 6 nonpregnant) through cannulae installed surgically into the uterine horn ipsilateral to the corpus luteum bearing ovary. Jugular blood samples were collected prior to the laparotomy at which the cannulae were installed during surgery, and for 90 min following the intrauterine injection. Plasma was assayed for progesterone and 13,14-dihydro-15-keto-PGF2 alpha (PGFM). Laparotomies were reopened to confirm proper cannula placement and to determine if blastocysts were present in mated heifers. Concentrations of PGFM were higher in pregnant compared to nonpregnant heifers during the presurgery (68 +/- 26 vs 24 +/- 26 pg/ml; P less than .025) and surgery (186 +/- 47 vs 65 +/- 17 pg/ml; P less than .05) periods. Pregnancy status did not alter the mean concentrations of PGFM (pregnant, 554 +/- 70 pg/ml; nonpregnant, 422 +/- 81 pg/ml) or the half-life of its decline in concentration (18 min) following intrauterine injection of PGF2 alpha. Pregnancy at 17 days in cattle does not appear to influence PGF2 alpha transport from the uterine lumen or its metabolism in the uterus or elsewhere in response to an acute intrauterine injection.  相似文献   

20.
Plasma prolactin and F-prostaglandins (PGF) were measured in anesthetized male Sprague-Dawley rats before and at 15, 30, 45 and 60 minutes following i.v. injection of either PGF (4 mg/kg), chlorpromazine, 1 mg/kg or chlorpromazine (1 mg/kg) after pretreatment with i.p. indomethacin (2 mg/kg). Following PGF administration, plasma prolactin levels increased significantly only at 15 and 30 minutes in spite of extremely high PGF levels throughout 60 minutes. Besides the expected rise in plasma prolactin, chlorpromazine caused a transient but statistically significant increase in PGF. Indomethacin blocked the chlorpromazine-induced PGF rise but not prolactin increase. Animals stressed with ether anesthesia showed elevation of plasma prolactin, which was not blocked by indomethacin although PGF concentration fell. These results indicate that PGF can stimulate prolactin release. This effect does not appear to be physiologic since very high PGF levels are required. Furthermore, blockade of prostaglandin synthesis by indomethacin does not prevent the release of prolactin in response to chlorpromazine or stress. Our findings do not support a possible role of PGFs as intermediaries in prolactin release. However, it is possible that PGFs may work through other mechanisms not investigated in our study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号