首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
The first step in microRNA (miRNA) biogenesis usually involves cleavage at the base of its fold‐back precursor. Here, we describe a non‐canonical processing mechanism for miRNAs miR319 and miR159 in Arabidopsis thaliana. We found that their biogenesis begins with the cleavage of the loop, instead of the usual cut at the base of the stem–loop structure. DICER‐LIKE 1 (DCL1) proceeds then with three additional cuts until the mature miRNA is released. We further show that the conserved upper stem of the miR319 precursor is essential to organize its biogenesis, whereas sequences below the miRNA/miRNA* region are dispensable. In addition, the bulges present in the fold‐back structure reduce the accumulation of small RNAs other than the miRNA. The biogenesis of miR319 is conserved in the moss Physcomitrella patens, showing that this processing mechanism is ancient. These results provide new insights into the plasticity of small‐RNA pathways.  相似文献   

3.
4.
5.
MicroRNA319 (miR319) family is one of the conserved microRNA (miRNA) families among diverse plant species. It has been reported that miR319 regulates plant development in dicotyledons, but little is known at present about its functions in monocotyledons. In rice (Oryza sativa L.), the MIR319 gene family comprises two members, OsaMIR319a and OsaMIR319b. Here, we report an expression pattern analysis and a functional characterization of the two OsaMIR319 genes in rice. We found that overexpressing OsaMIR319a and OsaMIR319b in rice both resulted in wider leaf blades. Leaves of osa‐miR319 overexpression transgenic plants showed an increased number of longitudinal small veins, which probably accounted for the increased leaf blade width. In addition, we observed that overexpressing osa‐miR319 led to enhanced cold tolerance (4 °C) after chilling acclimation (12 °C) in transgenic rice seedlings. Notably, under both 4 and 12 °C low temperatures, OsaMIR319a and OsaMIR319b were down‐regulated while the expression of miR319‐targeted genes was induced. Furthermore, genetically down‐regulating the expression of either of the two miR319‐targeted genes, OsPCF5 and OsPCF8, in RNA interference (RNAi) plants also resulted in enhanced cold tolerance after chilling acclimation. Our findings in this study demonstrate that miR319 plays important roles in leaf morphogenesis and cold tolerance in rice.  相似文献   

6.
7.
HYPONASTIC LEAVES1 (HYL1) is an important regulator of microRNA (miRNA) biogenesis. Incurvature of rosette leaves in loss-of-function mutants of HYL1 implicates the regulation of leaf flatness by HYL1 via miRNA pathways. Recent studies have identified jba-1D, jaw-1D, and oe-160c, the dominant mutants of MIR166g, MIR319a, and MIR160c genes, respectively, which display three types of leaf curvature. However, it remains unclear whether or how HYL1 controls leaf flatness through the pathways mediated by these miRNAs. To define which miRNAs and target genes are relevant to the hyl1 phenotype in terms of leaf incurvature, the effects of three mutated MIRNA genes and their targets on the direction and extent of leaf curvature in hyl1 mutants were examined. The genetic analysis shows that the hyl1 phenotype is strongly rescued by jba-1D, but not by jaw-1D or oe-160c, whereas the mutant phenotypes of jba-1D, jaw-1D, or oe-160c leaves are compromised by the hyl1 allele. Expression analysis indicates that reduced accumulation of miR166, rather than of miR319a or miR160, causes incurvature of hyl1 leaves, and that miR319a-targeted TCP3 positively regulates the adaxial identity gene PHABULOSA while miR160-targeted ARF16 negatively regulates the abaxial identity gene FILAMENTOUS FLOWER. In these cases, the direction and extent of leaf incurvature are associated with the expression ratio of adaxial to abaxial genes (adaxial to abaxial ratio). HYL1 regulates the balance between adaxial and abaxial identity and modulates leaf flatness by preventing leaf incurvature, wavy margins, and downward curvature. It is concluded that HYL1 monitors the roles of miR165/166, miR319a, and miR160 in leaf flattening through the relative activities of adaxial and abaxial identity genes, thus playing an essential role in leaf development.  相似文献   

8.
SHORT-ROOT (SHR) is a key regulator of radial patterning and stem-cell renewal in the Arabidopsis root. Although SHR is expressed in the stele, its function in the vascular tissue was not recognized until recently. In shr, the protoxylem is missing due to the loss of expression of microRNA165A (miR165A) and microRNA166B (miR165B). shr is also defective in lateral root formation, but the mechanism remains unclear. To dissect the SHR developmental pathway, we recently have identified its direct targets at the genome scale by chromatin immunoprecipitation followed by microarray analysis (ChIP-chip). In further studies, we have shown that SHR regulates cytokinin homeostasis through cytokinin oxidase 3 and that this role of SHR is critical to vascular patterning in the root. In this communication we report that SHR also regulates miR165A and miR166B indirectly through its effect on cytokinin homeostasis. Although cytokinin is inhibitory to root growth, the root-apical-meristem defect in shr was not alleviated by reduction of endogenous cytokinin. These results together suggest that SHR regulates vascular patterning, but not root apical meristematic activity, through cytokinin homeostasis.  相似文献   

9.
  • Plant microRNAs are small RNAs that are important for genetic regulation of processes such as plant development or environmental responses. Specific microRNAs accumulate in the phloem during phosphate starvation, and may act as long‐distance signalling molecules.
  • We performed quantitative PCR on Arabidopsis hypocotyl micrograft tissues of wild‐type and hen1‐6 mutants to assess the mobility of several phosphate starvation‐responsive microRNA species.
  • In addition to the previously confirmed mobile species miR399d, the corresponding microRNA* (miR399d*) was identified for the first time as mobile between shoots and roots. Translocation by phosphate‐responsive microRNAs miR827 and miR2111a between shoots and roots during phosphate starvation was evident, while their respective microRNA*s were not mobile.
  • The results suggest that long‐distance mobility of microRNA species is selective and can occur without the corresponding duplex strand. Movement of miR399d* and root‐localised accumulation of miR2111a* opens the potential for persisting microRNA*s to be mobile and functional in novel pathways during phosphate starvation responses.
  相似文献   

10.
Multiple genes and microRNAs (miRNAs) improve grain yield by promoting tillering. MiR319s are known to regulate several aspects of plant development; however, whether miR319s are essential for tillering regulation remains unclear. Here, we report that miR319 is highly expressed in the basal part of rice plant at different development stages. The miR319 knockdown line Short Tandem Target Mimic 319 (STTM319) showed higher tiller bud length in seedlings under low nitrogen (N) condition and higher tiller bud number under high N condition compared with the miR319a-overexpression line. Through targets prediction, we identified OsTCP21 and OsGAmyb as downstream targets of miR319. Moreover, OsTCP21 and OsGAmyb overexpression lines and STTM319 had increased tiller bud length and biomass, whereas both were decreased in OsTCP21 and OsGAmyb knockout lines and OE319a. These data suggest that miR319 regulates rice tiller bud development and tillering through targeting OsTCP21 and OsGAmyb. Notably, the tiller number and grain yield increased in STTM319 and overexpression lines of OsTCP21 and OsGAmyb but decreased in OE319a and knockout lines of OsTCP21 and OsGAmyb. Taken together, our findings indicate that miR319s negatively affect tiller number and grain yield by targeting OsTCP21 and OsGAmyb, revealing a novel function for miR319 in rice.  相似文献   

11.
The current study analyses few important biochemical parameters and microRNA expression in two closely related species (wild but tolerant Ipomoea campanulata L. and cultivated but sensitive Jacquemontia pentantha Jacq.G.Don) exposed to water deficit conditions naturally occurring in the field. Under soil water deficit, both the species showed reduction in their leaf area and SLA as compared to well-watered condition. A greater decrease in chlorophyll was noticed in J. pentantha (~50 %) as compared to I. campanulata (20 %) under stress. By contrast, anthocyanin and MDA accumulation was greater in J. pentantha as compared to I. campanulata. Multiple isoforms of superoxide dismutases (SODs) with differing activities were observed under stress in these two plant species. CuZnSOD isoforms showed comparatively higher induction (~10–40 %) in I. campanulata than J. pentantha. MicroRNAs, miR398, miR319, miR395 miR172, and miR408 showed opposing expression under water deficit in these two plant species. Expression of miR156, miR168, miR171, miR172, miR393, miR319, miR396, miR397 and miR408 from either I. campanulata or J. pentantha or both demonstrated opposite pattern of expression to that of drought stressed Arabidopsis. The better tolerance of the wild species (I. campanulata) to water deficit could be attributed to lesser variations in chlorophyll and anthocyanin levels; and relatively higher levels of SODs than J. pentantha. miRNA expression was different in I. campanulata than J. pentantha.  相似文献   

12.
13.
Many microRNAs (miRNAs) are encoded by small gene families. In a third of all conserved Arabidopsis miRNA families, members vary at two or more nucleotide positions. We have focused on the related miR159 and miR319 families, which share sequence identity at 17 of 21 nucleotides, yet affect different developmental processes through distinct targets. MiR159 regulates MYB mRNAs, while miR319 predominantly acts on TCP mRNAs. In the case of miR319, MYB targeting plays at most a minor role because miR319 expression levels and domain limit its ability to affect MYB mRNAs. In contrast, in the case of miR159, the miRNA sequence prevents effective TCP targeting. We complement these observations by identifying nucleotide positions relevant for miRNA activity with mutants recovered from a suppressor screen. Together, our findings reveal that functional specialization of miR159 and miR319 is achieved through both expression and sequence differences.  相似文献   

14.
15.
16.
Wang JW  Wang LJ  Mao YB  Cai WJ  Xue HW  Chen XY 《The Plant cell》2005,17(8):2204-2216
The plant root cap mediates the direction of root tip growth and protects internal cells. Root cap cells are continuously produced from distal stem cells, and the phytohormone auxin provides position information for root distal organization. Here, we identify the Arabidopsis thaliana auxin response factors ARF10 and ARF16, targeted by microRNA160 (miR160), as the controller of root cap cell formation. The Pro(35S):MIR160 plants, in which the expression of ARF10 and ARF16 is repressed, and the arf10-2 arf16-2 double mutants display the same root tip defect, with uncontrolled cell division and blocked cell differentiation in the root distal region and show a tumor-like root apex and loss of gravity-sensing. ARF10 and ARF16 play a role in restricting stem cell niche and promoting columella cell differentiation; although functionally redundant, the two ARFs are indispensable for root cap development, and the auxin signal cannot bypass them to initiate columella cell production. In root, auxin and miR160 regulate the expression of ARF10 and ARF16 genes independently, generating a pattern consistent with root cap development. We further demonstrate that miR160-uncoupled production of ARF16 exerts pleiotropic effects on plant phenotypes, and miR160 plays an essential role in regulating Arabidopsis development and growth.  相似文献   

17.
The syncytium is a unique plant root organ whose differentiation is induced by plant-parasitic cyst nematodes to create a source of nourishment. Syncytium formation involves the redifferentiation and fusion of hundreds of root cells. The underlying regulatory networks that control this unique change of plant cell fate are not understood. Here, we report that a strong down-regulation of Arabidopsis (Arabidopsis thaliana) microRNA396 (miR396) in cells giving rise to the syncytium coincides with the initiation of the syncytial induction/formation phase and that specific miR396 up-regulation in the developed syncytium marks the beginning of the maintenance phase, when no new cells are incorporated into the syncytium. In addition, our results show that miR396 in fact has a role in the transition from one phase to the other. Expression modulations of miR396 and its Growth-Regulating Factor (GRF) target genes resulted in reduced syncytium size and arrested nematode development. Furthermore, genome-wide expression profiling revealed that the miR396-GRF regulatory system can alter the expression of 44% of the more than 7,000 genes reported to change expression in the Arabidopsis syncytium. Thus, miR396 represents a key regulator for the reprogramming of root cells. As such, this regulatory unit represents a powerful molecular target for the parasitic animal to modulate plant cells and force them into novel developmental pathways.  相似文献   

18.
19.
Regulation of miR319 during cold stress in sugarcane   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are part of a novel mechanism of gene regulation that is active in plants under abiotic stress conditions. In the present study, 12 miRNAs were analysed to identify miRNAs differentially expressed in sugarcane subjected to cold stress (4 °C). The expression of miRNAs assayed by stem–loop RT‐PCR showed that miR319 is up‐regulated in sugarcane plantlets exposed to 4 °C for 24 h. The induction of miR319 expression during cold stress was observed in both roots and shoots. Sugarcane miR319 was also regulated by treatment with abscisic acid. Putative targets of this miRNA were identified and their expression levels were decreased in sugarcane plantlets exposed to cold. The cleavage sites of two targets were mapped using a 5′ RACE PCR assay confirming the regulation of these genes by miR319. When sugarcane cultivars contrasting in cold tolerance were subjected to 4 °C, we observed up‐regulation of miR319 and down‐regulation of the targets in both varieties; however, the changes in expression were delayed in the cold‐tolerant cultivar. These results suggest that differences in timing and levels of the expression of miR319 and its targets could be tested as markers for selection of cold‐tolerant sugarcane cultivars.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号