首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to devise adequate conservation and management strategies for endangered species, it is important to incorporate a reliable understanding of its spatial population structure, detecting the existence of demographic partitions throughout its geographical range and characterizing the distribution of its genetic diversity. Moreover, in species that occupy fragmented habitats it is essential to know how landscape characteristics may affect the genetic connectivity among populations. In this study we use eight microsatellite markers to analyze population structure and gene flow patterns in the complete geographic range of the endangered rodent Ctenomys porteousi. Also, we use landscape genetics approaches to evaluate the effects of landscape configuration on the genetic connectivity among populations. In spite of geographical proximity of the sampling sites (8–27 km between the nearest sites) and the absence of marked barriers to individual movement, strong population structure and low values of gene flow were observed. Genetic differentiation among sampling sites was consistent with a simple model of isolation by distance, where peripheral areas showed higher population differentiation than those sites located in the central area of the species’ distribution. Landscape genetics analysis suggested that habitat fragmentation at regional level has affected the distribution of genetic variation among populations. The distance of sampling sites to areas of the landscape having higher habitat connectivity was the environmental factor most strongly related to population genetic structure. In general, our results indicate strong genetic structure in C. porteousi, even at a small spatial scale, and suggest that habitat fragmentation could increase the population differentiation.  相似文献   

2.
The European natterjack toad (Bufo calamita) has declined rapidly in recent years, primarily due to loss of habitat, and in Denmark it is estimated that 50% of the isolated populations are lost each decade. To efficiently manage and conserve this species and its genetic diversity, knowledge of the genetic structure is crucial. Based on nine polymorphic microsatellite loci, the genetic diversity, genetic structure and gene flow were investigated at 12 sites representing 5–10% of the natterjack toad localities presently known in Denmark. The expected heterozygosity (H E) within each locality was generally low (range: 0.18–0.43). Further analyses failed to significantly correlate genetic diversity with population size, degree of isolation and increasing northern latitude, indicating a more complex combination of factors in determining the present genetic profile. Genetic differentiation was high (overall θ = 0.29) and analyses based on a Bayesian clustering method revealed that the dataset constituted 11 genetic clusters, defining nearly all sampling sites as distinct populations. Contemporary gene flow among populations was undetectable in nearly all cases, and the failure to detect a pattern of isolation by distance within major regions supported this apparent lack of a gene flow continuum. Indications of a genetic bottleneck were found in three populations. The analyses suggest that the remaining Bufo calamita populations in Denmark are genetically isolated, and represent independent units in a highly fragmented gene pool. Future conservation management of this species is discussed in light of these results. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Assessing the genetic consequences of habitat fragmentation is a crucial step in conservation planning for species in endangered habitats. We tested for the impact of natural habitat fragmentation on gene flow and genetic diversity in seven northern breeding locations of the sagebrush Brewer’s sparrow, Spizella breweri breweri. Genetic analyses using five highly variable DNA microsatellite loci suggested that individuals sampled within a sagebrush landscape fragmented by natural elements such as coniferous forest, comprise a single genetic population and that gene flow among them is unimpeded. We posit that juvenile dispersal links seemingly isolated breeding locales of this species, and discuss implications of our findings for conservation of migratory songbirds in the northern portion of their ranges in light of potential shifts in distribution due to climate change.  相似文献   

4.
Tropical trees are generally long-lived making it difficult to assess the long-term effects of habitat fragmentation on genetic diversity. Maintenance of genetic diversity in fragmented landscapes is largely dependent on the species’ mating system and the degree of genetic connectivity (seed and pollen flow) among fragments. Currently, these parameters are largely unknown for many endangered tropical tree species. Additionally, landscape fragmentation may isolate tropical tree populations from larger, more continuous populations. The role of isolated individuals in pollen transfer within and between remnant populations is not clear. In this study, we estimate the mating system and pollen flow patterns in continuous and remnant populations of the endangered tropical tree Guaiacum sanctum (Zygophyllaceae). Fractional paternity analyses were used to estimate average gene flow distances between fragmented remnant populations and the siring success of an intermediately located, but isolated individual. In these populations, G. sanctum is a mixed-mating species (t m = 0.72 − 0.95) whose pollen is transported over large distances (>4 km). An isolated tree may have functioned as a stepping-stone between two clusters of individuals, assisting long-distance pollen movement. This individual also sired a disproportionately high number of seeds (13.9%), and is thus an important component of the reproductive success of these populations, thus rejecting Janzen’s “living-dead” hypothesis. The high levels of genetic diversity maintained as a consequence of long-distance pollen-flow suggest that this endangered species may have the potential for future adaptation and population expansion if suitable habitats become available.  相似文献   

5.
1. Landscape genetic approaches were used to assess functional connectivity of populations of the endangered damselfly Coenagrion mercuriale in a fragmented agricultural landscape in Switzerland. Spatial genetic clustering methods combined with interpolation by kriging and landscape genetic corridor analysis were applied to identify landscape elements that enhance or hinder dispersal and gene flow. 2. Spatial genetic clustering analysis divided the sampled populations into a northern and a southern genetic group. The boundary between the two groups coincided with a hill ridge intersecting the study area. Landscape corridor analysis identified five landscape elements that significantly affected gene flow. Elevation change, Euclidian distance, patches of forest and flowing waterbodies acted as barriers, whereas open agricultural land enhanced gene flow between populations of C. mercuriale. 3. This study showed that movement of C. mercuriale was not restricted to its preferred habitat (i.e. streams). Populations linked via continuous open agricultural land were functionally well connected if they were not more than about 1.5–2 km apart. In contrast, substantial elevation change and larger forest patches separated populations. These findings may serve as a basis to define conservation units and should be considered when planning connectivity measures, such as determining the locations of stepping stones, or the restoration of streams.  相似文献   

6.
Fragmented landscapes resulting from anthropogenic habitat modification can have significant impacts on dispersal, gene flow, and persistence of wildlife populations. Therefore, quantifying population connectivity across a mosaic of habitats in highly modified landscapes is critical for the development of conservation management plans for threatened populations. Endangered populations of the eastern tiger salamander (Ambystoma tigrinum) in New York and New Jersey are at the northern edge of the species’ range and remaining populations persist in highly developed landscapes in both states. We used landscape genetic approaches to examine regional genetic population structure and potential barriers to migration among remaining populations. Despite the post-glacial demographic processes that have shaped genetic diversity in tiger salamander populations at the northern extent of their range, we found that populations in each state belong to distinct genetic clusters, consistent with the large geographic distance that separates them. We detected overall low genetic diversity and high relatedness within populations, likely due to recent range expansion, isolation, and relatively small population sizes. Nonetheless, landscape connectivity analyses reveal habitat corridors among remaining breeding ponds. Furthermore, molecular estimates of population connectivity among ponds indicate that gene flow still occurs at regional scales. Further fragmentation of remaining habitat will potentially restrict dispersal among breeding ponds, cause the erosion of genetic diversity, and exacerbate already high levels of inbreeding. We recommend the continued management and maintenance of habitat corridors to ensure long-term viability of these endangered populations.  相似文献   

7.

Preserving the genetic diversity of endangered species is fundamental to their conservation and requires an understanding of genetic structure. In turn, identification of landscape features that impede gene flow can facilitate management to mitigate such obstacles and help with identifying isolated populations. We conducted a landscape genetic study of the endangered salt marsh harvest mouse (Reithrodontomys raviventris), a species endemic to the coastal marshes of the San Francisco Estuary of California. We collected and genotyped?>?500 samples from across the marshes of Suisun Bay which contain the largest remaining tracts of habitat for the species. Cluster analyses and a population tree identified three geographically discrete populations. Next, we conducted landscape genetic analyses at two scales (the entire study area and across the Northern Marshes) where we tested 65 univariate models of landscape features and used the best supported to test multivariable analyses. Our analysis of the entire study area indicated that open water and elevation (>?2 m) constrained gene flow. Analysis of the Northern Marshes, where low elevation marsh habitat is more continuous, indicated that geographic distance was the only significant predictor of genetic distance at this scale. The identification of a large, connected population across Northern Marshes achieves a number of recovery targets for this stronghold of the species. The identification of landscape features that act as barriers to dispersal enables the identification of isolated and vulnerable populations more broadly across the species range, thus aiding conservation prioritization.

  相似文献   

8.
The otton frog (Babina subaspera) is an endangered species endemic to the Amami Islands, Japan. High predation pressure from an introduced carnivore, the mongoose, has caused declines in the frog populations and created a large habitat gap around an urban area. To promote effective conservation, we investigated the genetic status of the species and examined the effect of the habitat gap on gene flow among populations. Using five polymorphic microsatellite loci and mitochondrial DNA sequences, we investigated genetic diversity, genetic structure and gene flow in B. subaspera populations on the islands of Amami-Oshima and Kakeroma-jima. The expected heterozygosity (H E) within each locality was generally high (range: 0.67–0.85), indicating that B. subaspera maintains high genetic diversity. However, genetic differentiation was observed, and the two populations, TAG and KAR, showed little gene flow with other populations. The clustering and F ST analyses also predicted that these two populations were clearly distinct. According to the mitochondrial DNA analysis, the observed genetic differentiation occurred relatively recently. Possible barriers such as mountain ridges, rivers or roads did not result in genetic separation of the populations. These data support the hypothesis that the habitat gap created by an introduced predator prevented the gene flow among B. subaspera populations. When developing conservation strategies for B. subaspera, focus should be directed to these two isolated populations; careful monitoring of population size and genetic diversity should be conducted along with the mongoose elimination project ensues.  相似文献   

9.
To establish a management plan for endangered and rare species, genetic assessment must first be conducted. The genetic characteristics of plant species are affected by demographic history, reproductive strategy, and distributional range as well as anthropological effects. Abies koreana E. H. Wilson (Pinaceae), Korean fir, is endemic to Korea and found only in sub-alpine areas of the southern Korean Peninsula and Jejudo Island. This species has been designated as critically endangered by the International Union for Conservation of Nature due to a continuous decline in its range and population fragmentation. We genotyped 176 individuals from seven natural populations and two afforested populations on the Korean Peninsula using 19 microsatellite loci. STRUCTURE analysis revealed two genetic clusters in natural populations (F st  = 0.040 and R st  = 0.040) despite low differentiation. We did not detect a significant reduction in genetic diversity or the signature of a genetic bottleneck despite population fragmentation and small population size. We deduced that this species exhibits a metapopulation structure, with the population on Jirisan Mountain acting as a source of genetic diversity for other local small populations on the Korean Peninsula, through contemporary asymmetric gene flow. However, the majority of afforested individuals on the Korean Peninsula originated from a different gene cluster. Thus, we recommend a conservation strategy that maintains two genetically unique clusters.  相似文献   

10.
Heliconia uxpanapensis (Heliconiaceae) is an outcrossing endemic herb that grows within continuous and fragmented areas of the tropical rain forest of southeast Veracrúz (México). The genetic diversity, population differentiation, and genetic structure of seven populations of the studied species were assessed using inter‐simple sequence repeat) markers. Population differentiation was moderately high (FST range: 0.18–0.22) and indirect estimates of gene flow were rather low (Nm=0.65–0.83). Analysis of molecular variance indicated that the populations explained 22.2 percent of the variation, while individuals within the populations accounted for 77.8 percent. The similar and high level of genetic diversity found within populations of the continuous and fragmented forest suggests that H. uxpanapensis has not suffered yet the expected negative effect of fragmentation. Genetic structure analyses indicated the presence of fewer genetic clusters (K=4) than populations (N=7). Three of the four fragmented forest populations were assigned each to one of the clusters found within the continuous forest, suggesting the absence of a negative fragmentation effect on the amount and distribution of genetic variation. Given the significant genetic structure combined with high genetic diversity and low levels of gene flow, theoretical simulations indicated that H. uxpanapensis might be highly susceptible to changes in the mating system, which promotes inbreeding within fragmented populations. Thus, future conservation efforts in this species should be directed to ensure that levels of gene flow among populations are sufficient to prevent an increment in the magnitude of inbreeding within fragments.  相似文献   

11.
Lemurs are among the world's most threatened mammals. The critically endangered black‐and‐white ruffed lemur (Varecia variegata), in particular, has recently experienced rapid population declines due to habitat loss, ecological sensitivities to habitat degradation, and extensive human hunting pressure. Despite this, a recent study indicates that ruffed lemurs retain among the highest levels of genetic diversity for primates. Identifying how this diversity is apportioned and whether gene flow is maintained among remnant populations will help to diagnose and target conservation priorities. We sampled 209 individuals from 19 sites throughout the remaining V. variegata range. We used 10 polymorphic microsatellite loci and ~550 bp of mtDNA sequence data to evaluate genetic structure and population dynamics, including dispersal patterns and recent population declines. Bayesian cluster analyses identified two distinct genetic clusters, which optimally partitioned data into populations occurring on either side of the Mangoro River. Localities north of the Mangoro were characterized by greater genetic diversity, greater gene flow (lower genetic differentiation) and higher mtDNA haplotype and nucleotide diversity than those in the south. Despite this, genetic differentiation across all sites was high, as indicated by high average FST (0.247) and ΦST (0.544), and followed a pattern of isolation‐by‐distance. We use these results to suggest future conservation strategies that include an effort to maintain genetic diversity in the north and restore connectivity in the south. We also note the discordance between patterns of genetic differentiation and current subspecies taxonomy, and encourage a re‐evaluation of conservation management units moving forward.  相似文献   

12.
It is not known how the profoundly complex topography and habitat heterogeneity generated by the uplift of the Qinghai‐Tibetan Plateau (QTP) during the late Tertiary affected population genetic structure of endangered Taxus yunnanensis. In addition, the effects of habitat fragmentation due to anthropogenic disturbance on genetic diversity and population differentiation of this species have not been studied. T. yunnanensis is an ancient tree/shrub mainly distributed in southwest China. Recently, the species has suffered a sharp decline due to excessive logging for its famous anticancer metabolite taxol, resulting in smaller and more isolated populations. To understand the phylogeography and genetic consequences of habitat fragmentation of this endangered species, using 11 polymorphic microsatellites, we genotyped 288 individuals from 14 populations from a range‐wide sampling in China. Our results suggest that two different population groups that were once isolated have persisted in situ during glacial periods in both areas, and have not merged since. Habitat fragmentation has led to significant genetic bottlenecks, high inbreeding and population divergence in this species. The two different population groups of T. yunnanensis could be attributed to restricted gene flow caused through isolation by geographical barriers and by habitat heterogeneity during uplift of the QTP, or the existence of two separate glacial refugia during the Pleistocene. In situ and ex situ conservation of the two Evolutionarily Significant Units (ESUs), artificial gene flow between populations and a comprehensive understanding of the pollination system in this endangered species are suggested from this study.  相似文献   

13.
Identification of population units is crucial for management and monitoring programs, especially for endangered wild species. The roughskin sculpin (Trachidermus fasciatus Heckel) is a small catadromous fish and has been listed as a second class state protected aquatic animal since 1988 in China. To achieve sustainable conservation of this species, it is necessary to clarify the existing genetic structure both between and within populations. Here, population genetic structure among eight populations of T. fasciatus were analyzed by using 16 highly polymorphic microsatellites. High levels of genetic variation were observed in all populations. All pairwise F ST estimates were significant after false discovery rate correction (overall average F ST = 0.054). Furthermore, both STRUCTURE and discriminant analysis of principal components (DAPC) analysis showed that the eight populations were grouped into six clusters. BAYESASS analysis showed generally low recent and asymmetric migration among populations. All these results suggested significant genetic structure across populations. However, there was no isolation by distance relationship among populations, likely resulting from barriers to gene flow created by habitat fragmentation. Our results highlight the need for in situ conservation efforts for T. fasciatus across its entire distribution range, through maximizing habitat size and quality to preserve overall genetic diversity and evolutionary potential.  相似文献   

14.
Metapopulations occur in fragmented landscapes, and consist of demographically-independent populations connected by dispersal. Nevertheless, anthropogenic habitat fragmentation may be fatal to metapopulations, as it disrupts dispersal and gene flow, and undermines the balance between population extinction and colonization. Understanding the extent to which particular land-use practices disrupt dispersal and gene flow is therefore crucial for conserving metapopulations. We examined the structure and fragmentation of metapopulations of the endangered growling grass frog (Litoria raniformis) in an urbanizing landscape in southern Australia. Population clustering analyses revealed three distinct genetic units, corresponding to the three wetland clusters sampled. Isolation-by-distance was apparent between populations, and genetic distance was significantly correlated with the presence of urban barriers between populations. Our study provides evidence that urbanization fragments metapopulations of L. raniformis. Managers of L. raniformis in urbanizing landscapes should seek to mitigate effects of urbanization on dispersal and gene flow.  相似文献   

15.
Human‐induced transformations of ecosystems usually result in fragmented populations subject to increased extinction risk. Fragmentation is also often associated with novel environmental heterogeneity, which in combination with restricted gene flow may increase the opportunity for local adaptation. To manage at‐risk populations in these landscapes, it is important to understand how gene flow is changing, and how populations respond to habitat loss. We conducted a landscape genomics analysis using Restriction‐site Associated DNA sequencing to investigate the evolutionary response of the critically endangered Dahl's Toad‐headed turtle (Mesoclemmys dahli) to severe habitat modification. The species has lost almost all of its natural habitat in the southwestern part of its range and about 70% in the northeast. Based on least cost path analysis across different resistance surfaces for 3,211 SNPs, we found that the landscape matrix is restricting gene flow, causing the fragmentation of the species into at least six populations. Genome scans and allele‐environment association analyses indicate that the population fragments in the deforested grasslands of the southwest are adaptively different from those in the more forested northeast. Populations in areas with no forest had low levels of adaptive genetic diversity and the fixation of ancestrally‐polymorphic SNPs, consistent with directional selection in this novel environment. Our results suggest that this forest‐stream specialist is adapting to pond‐grassland conditions, but it is also suffering from negative consequences of habitat loss, including genetic erosion, isolation, small effective population sizes, and inbreeding. We recommend gene flow restoration via genetic rescue to counteract these threats, and provide guidance for this strategy.  相似文献   

16.
The genetic variation and structure of Leucomeris decora, an endangered species in China were investigated. Analyses of three chloroplast DNA (cpDNA) regions (the rpl16 intron, trnQ-5′rps16 intergenic spacer and rpl32-trnL intergenic spacer) and one nuclear gene (GAPDH: encoding glyceraldehyde 3-phosphate dehydrogenase) were conducted on 11 L. decora populations. Low levels of cpDNA genetic diversity were found in this species and within populations, with the identification of 2 haplotypes in a total of 2,745 bp, while the level of genetic diversity revealed by the nuclear gene GAPDH was relatively high, indicating that random losses of genetic polymorphisms from populations may have occurred recently. High levels of genetic differentiation among populations for both markers were detected in L. decora, which could be a consequence of the limited gene flow caused by geographic isolation among populations. An analysis of molecular variance revealed at the nuclear locus suggested the presence of geographic structure within the haplotype distribution possibly due to geographical barriers among populations. The haplotype network and mismatch distribution analyses did not detect the signal for a recent population expansion in L. decora. L. decora may persist in situ during climatic oscillations. Based on the genetic diversity and uniqueness of the populations, conservation strategies are discussed for this endangered species.  相似文献   

17.
The increasing fragmentation of natural habitats may strongly affect patterns of dispersal and gene flow among populations, and thus alter evolutionary dynamics. We examined genetic variation at twelve microsatellite loci in the Agile frog (Rana dalmatina) from 22 breeding ponds in the Iberian Peninsula, the southwest limit of its range, where populations of this species are severely fragmented and are of conservation concern. We investigated genetic diversity, structure and gene flow within and among populations. Diversity as observed heterozygosities ranged from 0.257 to 0.586. The mean number of alleles was 3.6. Just one population showed a significant F IS value. Four populations show evidence of recent bottlenecks. Strong pattern of structure was observed due to isolation by distance and to landscape structure. The average degree of genetic differentiation among populations was F ST = 0.185. Three operational conservation units with metapopulation structure were identified. Additionally, there are some other isolated populations. The results reinforce the view that amphibian populations are highly structured even in small geographic areas. The knowledge of genetic structure pattern and gene flow is fundamental information for developing programmes for the preservation of R. dalmatina at the limits of its geographic distribution.  相似文献   

18.
Understanding the impact of natural and anthropogenic landscape features on population connectivity is a major goal in evolutionary ecology and conservation. Discovery of dispersal barriers is important for predicting population responses to landscape and environmental changes, particularly for populations at geographic range margins. We used a landscape genetics approach to quantify the effects of landscape features on gene flow and connectivity of boreal toad (Bufo boreas) populations from two distinct landscapes in south-east Alaska (Admiralty Island, ANM, and the Chilkat River Valley, CRV). We used two common methodologies for calculating resistance distances in landscape genetics studies (resistance based on least-cost paths and circuit theory). We found a strong effect of saltwater on genetic distance of CRV populations, but no landscape effects were found for the ANM populations. Our discordant results show the importance of examining multiple landscapes that differ in the variability of their features, to maximize detectability of underlying processes and allow results to be broadly applicable across regions. Saltwater serves as a physiological barrier to boreal toad gene flow and affects populations on a small geographic scale, yet there appear to be few other barriers to toad dispersal in this intact northern region.  相似文献   

19.
Aim Understanding how heterogeneous landscapes shape genetic structure not only sheds light on processes involved in population divergence and speciation, but can also guide management strategies to promote and maintain genetic connectivity of populations of endangered species. This study aimed to (1) identify barriers and corridors for gene flow among populations of the endangered frog, Atelopus varius and (2) assess the relative contributions of alternative landscape factors to patterns of genetic variation among these populations in a hypothesis testing framework. Location This study took place in western Panama and included all nine of the remaining known populations of A. varius at the time of study. Methods The influence of landscape variables on gene flow among populations was examined by testing for correlations between alternative landscape‐resistance scenarios and genetic distance. Fifteen alternative hypotheses about the influence of (1) riparian habitat corridors, (2) steep slopes, and (3) climatic suitability on patterns of genetic structure were tested in a causal modelling framework, using Mantel and partial‐Mantel tests, along with an analysis of molecular variation. Results Only the hypothesis attributing resistance to dispersal across steep slopes (genetic isolation by slope distance) was fully supported by the causal modelling approach. However, the analysis of molecular variance and the paths of least‐slope among populations suggest that riparian habitat connectivity may influence genetic structure as well. Main conclusions These results suggest that patterns of genetic variation among A. varius populations are affected by the slope of the landscape such that areas with steep slopes act as barriers to gene flow. In contrast, areas of low slope, such as streams and mountain ridges, appear to be important corridors for gene flow, especially among high elevation populations. These results engender important considerations for the management of this critically endangered species.  相似文献   

20.
The genetic consequences of population fragmentation and isolation are major issues in conservation biology. In this study we analyse the genetic variability and structure of the Iberian populations of Mioscirtus wagneri, a specialized grasshopper exclusively inhabiting highly fragmented hypersaline low grounds. For this purpose we have used seven species‐specific microsatellite markers to type 478 individuals from 24 localities and obtain accurate estimates of their genetic variability. Genetic diversity was relatively low and we detected genetic signatures suggesting that certain populations of M. wagneri have probably passed through severe demographic bottlenecks. We have found that the populations of this grasshopper show a strong genetic structure even at small geographical scales, indicating that they mostly behave as isolated populations with low levels of gene flow among them. Thus, several populations can be regarded as independent and genetically differentiated units which require adequate conservation strategies to avoid eventual extinctions that in highly isolated localities are not likely to be compensated for with the arrival of immigrants from neighbouring populations. Overall, our results show that these populations probably represent the ‘fragments’ of a formerly more widespread population and highlight the importance of protecting Iberian hypersaline environments due to the high number of rare and endangered species they sustain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号