首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimizing root system architecture can overcome yield limitations in crop plants caused by water or nutrient shortages. Classic breeding approaches are difficult because the trait is governed by many genes and is difficult to score. We generated transgenic Arabidopsis thaliana and tobacco (Nicotiana tabacum) plants with enhanced root-specific degradation of the hormone cytokinin, a negative regulator of root growth. These transgenic plants form a larger root system, whereas growth and development of the shoot are similar. Elongation of the primary root, root branching, and root biomass formation were increased by up to 60% in transgenic lines, increasing the root-to-shoot ratio. We thus demonstrated that a single dominant gene could regulate a complex trait, root growth. Moreover, we showed that cytokinin regulates root growth in a largely organ-autonomous fashion that is consistent with its dual role as a hormone with both paracrine and long-distance activities. Transgenic plants had a higher survival rate after severe drought treatment. The accumulation of several elements, including S, P, Mn, Mg, Zn, as well as Cd from a contaminated soil, was significantly increased in shoots. Under conditions of sulfur or magnesium deficiency, leaf chlorophyll content was less affected in transgenic plants, demonstrating the physiological relevance of shoot element accumulation. Our approach might contribute to improve drought tolerance, nutrient efficiency, and nutrient content of crop plants.  相似文献   

2.
3.
We used loss-of-function mutants to study three Arabidopsis thaliana sensor histidine kinases, AHK2, AHK3, and CRE1/AHK4, known to be cytokinin receptors. Mutant seeds had more rapid germination, reduced requirement for light, and decreased far-red light sensitivity, unraveling cytokinin functions in seed germination control. Triple mutant seeds were more than twice as large as wild-type seeds. Genetic analysis indicated a cytokinin-dependent endospermal and/or maternal control of embryo size. Unchanged red light sensitivity of mutant hypocotyl elongation suggests that previously reported modulation of red light signaling by A-type response regulators may not depend on cytokinin. Combined loss of AHK2 and AHK3 led to the most prominent changes during vegetative development. Leaves of ahk2 ahk3 mutants formed fewer cells, had reduced chlorophyll content, and lacked the cytokinin-dependent inhibition of dark-induced chlorophyll loss, indicating a prominent role of AHK2 and, particularly, AHK3 in the control of leaf development. ahk2 ahk3 double mutants developed a strongly enhanced root system through faster growth of the primary root and, more importantly, increased branching. This result supports a negative regulatory role for cytokinin in root growth regulation. Increased cytokinin content of receptor mutants indicates a homeostatic control of steady state cytokinin levels through signaling. Together, the analyses reveal partially redundant functions of the cytokinin receptors and prominent roles for the AHK2/AHK3 receptor combination in quantitative control of organ growth in plants, with opposite regulatory functions in roots and shoots.  相似文献   

4.
Root cap and root growth   总被引:1,自引:1,他引:0  
Paul-Emile Pilet 《Planta》1972,106(2):169-171
Summary The caps of the roots of Zea mays (var. Kelvedon 33) are the source of a growth inhibitor system which also acts on the root elongation of Lens culinaris.  相似文献   

5.
利用深度测序技术检测玉米根系和叶片中已知的microRNAs   总被引:2,自引:0,他引:2  
Chen J  Lin HJ  Pan GT  Zhang ZM  Zhang B  Shen YO  Qin C  Zhang Q  Zhao MJ 《遗传》2010,32(11):1175-1186
microRNA(miRNA)是一类具有20~24nt核苷酸长度的非蛋白质编码的内源小分子RNA,它在植物生长发育和逆境胁迫响应等过程中发挥着重要作用。文章利用基于Illumina/Solexa原理的小分子RNA深度测序技术,结合生物信息学的方法对玉米根系和叶片中已知miRNA的类型、丰度及靶基因进行了分析。研究发现,在根系中共检测到92个已知的miRNA,分别属于18个miRNA家族,其表达丰度在1~105943之间;在叶片中,共发现86个已知的miRNA,分别属于17个miRNA家族,其表达丰度在1~85973之间。靶基因预测结果表明,根系中的18个miRNA家族共靶向54个蛋白,进一步的功能预测发现,这些基因涉及了转录调控、物质能量代谢、电子传递、胁迫响应和信号转导等过程。以上研究结果表明,就已知的miRNA而言,无论是miRNA的类型还是表达丰度,在玉米根系和叶片中都存在较大差异。  相似文献   

6.
Absorption of ammonium from solutions of ammonium chloride by maize ( Zea mays L. cv. GS-2) tissue was studied. In contrast to an initial rapid phase of absorption in root tissue, a one hour lag period was recorded in leaf tissue. The maximum rate of uptake was observed at 5–10 m M NH4Cl in both tissues. Roots had a Km value of 1.0 m M and Vmax of 24.3 μmol ammonium (g fresh weight)−1 h−1, whereas the leaf tissue had a higher Km (4.1 m M ) and a lower Vmax (8.7 μmol). There was a concentration dependent increase in ethanol soluble and insoluble fractions of organic nitrogen during ammonium supply. The optimum pH for ammonium absorption for both tissues was 7.4. The optimal concentration of CaCl2 for ammonium absorption was 5 m M whereas that of KCl was only 1 m M . In both tissues, the absorption was inhibited substantially by DCMU, DNP, cycloheximide, lincomycin, sodium tungstate, sodium arsenate and to some extent also by the anions nitrate and sulfate. It is suggested that a carrier is involved in an active uptake of ammonium in the leaf tissues.  相似文献   

7.
The plant hormone cytokinin is a key morphogenic factor controlling cell division and differentiation, and thus the formation and growth rate of organs during a plant's life cycle. In order to explore the relevance of cytokinin during the initial phase of leaf primordia formation and its impact on subsequent leaf development, we increased cytokinin degradation in young shoot organ primordia of Arabidopsis thaliana by expressing a cytokinin oxidase/dehydrogenase (CKX) gene under control of the AINTEGUMENTA (ANT) promoter. The final leaf size in ANT:CKX3 plants was reduced to ∼27% of the wild-type size and the number of epidermal cells was reduced to ∼12% of the wild type. Kinematic analysis revealed that cell proliferation ceased earlier and cell expansion was accelerated in ANT:CKX3 leaves, demonstrating that cytokinin controls the duration of the proliferation phase by delaying the onset of cell differentiation. The reduction of the cell number was partially compensated by an increased cell expansion. Interestingly, ANT:CKX3 leaf cells became about 60% larger than those of 35S:CKX3 leaves, indicating that cytokinin has an important function during cell expansion as well. Furthermore, ANT:CKX3 expression significantly reduced the capacity of both the vegetative as well as the generative shoot apical meristem to initiate the formation of new leaves and flowers, respectively. We therefore hypothesize that the cytokinin content in organ primordia is important for regulating the activity of the shoot meristem in a non-autonomous fashion.  相似文献   

8.
N. Rascio  M. Orsenigo  D. Arboit 《Protoplasma》1976,90(3-4):253-263
Summary The fine structure of the plastids in the leaf's basal meristem and in the leaf tissues 2 cm immediately above has been studied in maize leaves of different ages. In the young leaves the proplastids of the basal meristem differentiate, in the tissues within 2 cm above the meristem, into chloroplasts containing two or more prolamellar bodies, indipendently whether the tissues have been fixed 11 hours after a period of illumination or of darkness. In the oldest leaves, in the tissues immediately above the basal meristem, no prolamellar body is present in the plastids, and the proplastids differentiate directly into chloroplasts, without passing through an etio-chloroplast stage.Supported by a grant of C.N.R.  相似文献   

9.
We investigated the influence of root border cells on the colonisation of seedling Zea mays roots by Pseudomonas fluorescens SBW25 in sandy loam soil packed at two dry bulk densities. Numbers of colony forming units (CFU) were counted on sequential sections of root for intact and decapped inoculated roots grown in loose (1.0 mg m(-3)) and compacted (1.3 mg m(-3)) soil. After two days of root growth, the numbers of P. fluorescens (CFU cm(-1)) were highest on the section of root just below the seed with progressively fewer bacteria near the tip, irrespective of density. The decapped roots had significantly more colonies of P. fluorescens at the tip compared with the intact roots: approximately 100-fold more in the loose and 30-fold more in the compact soil. In addition, confocal images of the root tips grown in agar showed that P. fluorescens could only be detected on the tips of the decapped roots. These results indicated that border cells, and their associated mucilage, prevented complete colonization of the root tip by the biocontrol agent P. fluorescens, possibly by acting as a disposable surface or sheath around the cap.  相似文献   

10.
11.
12.
O. Babalola  R. Lal 《Plant and Soil》1977,46(2):337-346
Summary A series of factoral experiments involving the effects of gravel concentration in the subsoil horizon, the effect of inter-gravel bulk density, the depth of the surface soil above the gravel horizon and the interaction between soil moisture regime and gravel concentration, on growth and development of maize roots were conducted in the greenhouse. Increasing sub soil gravel concentration decreased the total porosity and the available waterholding capacity. Though the root growth of maize seedlings was adversely affected by gravel concentration above 20 per cent, lower concentration of gravels had a beneficial effect on roots. The root development and the leaf concentration of N, P and K improved with increasing depth of surface soil above the gravel horizon. The symptoms of mechanical impedance, such as thickening of root tips and profuse branching behind the tip were commonly observed on the root axis penetrating the gravelly horizon. re]19750916  相似文献   

13.
Stulen  I.  den Hertog  J. 《Plant Ecology》1993,(1):99-115
This paper examines the extent to which atmospheric CO2 enrichment may influence growth of plant roots and function in terms of uptake of water and nutrients, and carbon allocation towards symbionts. It is concluded that changes in dry matter allocation greatly depend on the experimental conditions during the experiment, the growth phase of the plant, and its morphological characteristics. Under non-limiting conditions of water and nutrients for growth, dry matter partitioning to the root is not changed by CO2 enrichment. The increase in root/shoot ratio, frequently observed under limiting conditions of water and/or nutrients, enables the plant to explore a greater soil volume, and hence acquire more water and nutrients. However, more data on changes in dry matter allocation within the root due to atmospheric CO2 are needed. It is concluded that nitrogen fixation is favored by CO2 enrichment since nodule mass is increased, concomitant with an increase in root length. The papers available so far on the influence of CO2 enrichment on mycorrhizal functioning suggest that carbon allocation to the roots might be increased, but also here more experiments are needed.Abbreviations LAR leaf area ratio - LWR leaf weight ratio - SWR stem weight ratio - RGR relative growth rate - R/S root/shoot - RWR root weight ratio  相似文献   

14.
15.
Control of shoot and root meristem function by cytokinin   总被引:3,自引:0,他引:3  
Plant hormones regulate a variety of processes fundamental for growth and development. Recent studies have clearly shown that establishing adequate spatial and temporal distribution of hormones is central in the control of development. The activity of cytokinins (CKs) is essential to maintain undifferentiated cells in shoot apical meristem (SAM) and to promote cell differentiation in the root meristem (RAM). Detailed mechanisms how the gradient of CK activities is established in the meristem has begun to be elucidated.  相似文献   

16.
P. E. Pilet 《Planta》1986,169(4):600-602
A large population of primary roots of Zea mays (cv. LG 11) was selected for uniform length at zero time. Their individual growth rates were measured over an 8-h period in the vertical position (in humid air, darkness). Three groups of these roots with significantly different growth rates were then chosen and their cap length was measured. It was found that slowly growing roots had long caps whereas rapidly growing roots had short caps. The production by the cap cells of basipetally transported growth inhibitors was tested (biologically by the curvature of half-decapped roots) and found to be significantly higher for longer root caps than that for shorter ones.  相似文献   

17.
Phyto-beneficial effects of rhizobacteria specifically Enterobacter species were evaluated on maize seedling health and growth. Out of the 19 isolates examined, two were remarkable in their phosphate solubilization efficiency (PSE > 70%), chitinase enzyme activity (CEA > 85%) and antifungal activity with evidence of no or low disease expression in maize seedling. The selected isolates (OSR7 and IGGR11) were identified and 16S rDNA revealed both isolates as Enterobacter species. Re-evaluation of both isolates ascertains that their combined effects are more effective on maize seedling than their individual effects. Their combinations completely suppressed pathogenic activity of Fusarium verticillioides on maize seedling with evidence of no disease symptoms. Other treatments significantly (p < 0.05) expressed varied maize seedling diseases such as leaf curl and stem rot. Apart from treatment T2 (maize + pathogen), other treatments most especially their combinations significantly (p < 0.05) enhanced seedling height, stem girth, leaf area, nitrogen and potassium contents. The phyto-beneficial effects of these Enterobacter species suggest that they could be employed as bio-inoculant for maize seedling health and growth.  相似文献   

18.
N, P, K, Ca, and Mg contents, chlorophyll content, gibberellin-like substance content, photosynthetic and respiration rates, Hill reaction activity, and specific leaf area of different parts of the leaf blade of maize (Zea mays L.) were determined. Parts with highest values of the determined components and processes were marked in the longitudinal and transverse profiles of the leaf blade. The established gradients of substance contents and of the functional activity were related to the growth stage of the leaf.  相似文献   

19.
Degradation of the plant hormone cytokinin is catalyzed by cytokinin oxidase/dehydrogenase (CKX) enzymes. The Arabidopsis thaliana genome encodes seven CKX proteins which differ in subcellular localization and substrate specificity. Here we analyze the CKX7 gene, which to the best of our knowledge has not yet been studied. pCKX7:GUS expression was detected in the vasculature, the transmitting tissue and the mature embryo sac. A CKX7–GFP fusion protein localized to the cytosol, which is unique among all CKX family members. 35S:CKX7‐expressing plants developed short, early terminating primary roots with smaller apical meristems, contrasting with plants overexpressing other CKX genes. The vascular bundles of 35S:CKX7 primary roots contained only protoxylem elements, thus resembling the wol mutant of the CRE1/AHK4 receptor gene. We show that CRE1/AHK4 activity is required to establish the CKX7 overexpression phenotype. Several cytokinin metabolites, in particular cis‐zeatin (cZ) and N‐glucoside cytokinins, were depleted stronger in 35S:CKX7 plants compared with plants overexpressing other CKX genes. Interestingly, enhanced protoxylem formation together with reduced primary root growth was also found in the cZ‐deficient tRNA isopentenyltransferase mutant ipt2,9. However, different cytokinins were similarly efficient in suppressing 35S:CKX7 and ipt2,9 vascular phenotypes. Therefore, we hypothesize that the pool of cytosolic cytokinins is particularly relevant in the root procambium where it mediates the differentiation of vascular tissues through CRE1/AHK4. Taken together, the distinct consequences of CKX7 overexpression indicate that the cellular compartmentalization of cytokinin degradation and substrate preference of CKX isoforms are relevant parameters that define the activities of the hormone.  相似文献   

20.
Promotion of plant and root growth by soybean meal degradation products   总被引:4,自引:0,他引:4  
The growth of Brassica campestris, Solanum tuberosum L., Lycopersicum esculentum and Brassica junce in the field were promoted by the degraded soybean meal products (DSP). The root hair number of Brassica campestris was increased when 10 l DSP (containing 30 mg peptides + amino acids ml–1) were added to 10 ml plant growth medium. A chemical fertilizer and an acid-hydrolyzed DSP did not show such an effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号