首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Macrophages in the lung are the primary cells being infected by Mycobacterium tuberculosis (Mtb) during the initial manifestation of tuberculosis. Since the adaptive immune response to Mtb is delayed, innate immune cells such as macrophages and neutrophils mount the early immune protection against this intracellular pathogen. Neutrophils are short-lived cells and removal of apoptotic cells by resident macrophages is a key event in the resolution of inflammation and tissue repair. Since anti-inflammatory activity is not compatible with effective immunity to intracellular pathogens, we therefore investigated how uptake of apoptotic neutrophils modulates the function of Mtb-activated human macrophages. We show that Mtb infection exerts a potent proinflammatory activation of human macrophages with enhanced gene activation and release of proinflammatory cytokines and that this response was augmented by apoptotic neutrophils. The enhanced macrophage response is linked to apoptotic neutrophil-driven activation of the NLRP3 inflammasome and subsequent IL-1β signalling. We also demonstrate that apoptotic neutrophils not only modulate the inflammatory response, but also enhance the capacity of infected macrophages to control intracellular growth of virulent Mtb. Taken together, these results suggest a novel role for apoptotic neutrophils in the modulation of the macrophage-dependent inflammatory response contributing to the early control of Mtb infection.  相似文献   

2.
Chlamydia pneumoniae (CP) lung infection can induce chronic lung inflammation and is associated with not only acute asthma but also COPD exacerbations. However, in mouse models of CP infection, most studies have investigated specifically the acute phase of the infection and not the longer-term chronic changes in the lungs. We infected C57BL/6 mice with 5×105 CP intratracheally and monitored inflammation, cellular infiltrates and cytokine levels over time to investigate the chronic inflammatory lung changes. While bacteria numbers declined by day 28, macrophage numbers remained high through day 35. Immune cell clusters were detected as early as day 14 and persisted through day 35, and stained positive for B, T, and follicular dendritic cells, indicating these clusters were inducible bronchus associated lymphoid tissues (iBALTs). Classically activated inflammatory M1 macrophages were the predominant subtype early on while alternatively activated M2 macrophages increased later during infection. Adoptive transfer of M1 but not M2 macrophages intratracheally 1 week after infection resulted in greater lung inflammation, severe fibrosis, and increased numbers of iBALTS 35 days after infection. In summary, we show that CP lung infection in mice induces chronic inflammatory changes including iBALT formations as well as fibrosis. These observations suggest that the M1 macrophages, which are part of the normal response to clear acute C. pneumoniae lung infection, result in an enhanced acute response when present in excess numbers, with greater inflammation, tissue injury, and severe fibrosis.  相似文献   

3.
4.
Macrophages are one of the most important HIV-1 target cells. Unlike CD4+ T cells, macrophages are resistant to the cytophatic effect of HIV-1. They are able to produce and harbor the virus for long periods acting as a viral reservoir. Candida albicans (CA) is a commensal fungus that colonizes the portals of HIV-1 entry, such as the vagina and the rectum, and becomes an aggressive pathogen in AIDS patients. In this study, we analyzed the ability of CA to modulate the course of HIV-1 infection in human monocyte-derived macrophages. We found that CA abrogated HIV-1 replication in macrophages when it was evaluated 7 days after virus inoculation. A similar inhibitory effect was observed in monocyte-derived dendritic cells. The analysis of the mechanisms responsible for the inhibition of HIV-1 production in macrophages revealed that CA efficiently sequesters HIV-1 particles avoiding its infectivity. Moreover, by acting on macrophages themselves, CA diminishes their permissibility to HIV-1 infection by reducing the expression of CD4, enhancing the production of the CCR5-interacting chemokines CCL3/MIP-1α, CCL4/MIP-1β, and CCL5/RANTES, and stimulating the production of interferon-α and the restriction factors APOBEC3G, APOBEC3F, and tetherin. Interestingly, abrogation of HIV-1 replication was overcome when the infection of macrophages was evaluated 2-3 weeks after virus inoculation. However, this reactivation of HIV-1 infection could be silenced by CA when added periodically to HIV-1-challenged macrophages. The induction of a silent HIV-1 infection in macrophages at the periphery, where cells are continuously confronted with CA, might help HIV-1 to evade the immune response and to promote resistance to antiretroviral therapy.  相似文献   

5.
6.
Neisseria gonorrhoeae is a strict human pathogen that causes the sexually transmitted infection termed gonorrhea. The gonococcus can survive extracellularly and intracellularly, but in both environments the bacteria must acquire iron from host proteins for survival. However, upon infection the host uses a defensive response by limiting the bioavailability of iron by a number of mechanisms including the enhanced expression of hepcidin, the master iron-regulating hormone, which reduces iron uptake from the gut and retains iron in macrophages. The host also secretes the antibacterial protein NGAL, which sequesters bacterial siderophores and therefore inhibits bacterial growth. To learn whether intracellular gonococci can subvert this defensive response, we examined expression of host genes that encode proteins involved in modulating levels of intracellular iron. We found that N. gonorrhoeae can survive in association (tightly adherent and intracellular) with monocytes and macrophages and upregulates a panel of its iron-responsive genes in this environment. We also found that gonococcal infection of human monocytes or murine macrophages resulted in the upregulation of hepcidin, NGAL, and NRAMP1 as well as downregulation of the expression of the gene encoding the short chain 3-hydroxybutyrate dehydrogenase (BDH2); BDH2 catalyzes the production of the mammalian siderophore 2,5-DHBA involved in chelating and detoxifying iron. Based on these findings, we propose that N. gonorrhoeae can subvert the iron-limiting innate immune defenses to facilitate iron acquisition and intracellular survival.  相似文献   

7.
8.
Streptococcus pneumoniae, a Gram-positive bacterium, is a major cause of invasive infection-related diseases such as pneumonia and sepsis. In blood, erythrocytes are considered to be an important factor for bacterial growth, as they contain abundant nutrients. However, the relationship between S. pneumoniae and erythrocytes remains unclear. We analyzed interactions between S. pneumoniae and erythrocytes, and found that iron ion present in human erythrocytes supported the growth of Staphylococcus aureus, another major Gram-positive sepsis pathogen, while it partially inhibited pneumococcal growth by generating free radicals. S. pneumoniae cells incubated with human erythrocytes or blood were subjected to scanning electron and confocal fluorescence microscopic analyses, which showed that the bacterial cells adhered to and invaded human erythrocytes. In addition, S. pneumoniae cells were found associated with human erythrocytes in cultures of blood from patients with an invasive pneumococcal infection. Erythrocyte invasion assays indicated that LPXTG motif-containing pneumococcal proteins, erythrocyte lipid rafts, and erythrocyte actin remodeling are all involved in the invasion mechanism. In a neutrophil killing assay, the viability of S. pneumoniae co-incubated with erythrocytes was higher than that without erythrocytes. Also, H2O2 killing of S. pneumoniae was nearly completely ineffective in the presence of erythrocytes. These results indicate that even when S. pneumoniae organisms are partially killed by iron ion-induced free radicals, they can still invade erythrocytes. Furthermore, in the presence of erythrocytes, S. pneumoniae can more effectively evade antibiotics, neutrophil phagocytosis, and H2O2 killing.  相似文献   

9.
The Triggering Receptor Expressed on Myeloid cells 1 (TREM-1) is a cell surface receptor of the immunoglobulin superfamily, with the capacity to amplify pro-inflammatory cytokine production and regulate apoptosis. Polymorphonuclear neutrophils (PMNs) are the first line of defence against infection, and a major source of TREM-1. Porphyromonas gingivalis is a Gram-negative anaerobe highly implicated in the inflammatory processes governing periodontal disease, which is characterized by the destruction of the tooth-supporting tissues. It expresses a number of virulence factors, including the cysteine proteinases (or gingipains). The aim of this in vitro study was to investigate the effect of P. gingivalis on TREM-1 expression and production by primary human PMNs, and to evaluate the role of its gingipains in this process. After 4 h of challenge, P. gingivalis enhanced TREM-1 expression as identified by quantitative real-time PCR. This was followed by an increase in soluble (s)TREM-1 secretion over a period of 18 h, as determined by ELISA. At this time-point, the P. gingivalis-challenged PMNs exhibited diminished TREM-1 cell-membrane staining, as identified by flow cytometry and confocal laser scanning microscopy. Furthermore engagement of TREM-1, by means of anti-TREM-1 antibodies, enhanced the capacity of P. gingivalis to stimulate interleukin (IL)-8 production. Conversely, antagonism of TREM-1 using a synthetic peptide resulted in reduction of IL-8 secretion. Using isogenic P. gingivalis mutant strains, we identified the Arg-gingipain to be responsible for shedding of sTREM-1 from the PMN surface, whereas the Lys-gingipain had the capacity to degrade TREM-1. In conclusion, the differential regulation of TREM-1 by the P. gingivalis gingipains may present a novel mechanism by which P. gingivalis manipulates the host innate immune response helping to establish chronic periodontal inflammation.  相似文献   

10.
While nasopharyngeal sampling is the gold standard for the detection of Streptococcus pneumoniae carriage, historically seen, saliva sampling also seems highly sensitive for pneumococcal detection. We investigated S. pneumoniae carriage in saliva from fifty schoolchildren by conventional and molecular methods. Saliva was first culture-enriched for pneumococci, after which, DNA was extracted from all bacterial growth and tested by quantitative-PCR (qPCR) for pneumococcus-specific genes lytA and piaA. Next, serotype composition of the samples was determined by serotype-specific qPCRs, conventional-PCRs (cPCR) and sequencing of cPCR amplicons. Although only 2 (4%) of 50 samples were positive by conventional diagnostic culture, 44 (88%) were positive for pneumococci by qPCR. In total, we detected the presence of at least 81 pneumococcal strains representing 20 serotypes in samples from 44 carriers with 23 carriers (52%) positive for multiple (up to 6) serotypes. The number of serotypes detected per sample correlated with pneumococcal abundance. This study shows that saliva could be used as a tool for future pneumococcal surveillance studies. Furthermore, high rates of pneumococcal carriage and co-carriage of multiple pneumococcal strains together with a large number of serotypes in circulation suggests a ubiquitous presence of S. pneumoniae in saliva of school-aged children. Our results also suggest that factors promoting pneumococcal carriage within individual hosts may weaken competitive interactions between S. pneumoniae strains.  相似文献   

11.
12.
Chlamydia pneumoniae is an obligate intracellular Gram‐negative bacterium with a unique biphasic developmental cycle that can cause persistent infections. In humans, Chlamydia causes airway infection and has been implicated in chronic inflammatory diseases, such as asthma and atherosclerosis. In addition, recent studies demonstrated that patients with severe periodontitis can harbor C. pneumoniae, which can increase the risk for a host inflammatory response with weighty clinical sequelae. Previous studies have established that periodontal pathogenic bacteria (i.e. Gram‐negative bacteria) can induce the synthesis and release of cytokines and other inflammatory mediators in human gingival fibroblasts. HGF are resident cells of the periodontium that respond to receptor stimulation by producing a variety of substances including cytokines and growth factors. Our results demonstrate that after 48 hr of incubation with viable C. pneumoniae HGF showed a proliferative response, as seen by both colorimetric MTT assay and direct cell count (30% and 35%, respectively). In addition, HGF incubated with viable or UV light‐inactivated C. pneumoniae organisms showed an increase in the levels of IL‐6 and IL‐10, but not IL‐4; on the contrary, HGF infected with heat‐killed bacteria did not show a significant production of any of the cytokines considered. In conclusion, the present study suggests that C. pneumoniae may modulate the expression of IL‐6 and IL‐10 by human gingival fibroblasts. Further studies are warranted to clarify the molecular mechanisms of C. pneumoniae in the regulation of cytokine expression by host cells and to elaborate the relevant clinical implications.  相似文献   

13.
Yersinia pestis is a facultative intracellular pathogen that causes the disease known as plague. During infection of macrophages Y. pestis actively evades the normal phagosomal maturation pathway to establish a replicative niche within the cell. However, the mechanisms used by Y. pestis to subvert killing by the macrophage are unknown. Host Rab GTPases are central mediators of vesicular trafficking and are commonly targeted by bacterial pathogens to alter phagosome maturation and killing by macrophages. Here we demonstrate for the first time that host Rab1b is required for Y. pestis to effectively evade killing by macrophages. We also show that Rab1b is specifically recruited to the Yersinia containing vacuole (YCV) and that Y. pestis is unable to subvert YCV acidification when Rab1b expression is knocked down in macrophages. Furthermore, Rab1b knockdown also altered the frequency of association between the YCV with the lysosomal marker Lamp1, suggesting that Rab1b recruitment to the YCV directly inhibits phagosome maturation. Finally, we show that Rab1b knockdown also impacts the pH of the Legionella pneumophila containing vacuole, another pathogen that recruits Rab1b to its vacuole. Together these data identify a novel role for Rab1b in the subversion of phagosome maturation by intracellular pathogens and suggest that recruitment of Rab1b to the pathogen containing vacuole may be a conserved mechanism to control vacuole pH.  相似文献   

14.
Human herpesvirus-6 (HHV-6) exists in latent form either as a nuclear episome or integrated into human chromosomes in more than 90% of healthy individuals without causing clinical symptoms. Immunosuppression and stress conditions can reactivate HHV-6 replication, associated with clinical complications and even death. We have previously shown that co-infection of Chlamydia trachomatis and HHV-6 promotes chlamydial persistence and increases viral uptake in an in vitro cell culture model. Here we investigated C. trachomatis-induced HHV-6 activation in cell lines and fresh blood samples from patients having Chromosomally integrated HHV-6 (CiHHV-6). We observed activation of latent HHV-6 DNA replication in CiHHV-6 cell lines and fresh blood cells without formation of viral particles. Interestingly, we detected HHV-6 DNA in blood as well as cervical swabs from C. trachomatis-infected women. Low virus titers correlated with high C. trachomatis load and vice versa, demonstrating a potentially significant interaction of these pathogens in blood cells and in the cervix of infected patients. Our data suggest a thus far underestimated interference of HHV-6 and C. trachomatis with a likely impact on the disease outcome as consequence of co-infection.  相似文献   

15.
Glycogen has been localized both inside and outside Chlamydia trachomatis organisms. We now report that C. trachomatis glycogen synthase (GlgA) was detected in both chlamydial organism-associated and -free forms. The organism-free GlgA molecules were localized both in the lumen of chlamydial inclusions and in the cytosol of host cells. The cytosolic GlgA displayed a distribution pattern similar to that of a known C. trachomatis-secreted protease, CPAF. The detection of GlgA was specific since the anti-GlgA antibody labeling was only removed by preabsorption with GlgA but not CPAF fusion proteins. GlgA was detectable at 12h and its localization into host cell cytosol only became apparent at 24h after infection. The cytosolic localization of GlgA was conserved among all C. trachomatis serovars. However, the significance of the GlgA secretion into host cell cytoplasm remains unclear since, while expression of chlamydial GlgA in HeLa cells increased glycogen stores, it did not affect a subsequent infection with C. trachomatis. Similar to several other C. trachomatis-secreted proteins, GlgA is immunogenic in women urogenitally infected with C. trachomatis, suggesting that GlgA is expressed and may be secreted into host cell cytosol during C. trachomatis infection in humans. These findings have provided important information for further understanding C. trachomatis pathogenic mechanisms.  相似文献   

16.
Age‐related diseases characteristic of post‐reproductive life, aging, and life span are the examples of polygenic non‐Mendelian traits with intricate genetic architectures. Polygenicity of these traits implies that multiple variants can impact their risks independently or jointly as combinations of specific variants. Here, we examined chances to live to older ages, 85 years and older, for carriers of compound genotypes comprised of combinations of genotypes of rs429358 (APOE ɛ4 encoding polymorphism), rs2075650 (TOMM40), and rs12721046 (APOC1) polymorphisms using data from four human studies. The choice of these polymorphisms was motivated by our prior results showing that the ɛ4 carriers having minor alleles of the other two polymorphisms were at exceptionally high risk of Alzheimer''s disease (AD), compared with non‐carriers of the minor alleles. Consistent with our prior findings for AD, we show here that the adverse effect of the ɛ4 allele on survival to older ages is significantly higher in carriers of minor alleles of rs2075650 and/or rs12721046 polymorphisms compared with their non‐carriers. The exclusion of AD cases made this effect stronger. Our results provide compelling evidence that AD does not mediate the associations of the same compound genotypes with chances to survive until older ages, indicating the existence of genetically heterogeneous mechanisms. The survival chances can be mainly associated with lipid‐ and immunity‐related mechanisms, whereas the AD risk, can be driven by the AD‐biomarker‐related mechanism, among others. Targeting heterogeneous polygenic profiles of individuals at high risks of complex traits is promising for the translation of genetic discoveries to health care.  相似文献   

17.
Current data suggest that Neisseria gonorrhoeae is able to suppress the protective immune response at different levels, such as B and T lymphocytes and antigen-presenting cells. The present report is focused on gonococcus evasion mechanism on macrophages (MФ) and its impact in the subsequent immune response. In response to various signals MФ may undergo classical-M1 (M1-MФ) or alternative-M2 (M2-MФ) activation. Until now there are no reports of the gonococcus effects on human MФ polarization. We assessed the phagocytic ability of monocyte-derived MФ (MDM) upon gonococcal infection by immunofluorescence and gentamicin protection experiments. Then, we evaluated cytokine profile and M1/M2 specific-surface markers on MФ challenged with N. gonorrhoeae and their proliferative effect on T cells. Our findings lead us to suggest N. gonorrhoeae stimulates a M2-MФ phenotype in which some of the M2b and none of the M1-MФ-associated markers are induced. Interestingly, N. gonorrhoeae exposure leads to upregulation of a Programmed Death Ligand 1 (PD-L1), widely known as an immunosuppressive molecule. Moreover, functional results showed that N. gonorrhoeae-treated MФ are unable to induce proliferation of human T-cells, suggesting a more likely regulatory phenotype. Taken together, our data show that N. gonorroheae interferes with MФ polarization. This study has important implications for understanding the mechanisms of clearance versus long-term persistence of N. gonorroheae infection and might be applicable for the development of new therapeutic strategies.  相似文献   

18.
19.
The obligate intracellular bacterium Chlamydia trachomatis is a major human pathogen and a main cause of genital and ocular diseases. During its intracellular cycle, C. trachomatis replicates inside a membrane-bound vacuole termed an “inclusion”. Acquisition of lipids (and other nutrients) from the host cell is a critical step in chlamydial replication. Lipid droplets (LD) are ubiquitous, ER-derived neutral lipid-rich storage organelles surrounded by a phospholipids monolayer and associated proteins. Previous studies have shown that LDs accumulate at the periphery of, and eventually translocate into, the chlamydial inclusion. These observations point out to Chlamydia-mediated manipulation of LDs in infected cells, which may impact the function and thereby the protein composition of these organelles. By means of a label-free quantitative mass spectrometry approach we found that the LD proteome is modified in the context of C. trachomatis infection. We determined that LDs isolated from C. trachomatis-infected cells were enriched in proteins related to lipid metabolism, biosynthesis and LD-specific functions. Interestingly, consistent with the observation that LDs intimately associate with the inclusion, a subset of inclusion membrane proteins co-purified with LD protein extracts. Finally, genetic ablation of LDs negatively affected generation of C. trachomatis infectious progeny, consistent with a role for LD biogenesis in optimal chlamydial growth.  相似文献   

20.
Hepatic fibrosis induced by egg deposition is the most serious pathology associated with chronic schistosomiasis, in which the hepatic stellate cell (HSC) plays a central role. While the effect of Schistosoma mansoni eggs on the fibrogenic phenotype of HSCs has been investigated, studies determining the effect of eggs of S . japonicum on HSCs are lacking. Disease caused by S . japonicum is much more severe than that resulting from S. mansoni infection so it is important to compare the pathologies caused by these two parasites, to determine whether this phenotype is due to the species interacting differently with the mammalian host. Accordingly, we investigated the effect of S japonicum eggs on the human HSC cell line, LX-2, with and without TGF-β (Transforming Growth Factor beta) co-treatment, so as to determine the impact on genes associated with fibrogenesis, inflammation and matrix re-organisation. Activation status of HSCs was assessed by αSMA (Alpha Smooth Muscle Actin) immunofluorescence, accumulation of Oil Red O-stained lipid droplets and the relative expression of selected genes associated with activation. The fibrogenic phenotype of HSCs was inhibited by the presence of eggs both with or without TGF-β treatment, as evidenced by a lack of αSMA staining and reduced gene expression of αSMA and Col1A1 (Collagen 1A1). Unlike S. mansoni-treated cells, however, expression of the quiescent HSC marker PPAR-γ (Peroxisome Proliferator-Activated Receptor gamma) was not increased, nor was there accumulation of lipid droplets. In contrast, S . japonicum eggs induced the mRNA expression of MMP-9 (Matrix Metalloproteinase 9), CCL2 (Chemokine (C-C motif) Ligand 2) and IL-6 (Interleukin 6) in HSCs indicating that rather than inducing complete HSC quiescence, the eggs induced a proinflammatory phenotype. These results suggest HSCs in close proximity to S . japonicum eggs in the liver may play a role in the proinflammatory regulation of hepatic granuloma formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号