共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Keeling PJ 《Journal of molecular evolution》2004,58(5):550-556
Insertions and deletions in gene sequences have been used as characters to infer phylogenetic relationships and, like any character, the information they contain varies in utility between different levels of evolution. In one case, the absence of two otherwise highly conserved deletions in the enolase genes of parabasalian protists has been interpreted as a primitive characteristic that suggests these were among the first eukaryotes. Here, semi-environmental 3-RACE was used to sample enolases from parabasalia in the hindgut of the termite Zootermopsis angusticolis to examine the conservation of this character within the parabasalia. Parabasalian homologues were found to be polymorphic for these deletions, and the phylogeny of parabasalian enolases shows that the deletion-possessing genes branch within deletion-lacking genes (i.e., they did not form two clearly distinct groups). Phylogenetic incongruence was detected in the carboxy-terminal third of the sequence (in the region of the deletions), but there is no unambiguous evidence for recombination. The polymorphism of this character discredits these deletions as strong evidence for the early origin of parabasalia, although the complex distribution makes it impossible to state whether parabasalian enolases were ancestrally like those of other eukaryotes. These observations stress the importance of strong corroborating evidence when considering insertion and deletion data, and raises some interesting questions about the apparent variation in degree of conservation of these deletions between different eukaryotic groups. 相似文献
3.
4.
Francesco Lescai Silvia Bonfiglio Chiara Bacchelli Estelle Chanudet Aoife Waters Sanjay M. Sisodiya Dalia Kasperavi?iūt? Julie Williams Denise Harold John Hardy Robert Kleta Sebahattin Cirak Richard Williams John C. Achermann John Anderson David Kelsell Tom Vulliamy Henry Houlden Nicholas Wood Una Sheerin Gian Paolo Tonini Donna Mackay Khalid Hussain Jane Sowden Veronica Kinsler Justyna Osinska Tony Brooks Mike Hubank Philip Beales Elia Stupka 《PloS one》2012,7(12)
Recent advances in genomics technologies have spurred unprecedented efforts in genome and exome re-sequencing aiming to unravel the genetic component of rare and complex disorders. While in rare disorders this allowed the identification of novel causal genes, the missing heritability paradox in complex diseases remains so far elusive. Despite rapid advances of next-generation sequencing, both the technology and the analysis of the data it produces are in its infancy. At present there is abundant knowledge pertaining to the role of rare single nucleotide variants (SNVs) in rare disorders and of common SNVs in common disorders. Although the 1,000 genome project has clearly highlighted the prevalence of rare variants and more complex variants (e.g. insertions, deletions), their role in disease is as yet far from elucidated.We set out to analyse the properties of sequence variants identified in a comprehensive collection of exome re-sequencing studies performed on samples from patients affected by a broad range of complex and rare diseases (N = 173). Given the known potential for Loss of Function (LoF) variants to be false positive, we performed an extensive validation of the common, rare and private LoF variants identified, which indicated that most of the private and rare variants identified were indeed true, while common novel variants had a significantly higher false positive rate. Our results indicated a strong enrichment of very low-frequency insertion/deletion variants, so far under-investigated, which might be difficult to capture with low coverage and imputation approaches and for which most of study designs would be under-powered. These insertions and deletions might play a significant role in disease genetics, contributing specifically to the underlining rare and private variation predicted to be discovered through next generation sequencing. 相似文献
5.
基于隐马氏模型对编码序列缺失与插入的检测(英) 总被引:2,自引:0,他引:2
在基因组测序工作完成后,利用计算工具进行基因识别以及基因结构预测受到了越来越多人的重视.人们开发了大量的相关应用软件,如GenScan, Genemark, GRAIL等,这些软件在寻找新基因方面提供了很重要的线索.但基因的识别和预测问题仍未得到完全解决,当目标基因的编码序列有缺失和插入时,其预测结果和基因的实际结构相差很大.为了消除测序错误对预测结果的影响,希望能找出编码序列区的测序错误.基于这种想法,尝试根据DNA序列的一些统计特性,利用隐马尔科夫模型(Hidden Markov Model),引入缺失和插入状态,然后用Viterbi算法,从中找出含有缺失和插入的外显子序列片段.在常用的Burset/Guigo检测集进行检测,得到的结果在外显子水平上,Sn(sensitivity)和Sp(specificity)均达到84%以上. 相似文献
6.
7.
On the Identification of the ROSY Locus DNA in DROSOPHILA MELANOGASTER: Intragenic Recombination Mapping of Mutations Associated with Insertions and Deletions 下载免费PDF全文
DNA extracts of several rosy-mutation-bearing strains were associated with large insertions and deletions in a defined region of the molecular map believed to include the rosy locus DNA. Large-scale, intragenic mapping experiments were carried out that localized these mutations within the boundaries of the previously defined rosy locus structural element. Molecular characterization of the wild-type recombinants provides conclusive evidence that the rosy locus DNA is localized to the DNA segment marked by these lesions. One of the mutations, ry2101, arose from a P-M hybrid dysgenesis experiment and is associated with a copia insertion. Experiments are described which suggest that copia mobilizes in response to P-M hybrid dysgenesis. Relevance of the data to recombination in higher organisms is considered. 相似文献
8.
9.
Gil Loewenthal Dana Rapoport Oren Avram Asher Moshe Elya Wygoda Alon Itzkovitch Omer Israeli Dana Azouri Reed A Cartwright Itay Mayrose Tal Pupko 《Molecular biology and evolution》2021,38(12):5769
Insertions and deletions (indels) are common molecular evolutionary events. However, probabilistic models for indel evolution are under-developed due to their computational complexity. Here, we introduce several improvements to indel modeling: 1) While previous models for indel evolution assumed that the rates and length distributions of insertions and deletions are equal, here we propose a richer model that explicitly distinguishes between the two; 2) we introduce numerous summary statistics that allow approximate Bayesian computation-based parameter estimation; 3) we develop a method to correct for biases introduced by alignment programs, when inferring indel parameters from empirical data sets; and 4) using a model-selection scheme, we test whether the richer model better fits biological data compared with the simpler model. Our analyses suggest that both our inference scheme and the model-selection procedure achieve high accuracy on simulated data. We further demonstrate that our proposed richer model better fits a large number of empirical data sets and that, for the majority of these data sets, the deletion rate is higher than the insertion rate. 相似文献
10.
Elizabeth P. Briczinski Joseph R. Loquasto Rodolphe Barrangou Edward G. Dudley Anastasia M. Roberts Robert F. Roberts 《Applied and environmental microbiology》2009,75(23):7501-7508
Several probiotic strains of Bifidobacterium animalis subsp. lactis are widely supplemented into food products and dietary supplements due to their documented health benefits and ability to survive within the mammalian gastrointestinal tract and acidified dairy products. The strain specificity of these characteristics demands techniques with high discriminatory power to differentiate among strains. However, to date, molecular approaches, such as pulsed-field gel electrophoresis and randomly amplified polymorphic DNA-PCR, have been ineffective at achieving strain separation due to the monomorphic nature of this subspecies. Previously, sequencing and comparison of two B. animalis subsp. lactis genomes (DSMZ 10140 and Bl-04) confirmed this high level of sequence similarity, identifying only 47 single-nucleotide polymorphisms (SNPs) and four insertions and/or deletions (INDELs) between them. In this study, we hypothesized that a sequence-based typing method targeting these loci would permit greater discrimination between strains than previously attempted methods. Sequencing 50 of these loci in 24 strains of B. animalis subsp. lactis revealed that a combination of nine SNPs/INDELs could be used to differentiate strains into 14 distinct genotypic groups. In addition, the presence of a nonsynonymous SNP within the gene encoding a putative glucose uptake protein was found to correlate with the ability of certain strains to transport glucose and to grow rapidly in a medium containing glucose as the sole carbon source. The method reported here can be used in clinical, regulatory, and commercial applications requiring identification of B. animalis subsp. lactis at the strain level.Probiotics are currently defined as live microorganisms which, when administered in adequate amounts, confer a health benefit on the host (12). Many of the organisms studied for their probiotic potential are members of lactic acid bacteria and the genus Bifidobacterium, which has resulted in their inclusion in a large variety of dietary supplements and food products. Relative to most bifidobacterial species of human origin, Bifidobacterium animalis subsp. lactis is less sensitive to stressful conditions (bile, acid, and oxygen) which might be encountered in the mammalian gastrointestinal tract or in fermented or acidified dairy products (7, 26, 28, 31, 37). B. animalis subsp. lactis is widely added to commercial products because it is better able to withstand the adverse conditions of starter culture and product manufacture and to maintain viability and stability during product shelf-life (30). Therefore, strains of B. animalis, specifically B. animalis subsp. lactis, have been found in the majority of probiotic-supplemented dairy products surveyed in North America (the United States and Canada) and Europe (Great Britain, France, Italy, and Germany) (6, 13-15, 21, 22, 28, 29, 32, 49).When selecting a probiotic microorganism to add to supplements or foods, the strain must be identified at the genus, species, and strain levels (40). Proper characterization of a strain is important for safety and quality assurance, for identifying and differentiating putative probiotic strains, and for understanding the interactions among members of gut microbiota. In addition, proper characterization is important to maintain consumer confidence. Product labels often list invalid names of organisms or misidentify the species the product contains, leading to consumer confusion (6, 16, 20, 28, 29, 35, 38, 49). In the case of Bifidobacterium, most dairy products sold in the United States do not identify species, and many only refer to the invalid name “Bifid” or “Bifidus.” At the very least, added microorganisms should be accurately identified to the species level on product labels.According to the FAO/WHO guidelines for probiotic use, specific health benefits observed in research using a specific strain cannot be extrapolated to other, closely related strains (12). Although most clinical studies of probiotic strains compare strains of different genera or different species, few studies have assessed the actual variability of expected health benefits within species or subspecies. However, it is reasonable to consider that health effects, like the phenotypic traits exhibited by strains within a species, are strain specific. Therefore, reliable techniques for the identification of probiotic organisms at the strain level are required.Characterization to the strain level has several important potential applications. Understanding the complex interactions among microorganisms in the intestinal ecosystem requires methods of differentiating a strain of interest from other strains of the same species contained in the autochthonous microbiota. Strain differentiation techniques also aid in assessing survival of a probiotic organism through the gastrointestinal system, which is particularly important for clinical trials and regulatory purposes (17). The ability to uniquely identify a strain also lends credibility to statements made about the potential health benefits of consuming a particular product containing a strain with demonstrated probiotic effects and supports the licensing or intellectual property rights of the manufacturer.The high degree of genome conservation observed between strains of B. animalis subsp. lactis in terms of size, organization, and sequence is indicative of a genomically monomorphic subspecies (2, 25; also HN019 GenBank project 28807). As an example, comparison of the complete genome sequences of two B. animalis subsp. lactis strains, DSMZ 10140 (the type strain) and Bl-04 (a commercial strain, also known as RB 4825) (2), identified 47 single-nucleotide polymorphisms (SNPs) in nonrepetitive elements, as well as 443 bp distributed among four INDEL sites: a 121-bp tRNA-encoding sequence, a 54-bp region within the long-chain fatty acid-coenzyme A ligase gene, a 214-bp region within the CRISPR (clustered regularly interspaced short palindromic repeats) locus, and a 54-bp intergenic sequence. Overall, this 99.975% genome identity explains the inability to differentiate these strains by techniques such as the sequencing of housekeeping genes, multilocus sequence typing, and pulsed-field gel electrophoresis (PFGE) (3, 9, 23, 39, 44-46, 50).The strain specificity of reported health benefits of probiotics and the frequent use of B. animalis subsp. lactis as a probiotic in food products and supplements demands techniques with greater discriminatory power to identify and differentiate among strains within this highly homogeneous group. Unfortunately, strain level differentiation of B. animalis subsp. lactis presents several challenges. Although Ventura and Zink were able to differentiate strains of B. animalis subsp. lactis by sequencing the 16S-23S internal transcribed sequence (ITS) region (47), analysis of the four ITS operons between DSMZ 10140 and Bl-04 indicated complete identity (2). However, SNPs and INDELs do have potential for strain differentiation. According to Achtman, focusing on polymorphic SNPs is a desirable approach for the typing of monomorphic species (1). Therefore, the objective of the present study was to exploit the previously identified SNP and INDEL sites to develop a technique capable of differentiating among a collection of B. animalis subsp. lactis strains obtained from culture collections and commercial starter culture companies. 相似文献
11.
12.
Weiming Hao Lujuan Fan Qianqian Chen Xiaoxiang Chen Sichao Zhang Ke Lan Jian Lu Chiyu Zhang 《PloS one》2015,10(4)
The development of simple, accurate, rapid and cost-effective technologies for mutation detection is crucial to the early diagnosis and prevention of numerous genetic diseases, pharmacogenetics, and drug resistance. Proofreading PCR (PR-PCR) was developed for mutation detection in 1998 but is rarely applied due to its low efficiency in allele discrimination. Here we developed a modified PR-PCR method using a ddNTP-blocked primer and a mixture of DNA polymerases with and without the 3''-5'' proofreading function. The ddNTP-blocked primer exhibited the best blocking efficiency to avoid nonspecific primer extension while the mixture of a tiny amount of high-fidelity DNA polymerase with a routine amount of Taq DNA polymerase provided the best discrimination and amplification effects. The modified PR-PCR method is quite capable of detecting various mutation types, including point mutations and insertions/deletions (indels), and allows discrimination amplification when the mismatch is located within the last eight nucleotides from the 3''-end of the ddNTP-blocked primer. The modified PR-PCR has a sensitivity of 1-5 × 102 copies and a selectivity of 5 × 10-5 mutant among 107 copies of wild-type DNA. It showed a 100% accuracy rate in the detection of P72R germ-line mutation in the TP53 gene among 60 clinical blood samples, and a high potential to detect rifampin-resistant mutations at low frequency in Mycobacterium tuberculosis using an adaptor and a fusion-blocked primer. These results suggest that the modified PR-PCR technique is effective in detection of various mutations or polymorphisms as a simple, sensitive and promising approach. 相似文献
13.
Sven Reiche Yamen Dwai Bianca M. Bussmann Susanne Horn Michael Sieg Christian Jassoy 《PloS one》2015,10(6)
The diversity of virus-specific antibodies and of B cells among different individuals is unknown. Using single-cell cloning of antibody genes, we generated recombinant human monoclonal antibodies from influenza nucleoprotein-specific memory B cells in four adult humans with and without preceding influenza vaccination. We examined the diversity of the antibody repertoires and found that NP-specific B cells used numerous immunoglobulin genes. The heavy chains (HCs) originated from 26 and the kappa light chains (LCs) from 19 different germ line genes. Matching HC and LC chains gave rise to 43 genetically distinct antibodies that bound influenza NP. The median lengths of the CDR3 of the HC, kappa and lambda LC were 14, 9 and 11 amino acids, respectively. We identified changes at 13.6% of the amino acid positions in the V gene of the antibody heavy chain, at 8.4 % in the kappa and at 10.6 % in the lambda V gene. We identified somatic insertions or deletions in 8.1% of the variable genes. We also found several small groups of clonal relatives that were highly diversified. Our findings demonstrate broadly diverse memory B cell repertoires for the influenza nucleoprotein. We found extensive variation within individuals with a high number of point mutations, insertions, and deletions, and extensive clonal diversification. Thus, structurally conserved proteins can elicit broadly diverse and highly mutated B-cell responses. 相似文献
14.
15.
16.
IS6110-Mediated Deletions of Wild-Type Chromosomes of Mycobacterium tuberculosis 总被引:1,自引:0,他引:1 下载免费PDF全文
Z. Fang C. Doig D. T. Kenna N. Smittipat P. Palittapongarnpim B. Watt K. J. Forbes 《Journal of bacteriology》1999,181(3):1014-1020
The ipl locus is a site for the preferential insertion of IS6110 and has been identified as an insertion sequence, IS1547, in its own right. Various deletions around the ipl locus of clinical isolates of Mycobacterium tuberculosis were identified, and these deletions ranged in length from several hundred base pairs up to several kilobase pairs. The most obvious feature shared by these deletions was the presence of an IS6110 copy at the deletion sites, which suggested two possible mechanisms for their occurrence, IS6110 transposition and homologous recombination. To clarify the mechanism, an investigation was conducted; the results suggest that although deletion transpositionally mediated by IS6110 was a possibility, homologous recombination was a more likely one. The implications of such chromosomal rearrangements for the evolution of M. tuberculosis, for IS6110-mediated mutagenesis, and for the development of genetic tools are discussed. The deletion of genomic DNA in isolates of M. tuberculosis has previously been noted at only a few sites. This study examined the deletional loss of genetic material at a new site and suggests that such losses may occur elsewhere too and may be more prevalent than was previously thought. Distinct from the study of laboratory-induced mutations, the detailed analysis of clinical isolates, in combination with knowledge of their evolutionary relationships to each other, gives us the opportunity to study mutational diversity in isolates that have survived in the human host and therefore offers a different perspective on the importance of particular genetic markers in pathogenesis. 相似文献
17.
Insertions and deletions (indels) are important types of structural variations. Obtaining accurate genotypes of indels may facilitate further genetic study. There are a few existing methods for calling indel genotypes from sequence reads. However, none of these tools can accurately call indel genotypes for indels of all lengths, especially for low coverage sequence data. In this paper, we present GINDEL, an approach for calling genotypes of both insertions and deletions from sequence reads. GINDEL uses a machine learning approach which combines multiple features extracted from next generation sequencing data. We test our approach on both simulated and real data and compare with existing tools, including Genome STRiP, Pindel and Clever-sv. Results show that GINDEL works well for deletions larger than 50 bp on both high and low coverage data. Also, GINDEL performs well for insertion genotyping on both simulated and real data. For comparison, Genome STRiP performs less well for shorter deletions (50–200 bp) on both simulated and real sequence data from the 1000 Genomes Project. Clever-sv performs well for intermediate deletions (200–1500 bp) but is less accurate when coverage is low. Pindel only works well for high coverage data, but does not perform well at low coverage. To summarize, we show that GINDEL not only can call genotypes of insertions and deletions (both short and long) for high and low coverage population sequence data, but also is more accurate and efficient than other approaches. The program GINDEL can be downloaded at: http://sourceforge.net/p/gindel 相似文献
18.
Trinucleotide Insertions, Deletions, and Point Mutations in Glucose Transporters Confer K+ Uptake in Saccharomyces cerevisiae 下载免费PDF全文
Hong Liang Christopher H. Ko Todd Herman Richard F. Gaber 《Molecular and cellular biology》1998,18(2):926-935
Deletion of TRK1 and TRK2 abolishes high-affinity K+ uptake in Saccharomyces cerevisiae, resulting in the inability to grow on typical synthetic growth medium unless it is supplemented with very high concentrations of potassium. Selection for spontaneous suppressors that restored growth of trk1Δ trk2Δ cells on K+-limiting medium led to the isolation of cells with unusual gain-of-function mutations in the glucose transporter genes HXT1 and HXT3 and the glucose/galactose transporter gene GAL2. 86Rb uptake assays demonstrated that the suppressor mutations conferred increased uptake of the ion. In addition to K+, the mutant hexose transporters also conferred permeation of other cations, including Na+. Because the selection strategy required such gain of function, mutations that disrupted transporter maturation or localization to the plasma membrane were avoided. Thus, the importance of specific sites in glucose transport could be independently assessed by testing for the ability of the mutant transporter to restore glucose-dependent growth to cells containing null alleles of all of the known functional glucose transporter genes. Twelve sites, most of which are conserved among eukaryotic hexose transporters, were revealed to be essential for glucose transport. Four of these have previously been shown to be essential for glucose transport by animal or plant transporters. Eight represented sites not previously known to be crucial for glucose uptake. Each suppressor mutant harbored a single mutation that altered an amino acid(s) within or immediately adjacent to a putative transmembrane domain of the transporter. Seven of 38 independent suppressor mutations consisted of in-frame insertions or deletions. The nature of the insertions and deletions revealed a striking DNA template dependency: each insertion generated a trinucleotide repeat, and each deletion involved the removal of a repeated nucleotide sequence. 相似文献
19.
20.
Steven?G. Rozen Janet?D. Marszalek Kathryn Irenze Helen Skaletsky Laura?G. Brown Robert?D. Oates Sherman?J. Silber Kristin Ardlie David?C. Page 《American journal of human genetics》2012,91(5):890-896
Deletions involving the Y chromosome’s AZFc region are the most common known genetic cause of severe spermatogenic failure (SSF). Six recurrent interstitial deletions affecting the region have been reported, but their population genetics are largely unexplored. We assessed the deletions’ prevalence in 20,884 men in five populations and found four of the six deletions (presented here in descending order of prevalence): gr/gr, b2/b3, b1/b3, and b2/b4. One of every 27 men carried one of these four deletions. The 1.6 Mb gr/gr deletion, found in one of every 41 men, almost doubles the risk of SSF and accounts for ∼2% of SSF, although <2% of men with the deletion are affected. The 1.8 Mb b2/b3 deletion, found in one of every 90 men, does not appear to be a risk factor for SSF. The 1.6 Mb b1/b3 deletion, found in one of every 994 men, appears to increase the risk of SSF by a factor of 2.5, although <2% of men with the deletion are affected, and it accounts for only 0.15% of SSF. The 3.5 Mb b2/b4 deletion, found in one of every 2,320 men, increases the risk of SSF 145 times and accounts for ∼6% of SSF; the observed prevalence should approximate the rate at which the deletion arises anew in each generation. We conclude that a single rare variant of major effect (the b2/b4 deletion) and a single common variant of modest effect (the gr/gr deletion) are largely responsible for the AZFc region’s contribution to SSF in the population. 相似文献