首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serine biosynthesis and its regulation in Bacillus subtilis   总被引:1,自引:1,他引:0       下载免费PDF全文
Cell-free extracts of Bacillus subtilis strains GSY and 168 convert (14)C-phosphoglycerate to (14)C-serine phosphate and (14)C-serine. These reactions indicate a functional phosphorylated pathway for serine biosynthesis in these cells. The addition of serine to the incubation mixture inhibited the formation of both radioactive products. Extracts of mutant strains that require serine for growth lacked the capacity to synthesize serine phosphate, confirming that the phosphorylated pathway was the only functional pathway available for serine synthesis. Serine phosphate phosphatase and phosphoglycerate dehydrogenase activity were demonstrated in cell extracts, and the phosphoglycerate dehydrogenase was shown to be inhibited specifically by l-serine. The extent of serine inhibition increased when the temperature was raised from 25 to 37 C, and the thermal stability of the enzyme was enhanced by the presence of the inhibitor serine or the coenzyme reduced nicotinamide adenine dinucleotide. At 37 C the curve representing the relationship between phosphoglycerate concentration and enzyme velocity was biphasic, and the serine inhibition which was competitive at low substrate concentrations became noncompetitive at higher concentrations.  相似文献   

2.
Enzymes of serine biosynthesis in Rhodopseudomonas capsulata   总被引:1,自引:0,他引:1  
Rhodopseudomonas capsulata has been shown to possess all the enzymatic activities of both the phosphorylated and nonphosphorylated pathways of serine biosynthesis. In addition there was an active serine hydroxymethyltransferase which catalyzed the reversible interconversion of serine and glycine. In cells grown photosynthetically with malate as the carbon source, the activities of the phosphorylated pathway enzymes were substantially higher than the analogous reactions of the nonphosphorylated sequence. l-Serine (1 mm) caused approximately 60%, inhibition of the first enzyme of the phosphorylated route, 3-phosphoglyceric acid dehydrogenase, but was less effective in inhibiting the last enzyme, phosphoserine phosphatase. Glycine also exerted a regulatory effect on this pathway but it was not as potent an inhibitor as serine. The inhibitions caused by serine and glycine were simply additive; there was no evidence of concerted feedback inhibition of the phosphorylated pathway by these amino acids.  相似文献   

3.
The role of serine as a precursor and metabolic regulator for phosphatidylethanolamine biosynthesis in the hamster heart was investigated. Hearts were perfused with 50 microM [1-3H]ethanolamine in the presence or absence of serine for up to 60 min. Ethanolamine uptake was attenuated by 0.05-10 mM serine in a noncompetitive manner, and the incorporation of labeled ethanolamine into phosphatidylethanolamine was also inhibited by serine. Analysis of the ethanolamine-containing metabolites in the CDP-ethanolamine pathway revealed that the conversion of ethanolamine to phosphoethanolamine was reduced. The reduction was a result of an inhibition of ethanolamine kinase activity by an elevated pool of intracellular serine. Perfusion of the heart with 1 mM serine caused a 5-fold increase in intracellular serine pool. In order to examine the action of serine on other phosphatidylethanolamine metabolic pathways, hearts were perfused with [1-3H]glycerol in the presence and absence of serine. Serine did not cause any enhancement of phosphatidylethanolamine hydrolysis. The base-exchange reaction for phosphatidylserine formation or the decarboxylation of phosphatidylserine was not affected by serine perfusion. We conclude that circulating serine plays an important role in the modulation of phosphatidylethanolamine biosynthesis via the CDP-ethanolamine pathway in the hamster heart but does not affect the contribution of the decarboxylase pathway for phosphatidylethanolamine formation.  相似文献   

4.
Purine biosynthesis by the 'de novo' pathway was demonstrated in isolated rat extensor digitorum longus muscle with [1-14C]glycine, [3-14C]serine and sodium [14C]formate as nucleotide precursors. Evidence is presented which suggests that the source of glycine and serine for purine biosynthesis is extracellular rather than intracellular. The relative incorporation rates of the three precursors were formate greater than glycine greater than serine. Over 85% of the label from formate and glycine was recovered in the adenine nucleotides, principally ATP. Azaserine markedly inhibited purine biosynthesis from both formate and glycine. Cycloserine inhibited synthesis from serine, but not from formate. Adenine, hypoxanthine and adenosine markedly inhibited purine synthesis from sodium [14C]formate.  相似文献   

5.
Because it is the precursor for various essential cellular components, the amino acid serine is indispensable for every living organism. In plants, serine is synthesized by two major pathways: photorespiration and the phosphorylated pathway of serine biosynthesis (PPSB). However, the importance of these pathways in providing serine for plant development is not fully understood. In this study, we examine the relative contributions of photorespiration and PPSB to providing serine for growth and metabolism in the C3 model plant Arabidopsis thaliana. Our analyses of cell proliferation and elongation reveal that PPSB-derived serine is indispensable for plant growth and its loss cannot be compensated by photorespiratory serine biosynthesis. Using isotope labeling, we show that PPSB-deficiency impairs the synthesis of proteins and purine nucleotides in plants. Furthermore, deficiency in PPSB-mediated serine biosynthesis leads to a strong accumulation of metabolites related to nitrogen metabolism. This result corroborates 15N-isotope labeling in which we observed an increased enrichment in labeled amino acids in PPSB-deficient plants. Expression studies indicate that elevated ammonium uptake and higher glutamine synthetase/glutamine oxoglutarate aminotransferase (GS/GOGAT) activity causes this phenotype. Metabolic analyses further show that elevated nitrogen assimilation and reduced amino acid turnover into proteins and nucleotides are the most likely driving forces for changes in respiratory metabolism and amino acid catabolism in PPSB-deficient plants. Accordingly, we conclude that even though photorespiration generates high amounts of serine in plants, PPSB-derived serine is more important for plant growth and its deficiency triggers the induction of nitrogen assimilation, most likely as an amino acid starvation response.

The phosphorylated pathway of serine biosynthesis is required to synthesize serine for plant growth; and its deficiency triggers an amino acid starvation response by inducing nitrogen assimilation.  相似文献   

6.
Rhodopseudomonas capsulata possesses the enzymes of both the "phosphorylated" and the "non-phosphorylated" pathways of serine biosynthesis. Certain mutants with lesions in the phosphorylated pathway are serine-glycine auxotrophs, though they still produce enzymes of the non-phosphorylated sequence. These results indicate that the phosphorylated pathway is essential for the synthesis of serine and glycine in R. capsulata under the condtions tested.  相似文献   

7.
The cys2-1 mutation of Saccharomyces cerevisiae was originally thought to confer cysteine dependence through a serine O-acetyltransferase deficiency. In this study, we show that cys2-1 strains lack not only serine O-acetyltransferase but also cystathionine beta-synthase. However, a prototrophic strain was found to be serine O-acetyltransferase deficient because of a mutation allelic to cys2-1. Moreover, revertants obtained from cys2-1 strains had serine O-acetyltransferase but not cystathionine beta-synthase, whereas transformants obtained by treating a cys2-1 strain with an S. cerevisiae genomic library had cystathionine beta-synthase but not serine O-acetyltransferase. From these observations, we conclude that cys2-1 (serine O-acetyltransferase deficiency) accompanies a very closely linked mutation that causes cystathionine beta-synthase deficiency and that these mutations together confer cysteine dependence. This newly identified mutation is named cys4-1. These results not only support our previous hypothesis that S. cerevisiae has two functional cysteine biosynthetic pathways but also reveal an interesting gene arrangement of the cysteine biosynthetic system.  相似文献   

8.
Methionine biosynthesis was studied in rhesus monkey erythrocytes infected with Plasmodium knowlesi malaria which were cultured in vitro with l-[3-14C]serine, methyl-[14C]tetrahydrofolic acid, and l-[35S]homocysteine. Radioactivity derived from [3-14C]serine was detected in approximately equivalent amounts in methionine and thymidylic acid by thin-layer chromatography of acid-hydrolysates of washed erythrocytes. The results with methyl-[14C]tetrahydrofolic acid were inconclusive. Radioactivity from l-[35S]homocysteine also appeared in methionine but the level of homocysteine required for maximal activity was tenfold that of serine. The results indicate that the serine: 5,10-methylenetetrahydrofolic acid: 5-methyl-tetrahydrofolic acid: methionine biosynthetic pathway is present in the P. knowlesi malaria parasite.  相似文献   

9.
The enzyme serine transhydroxymethylase (EC 2.1.2.1; L-serine:tetrahydrofolate-5,10-hydroxymethyltransferase) is responsible both for the synthesis of glycine from serine and production of the 5,10-methylenetetrahydrofolate necessary as a methyl donor for methionine synthesis. Two mutants selected for alteration in serine transhydroxymethylase regulation also have phenotypes characteristic of metK (methionine regulatory) mutants, including ethionine, norleucine, and alpha-methylmethionine resistance and reduced levels of S-adenosylmethionine synthetase (EC 2.5.1.6; adenosine 5'-triphosphate:L-methionine S-adenosyltransferase) activity. Because this suggested the existence of a common regulatory component, the regulation of serine transhydroxymethylase was examined in other methionine regulatory mutants (metK and metJ mutants). Normally, serine transhydroxymethylase levels are repressed three- to sixfold in cells grown in the presence of serine, glycine, methionine, adenine, guanine, and thymine. This does not occur in metK and metJ mutants; thus, these mutations do affect the regulation of both serine transhydroxymethylase and the methionine biosynthetic enzymes. Lesions in the metK gene have been reported to reduce S-adenosylmethionine synthetase levels. To determine whether the metK gene actually encodes for S-adenosylmethionine synthetase, a mutant was characterized in which this enzyme has a 26-fold increased apparent Km for methionine. This mutation causes a phenotype associated with metK mutants and is cotransducible with the serA locus at the same frequency as metK lesions. Thus, the affect of metK mutations on the regulation of glycine and methionine synthesis in Salmonella typhimurium appears to be due to either an altered S-adenosylmethionine synthetase or altered S-adenosylmethionine pools.  相似文献   

10.
1. The enzymes leading to the methylation of homocysteine have been examined in three micro-organisms: a cobalamin-producing bacterium, Bacillus megaterium; a yeast, Candida utilis; and a basidiomycete fungus, Coprinus lagopus. The yeast and the fungus contain negligible endogenous cobalamin. 2. Extracts of each organism catalyse C(1)-transfer from serine to homocysteine with a polyglutamate folate coenzyme. 3. The enzymes generating the methyl group of methionine from C-3 of serine have similar properties in each case, but different mechanisms of homocysteine transmethylation from 5-methyltetrahydrofolates were found. 4. B. megaterium contains an enzyme with properties suggestive of a vitamin B(12)-dependent homocysteine transmethylase, whereas Cand. utilis and Cop. lagopus transfer the methyl group by a reaction characteristic of the cobalamin-independent mechanism established for Escherichia coli. 5. The specificity of each transmethylase for a 5-methyltetrahydropteroylpolyglutamate is consistent with the results of analyses of endogenous folates in these organisms, which showed only conjugated forms. 6. None of the extracts catalysed methionine production from S-adenosylmethionine and homocysteine. 7. These results are compared with results now available for methionine synthesis in other organisms, which show a considerable diversity of mechanisms.  相似文献   

11.
The flux of serine biosynthesis in the liver of the normal rabbit, and of the rat on a low protein diet, is most sensitive to the activity of phosphoserine phosphatase (flux control coefficient up to 0.97), the last of the three enzymes in the pathway after it branches from glycolysis. The concentration of the pathway product, serine, has a strong controlling influence on the flux (response coefficient up to -0.64) through feedback inhibition at this step. The pathway is therefore controlled primarily by the demand for serine rather than the supply of the pathway precursor, 3-phosphoglycerate. Under conditions where there is a lower biosynthetic flux, the flux control coefficients of the first two enzymes of the pathway are increased, and are probably dominant in the rat on a normal diet. In rabbit liver, when ethanol is used to inhibit serine biosynthesis, control can be distributed between the three enzymes, even though the reactions catalysed by the first two remain close to equilibrium. Apart from their intrinsic value in aiding the understanding of the regulation of mammalian serine metabolism, our findings illustrate the danger of assuming that there are invariant design principles in the regulation of metabolic pathways, such as feedback control on the first step after a branch.  相似文献   

12.
The importance of glyoxylate in amino acid biosynthesis in plants   总被引:3,自引:1,他引:2       下载免费PDF全文
1. [14C2]Glyoxylate was rapidly metabolized by carrot storage tissues, pea leaves, pea cotyledons, sunflower cotyledons, corn coleoptiles, corn roots and pea roots. In many tissues over 70% of the supplied [14C2]glyoxylate was utilized during the 6hr. experimental periods. 2. In all tissues, the chief products of [14C2]-glyoxylate metabolism were carbon dioxide, glycine and serine. In several of the tissues, there was also a considerable incorporation of the label into the organic acids, particularly into glycollate. 3. Degradations of the labelled serine produced during [14C2]glyoxylate metabolism showed that glyoxylate carbon was incorporated into all three positions of the serine molecule. 4. The results are interpreted as indicating that glyoxylate is utilized by the tissues by pathways involving transamination, transmethylation, reduction and oxidative decarboxylation of the supplied glyoxylate.  相似文献   

13.
Derivatives of Escherichia coli strain W3110 with increased tryptophan synthase (TS) activity were constructed. The biosynthesis of serine was shown to limit tryptophan production in minimal medium with indole as precursor. In the presence of serine and indole we obtained a correlation between the specific activity of TS and the specific productivity (qp) of tryptophan. Supplementation of the growth medium with glycine enhanced qp two-fold. In a strain with high serine hydroxymethyltransferase (SHMT) activity no such increase of tryptophan productivity was observed, although crude extracts from these cells were shown to produce tryptophan with indole, one-carbon units and glycine as precursors. Growth of the strain with high SHMT activity was inhibited in a medium with high glycine concentration. This inhibition could not be released by addition of isoleucine and valine. In a buffer system with permeabilized cells high in specific TS and SHMT activities we did not obtain any tryptophan production in presence of indole, glycine, one-carbon units and cofactors. On the other hand, in a buffer system with indole and serine as precursors we obtained high qp of tryptophan [13.3 g tryptophan (g dry wt cells)-1 h-1], which was correlated to the TS specific activity.  相似文献   

14.
Serine transhydroxymethylase appears to be the first enzyme in the synthesis of the methyl group of methionine. Properties of serine transhydroxymethylase activity as assayed by the production of formaldehyde were correlated with properties of cell-free extracts for the methylation of homocysteine deriving the methyl group from the beta-carbon of serine. The reaction required pyridoxal phosphate and tetrahydrofolic acid, and was characterized in cell-free extracts with respect to Michaelis constant, pH optimum, incubation time, and optimal enzyme concentration. The activity was sensitive to inhibition by methionine, and to a much greater extent by S-adenosylmethionine. Serine transhydroxymethylase and the methylation of homocysteine reactions were not repressed by methionine and were stimulated by glycine. The activities of cell-free extracts for these reactions were significantly higher in cells in exponential than in stationary growth. When cells were grown in 10 mm glycine, the activities remained high throughout the culture cycle. The data indicated that glycine rather than methionine is involved in the control of the formation of the enzyme.  相似文献   

15.
Journal of Industrial Microbiology & Biotechnology - CylA is a subtilisin-like protein belonging to a recently expanded serine protease family related to class II lanthipeptide biosynthesis. As...  相似文献   

16.
We present the first two identified cases of phosphoserine aminotransferase deficiency. This disorder of serine biosynthesis has been identified in two siblings who showed low concentrations of serine and glycine in plasma and cerebrospinal fluid. Clinically, the index patient presented with intractable seizures, acquired microcephaly, hypertonia, and psychomotor retardation and died at age 7 mo despite supplementation with serine (500 mg/kg/d) and glycine (200 mg/kg/d) from age 11 wk. The younger sibling received treatment from birth, which led to a normal outcome at age 3 years. Measurement of phosphoserine aminotransferase activity in cultured fibroblasts in the index patient was inconclusive, but mutational analysis revealed compound heterozygosity for two mutations in the PSAT1 gene--one frameshift mutation (c.delG107) and one missense mutation (c.299A-->C [p.Asp100Ala])--in both siblings. Expression studies of the p.Asp100Ala mutant protein revealed a V(max) of only 15% of that of the wild-type protein.  相似文献   

17.
Addition of exogenous sphingosine homologues (D-erythro configuration) with different alkyl chain lengths (12 and 18 carbon atoms) to the medium of primary cultured cerebellar cells resulted in a decrease of serine palmitoyltransferase activity in a time- and concentration-dependent manner. This enzyme catalyzes the first committed step in sphingolipid biosynthesis. Half-maximal reduction of enzyme activity occurred after a 4-h treatment with 25 microM sphingoid bases. Maximal decrease (approx. 80%) was obtained after treating the cells for 4-8 h with 50 microM long-chain bases. When a biosynthetically inert sphingoid, azidosphingosine (10-50 microM), was fed to the cells, decrease of 3-ketosphinganine formation was much slower, reaching its maximum (approx. 80%) after 24 h. In contrast to D-erythro-sphingosine, L-threo-C18-sphingosine did not yield any decrease of serine palmitoyltransferase activity when added to the cells under identical experimental conditions. Decrease of serine palmitoyltransferase activity was fully reversible after removal of the long-chain bases from the culture medium. Activities of other enzymes of lipid metabolism, ceramide synthase, long-chain acyl-CoA synthase and choline phosphotransferase, were not affected by the addition of sphingoid bases, indicating that the down regulation of serine palmitoyltransferase is quite specific.  相似文献   

18.
Mature human erythrocytes were tested for their ability to synthetize membrane phospholipids from simple precursors: [32P]-orthophosphate (32Pi), [U-14C] glycerol, [U-14C] glucose, [U-14C] serine, and [U-14C] choline. The incorporation of these labels into phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidic acid (PA), lysophosphatidylcholine (lyso-PC), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2) was measured. All the phospholipids tested incorporated 32Pi, glycerol, and glucose in a time dependent manner. According to the rate of 32Pi incorporation, three groups of phospholipids could be distinguished: 1) PA, PIP2, PIP, lyso-PC; 2) PI and PS; 3) PC and PE, which incorporated 5 x 10(3), 40, and 6 nmol 32Pi/mmol phospholipid per 1 h, respectively. Moreover, [U-14C] serine and [U14C] choline were found to incorporate into phospholipids, and PS-decarboxylase activity could be measured. The possibility that the observed incorporation was due to contamination with bacteria or other blood cells could be ruled out. Our results bring evidence for de novo phospholipid synthesis of human red blood cells.  相似文献   

19.
Cell-free extracts of Peptostreptococcus elsdenii, a strict anaerobe from the rumen, were examined for enzymes catalysing the steps in the biosynthesis from lactate of alanine, serine, aspartate and glutamate. Extracts contain the enzymes necessary for the formation of alanine from lactate via pyruvate. The presence of enzymes catalysing the interconversion of phosphoglycerate and phosphohydroxypyruvate, the transamination of the latter to phosphoserine and the cleavage of phosphoserine to serine and inorganic phosphate was demonstrated, suggesting that serine is formed via these intermediates. ;Malic' enzyme, malate dehydrogenase and glutamate-oxaloacetate transaminase are present in extracts and could account for aspartate formation. The extracts catalyse all of the steps of the tricarboxylic acid pathway leading from oxaloacetate plus acetate to glutamate. Together with substantive data from previous radioactive tracer studies the results provide strong evidence that these four amino acids are synthesized in this strict anaerobe by pathways closely similar to those operating in aerobic and facultatively aerobic organisms.  相似文献   

20.
Post-translational modifications during lantibiotic biosynthesis   总被引:2,自引:0,他引:2  
Recent reports have provided the first insights into the mechanisms of the extensive post-translational modifications involved in the biosynthesis of the lantibiotics, a class of peptide antimicrobial agents. These modifications involve dehydration of several serine and threonine residues followed by intramolecular conjugate additions of cysteines, resulting in extensively cross-linked polycyclic structures. Both in vivo and in vitro studies indicate low substrate specificity of the modification machinery, which has been explored for re-engineering of the structures of a number of members. In addition to these developments in understanding their biosynthesis, studies on the mode of action of several lantibiotics have shown a unique mechanism of binding to lipid II, an intermediate in cell wall biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号