首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The astounding structural and biological diversities of the large class of terpenoid natural products are imparted by both their complex hydrocarbon backbones and further elaboration by the addition of multiple hydroxyl groups, which provide both solubility and specific binding properties. While the role of terpene synthases (TPSs) in generating hydrocarbons with complex backbones is well known, these also are known to generate (singly) hydroxylated products by the addition of water prior to terminating deprotonation. Here a maize sesquiterpene synthase was unexpectedly found to generate dually hydroxylated products directly from (E,E)‐farnesyl diphosphate, primarily eudesmane‐2,11‐diol, along with two closely related structural isomers. The unprecedented formation of these diols was proposed to proceed via initial addition of water to a germacradienyl+ intermediate, followed by protonation of the internal carbon‐6,7‐double‐bond in the resulting hedycarol, with subsequent cyclization and further addition of water to an eudesmolyl+ intermediate. Evidence for the proposed mechanism was provided by labeling studies, as well as site‐directed mutagenesis, based on structural modeling, which identified an active site phenylalanine required for the protonation and further elaboration of hedycaryol. This dihydroxylated sesquiterpenoid synthase was specifically expressed in maize roots and induced by pathogen infection, with its major enzymatic product only detected in root exudates or infected roots, suggesting a role in defense. Regardless of the ultimate metabolic fate or physiological role of these diols, this report not only reveals an unanticipated extension of the catalytic prowess of TPSs, but also provides insight into the underlying enzymatic mechanism.  相似文献   

3.
Numerous terpenoid compounds are present in copious amounts in the oleoresin produced by conifers, especially following exposure to insect or fungal pests. CDNA clones for many terpene synthases responsible for the biosynthesis of these defense compounds have been recovered from several conifer species. Here, the use of three terpene synthase sequences as heterologous probes for the discovery of related terpene synthase genes in Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco (Pinaceae), is reported. Four full-length terpene synthase cDNAs were recovered from a methyl jasmonate-induced Douglas-fir bark and shoot cDNA library. These clones encode two multi-product monoterpene synthases [a (-)-alpha-pinene/(-)-camphene synthase and a terpinolene synthase] and two single-product sesquiterpene synthases [an (E)-beta-farnesene synthase and a (E)-gamma-bisabolene synthase].  相似文献   

4.
植物萜类合酶研究进展   总被引:8,自引:0,他引:8  
随着植物中许多有价值的萜类化合物被发现和应用于人类生活 ,萜类生物合成途径的研究倍受重视。萜类合酶催化单萜、倍半萜和二萜生物合成 ,即分别催化GPP、FPP和GGPP形成单萜、倍半萜和二萜。本文叙述了近年来在植物萜类合酶催化机理、克隆策略和萜类生物工程的研究进展  相似文献   

5.
Trapp SC  Croteau RB 《Genetics》2001,158(2):811-832
Terpenoids are the largest, most diverse class of plant natural products and they play numerous functional roles in primary metabolism and in ecological interactions. The first committed step in the formation of the various terpenoid classes is the transformation of the prenyl diphosphate precursors, geranyl diphosphate, farnesyl diphosphate, and geranylgeranyl diphosphate, to the parent structures of each type catalyzed by the respective monoterpene (C(10)), sesquiterpene (C(15)), and diterpene synthases (C(20)). Over 30 cDNAs encoding plant terpenoid synthases involved in primary and secondary metabolism have been cloned and characterized. Here we describe the isolation and analysis of six genomic clones encoding terpene synthases of conifers, [(-)-pinene (C(10)), (-)-limonene (C(10)), (E)-alpha-bisabolene (C(15)), delta-selinene (C(15)), and abietadiene synthase (C(20)) from Abies grandis and taxadiene synthase (C(20)) from Taxus brevifolia], all of which are involved in natural products biosynthesis. Genome organization (intron number, size, placement and phase, and exon size) of these gymnosperm terpene synthases was compared to eight previously characterized angiosperm terpene synthase genes and to six putative terpene synthase genomic sequences from Arabidopsis thaliana. Three distinct classes of terpene synthase genes were discerned, from which assumed patterns of sequential intron loss and the loss of an unusual internal sequence element suggest that the ancestral terpenoid synthase gene resembled a contemporary conifer diterpene synthase gene in containing at least 12 introns and 13 exons of conserved size. A model presented for the evolutionary history of plant terpene synthases suggests that this superfamily of genes responsible for natural products biosynthesis derived from terpene synthase genes involved in primary metabolism by duplication and divergence in structural and functional specialization. This novel molecular evolutionary approach focused on genes of secondary metabolism may have broad implications for the origins of natural products and for plant phylogenetics in general.  相似文献   

6.
The Arabidopsis genome project has recently reported sequences with similarity to members of the terpene synthase (TPS) gene family of higher plants. Surprisingly, several Arabidopsis terpene synthase-like sequences (AtTPS) share the most identity with TPS genes that participate in secondary metabolism in terpenoid-accumulating plant species. Expression of a putative Arabidopsis terpene synthase gene, designated AtTPS03, was demonstrated by amplification of a 392-bp cDNA fragment using primers designed to conserved regions of plant terpene synthases. Using the AtTPS03 fragment as a hybridization probe, a second AtTPS cDNA, designated AtTPS10, was isolated from a jasmonate-induced cDNA library. The partial AtTPS10 cDNA clone contained an open reading frame of 1665 bp encoding a protein of 555 amino acids. Functional expression of AtTPS10 in Escherichia coli yielded an active monoterpene synthase enzyme, which converted geranyl diphosphate (C(10)) into the acyclic monoterpenes beta-myrcene and (E)-beta-ocimene and small amounts of cyclic monoterpenes. Based on sequence relatedness, AtTPS10 was classified as a member of the TPSb subfamily of angiosperm monoterpene synthases. Sequence comparison of AtTPS10 with previously cloned monoterpene synthases suggests independent events of functional specialization of terpene synthases during the evolution of terpenoid secondary metabolism in gymnosperms and angiosperms. Functional characterization of the AtTPS10 gene was prompted by the availability of Arabidopsis genome sequences. Although Arabidoposis has not been reported to form terpenoid secondary metabolites, the unexpected expression of TPS genes belonging to the TPSb subfamily in this species strongly suggests that terpenoid secondary metabolism is active in the model system Arabidopsis.  相似文献   

7.
8.
Pine wood nematode (PWN; Bursaphelenchus xylophilus), a destructive pest of Pinus massoniana, is causing a severe epidemic of pine wilt disease in China. When invaded by PWN, resistant P. massoniana secretes an abundance of oleoresin terpenoids as a defensive strategy. However, regulatory mechanisms of this defence in resistant P. massoniana have yet to be elucidated. Here, we characterized two terpene synthase genes, α‐pinene synthase (PmTPS4) and longifolene synthase (PmTPS21), identified in resistant P. massoniana and investigate the contribution of these genes to the oleoresin defence strategy in resistant masson pines. Up‐regulation of these two genes in the stem supported their involvement in terpene biosynthesis as part of the defence against PWN. Recombinant protein expression revealed catalytic activity for the two PmTPSs, with PmTPS4 primarily producing α‐pinene, while PmTPS21 produced α‐pinene and longifolene simultaneously. The major enzymatic products of the two terpene synthases had inhibitory effects on PWN in vitro. We demonstrated that PmTPS4 and PmTPS21 played positive roles in terpene‐defence mechanisms against PWN infestation. The major products of these terpene synthases could directly inhibit the survival rate of PWN in vitro. We revealed that PmTPS21 was a novel bifunctional enzyme capable of simultaneous production of both monoterpene and sesquiterpene.  相似文献   

9.
10.
Although terpenoid synthases catalyze the most complex reactions in biology, these enzymes appear to play little role in the chemistry of catalysis other than to trigger the ionization and chaperone the conformation of flexible isoprenoid substrates and carbocation intermediates through multistep reaction cascades. Fidelity and promiscuity in this chemistry (whether a terpenoid synthase generates one or several products), depends on the permissiveness of the active site template in chaperoning each step of an isoprenoid coupling or cyclization reaction. Structure-guided mutagenesis studies of terpenoid synthases such as farnesyl diphosphate synthase, 5-epi-aristolochene synthase, and gamma-humulene synthase suggest that the vast diversity of terpenoid natural products is rooted in the facile evolution of alpha-helical folds shared by terpenoid synthases in all forms of life.  相似文献   

11.
Cyanobacteria are a rich source of natural products and are known to produce terpenoids. These bacteria are the major source of the musty-smelling terpenes geosmin and 2-methylisoborneol, which are found in many natural water supplies; however, no terpene synthases have been characterized from these organisms to date. Here, we describe the characterization of three sesquiterpene synthases identified in Nostoc sp. strain PCC 7120 (terpene synthase NS1) and Nostoc punctiforme PCC 73102 (terpene synthases NP1 and NP2). The second terpene synthase in N. punctiforme (NP2) is homologous to fusion-type sesquiterpene synthases from Streptomyces spp. shown to produce geosmin via an intermediate germacradienol. The enzymes were functionally expressed in Escherichia coli, and their terpene products were structurally identified as germacrene A (from NS1), the eudesmadiene 8a-epi-α-selinene (from NP1), and germacradienol (from NP2). The product of NP1, 8a-epi-α-selinene, so far has been isolated only from termites, in which it functions as a defense compound. Terpene synthases NP1 and NS1 are part of an apparent minicluster that includes a P450 and a putative hybrid two-component protein located downstream of the terpene synthases. Coexpression of P450 genes with their adjacent located terpene synthase genes in E. coli demonstrates that the P450 from Nostoc sp. can be functionally expressed in E. coli when coexpressed with a ferredoxin gene and a ferredoxin reductase gene from Nostoc and that the enzyme oxygenates the NS1 terpene product germacrene A. This represents to the best of our knowledge the first example of functional expression of a cyanobacterial P450 in E. coli.  相似文献   

12.
13.
Sesquiterpene cyclases catalyze the conversion of common precursor, farnesyl pyrophosphate, into various terpene backbones. X-ray crystallography of tobacco epi-aristolochene synthase has previously proposed a cyclization mechanism wherein the allylic carbocation intermediate is stabilized by the main chain carbonyl oxygens of three consecutive threonine residues. Alignment of amino acid sequences of plant terpene cyclases shows that the first position of the triad is almost invariably threonine or serine. To probe the carbocation-stabilizing role, the amino acid residues of the 433TSA435 triad in (+)-germacrene A synthase from Ixeris dentata were altered by site-directed mutagenesis. Enzyme kinetic measurements of the mutants and GC/MS analysis of the enzyme reaction products indicate that mutations of the triad decreased enzyme catalysis rather than substrate binding but did not affect its structural rearrangement in the catalytic mechanism. This is the first report that the hydroxyl group of threonine at the first position of the triad is required for the cyclase activity.  相似文献   

14.
中粒咖啡萜类合成酶基因家族的生物信息学分析   总被引:1,自引:0,他引:1  
程甜  魏强  李广林 《植物学报》2016,51(2):235-250
萜类化合物具有重要的生理、生态作用和药用价值,萜类合成酶(TPS)是合成萜类化合物的关键酶。通过整合中粒咖啡(Coffee canephora)的基因组和转录组数据,利用生物信息学方法,鉴定出43个萜类合成酶全长基因,并对这些基因的分子进化、结构、复制、表达及功能分化的机理进行了探究。结果表明,中粒咖啡萜类合成酶基因可以分为5个亚家族(a、b、c、e/f、g),不同亚家族的基因结构差异很大;串联复制是基因家族扩增的主要原因;表达分析结果表明,萜类合成酶基因在不同组织中的表达差异明显;中粒咖啡萜类合成酶基因启动子区的顺式调控元件可能与基因的功能分化相关;不同亚家族之间的功能差异主要由亚家族特异的氨基酸决定。  相似文献   

15.
16.
The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases. This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms of these enzyme classes are described, and information on how terpene synthase proteins mediate catalysis is summarized. Correlations between specific amino acid motifs and terpene synthase function are described, including an analysis of the relationships between active site sequence and cyclization type and a discussion of whether specific protein features might facilitate multiple product formation.  相似文献   

17.
18.
The heterologous expression of terpene synthases in microbial hosts has opened numerous possibilities for bioproduction of desirable metabolites. Photosynthetic microbial hosts present a sustainable alternative to traditional fermentative systems, using freely available (sun)light and carbon dioxide as inputs for bio-production. Here, we report the expression of a patchoulol synthase from Pogostemon cablin Benth in the model green microalga Chlamydomonas reinhardtii. The sesquiterpenoid patchoulol was produced from the alga and was used as a marker of sesquiterpenoid production capacity. A novel strategy for gene loading was employed and patchoulol was produced up to 922±242 µg g−1 CDW in six days. We additionally investigated the effect of carbon source on sesquiterpenoid productivity from C. reinhardtii in scale-up batch cultivations. It was determined that up to 1.03 mg L−1 sesquiterpenoid products could be produced in completely photoautotrophic conditions and that the alga exhibited altered sesquiterpenoid production metabolism related to carbon source.  相似文献   

19.
《FEBS letters》2014,588(24):4597-4603
Drimenol, a sesquiterpene alcohol, and its derivatives display diverse bio-activities in nature. However, a drimenol synthase gene has yet to be identified. We identified a new sesquiterpene synthase cDNA (VoTPS3) in valerian plant (Valeriana officinalis). Purification and NMR analyses of the VoTPS3-produced terpene, and characterization of the VoTPS3 enzyme confirmed that VoTPS3 synthesizes (−)-drimenol. In feeding assays, possible reaction intermediates, farnesol and drimenyl diphosphate, could not be converted to drimenol, suggesting that the intermediate remains tightly bound to VoTPS3 during catalysis. A mechanistic consideration of (−)-drimenol synthesis suggests that drimenol synthase is likely to use a protonation-initiated cyclization, which is rare for sesquiterpene synthases. VoTPS3 can be used to produce (−)-drimenol, from which useful drimane-type terpenes can be synthesized.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号