首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Triacylglycerols (TAGs), synthesized in the microsomal membranes of eukaryotes, serve as a primary storage form of carbon and energy in microorganisms. For this reason, TAGs produced by organisms have great potential to become biofuels and facilitate researchers to look for alternative renewable sources of energy. The present study describes the identification and functional characterization of a type-2 diacylglycerol acyltransferase from Rhodosporidium diobovatum, designated as RdDGAT, which catalyzed the final step of TAG synthesis. A full-length cDNA clone for RdDGAT was obtained, and its biological activity was proven by being expressed in a Saccharomyces cerevisiae quadruple mutant that was defective in TAG synthesis. Enzymatic assays were performed and finally the existence of TAGs in the transformed Saccharomyces cerevisiae quadruple mutant was determined using the method of thin-layer chromatography. Substrate preference experiments revealed that RdDGAT preferred unsaturated fatty acids over saturated ones. Through further analysis, we assume that the evolution and expression characteristics of the RdDGAT gene perhaps is the result of adaption to its oligotrophic and cold living environment.  相似文献   

2.
Diacylglycerol acyltransferase (DGAT) is a crucial enzyme in the triacylglycerol (TAG) biosynthesis pathway. The oleaginous fungus Mortierella alpina can accumulate large amounts of arachidonic acid (ARA, C20:4) in the form of TAG. Therefore, it is important to study the functional characteristics of its DGAT. Two putative genes MaDGAT1A/1B encoding DGAT1 were identified in M. alpina ATCC 32222 genome by sequence alignment. Sequence alignment with identified DGAT1 homologs showed that MaDGAT1A/1B contain seven conserved motifs that are characteristic of the DGAT1 subfamily. Conserved domain analysis showed that both MaDGAT1A and MaDGAT1B belong to the Membrane-bound O-acyltransferases superfamily. The transforming with MaDGAT1A/1B genes could increase the accumulation of TAG in Saccharomyces cerevisiae to 4·47 and 7·48% of dry cell weight, which was 7·3-fold and 12·3-fold of the control group, respectively, but has no effect on the proportion of fatty acids in TAG. This study showed that MaDGAT1A/1B could effectively promote the accumulation of TAG and therefore may be used in metabolic engineering aimed to increase TAG production of oleaginous fungi.  相似文献   

3.
4.
Two genes were isolated from a rice genomic library and the coding region of their corresponding cDNAs generated by RT-PCR. These single copy genes, designated ORYsa;Sultr1;1 and ORYsa;Sultr4;1, encode putative sulfate transporters. Both genes encode proteins with predicted topologies and signature sequences of the H+/SO42- symporter family of transporters and exhibit a high degree of homology to other plant sulfate transporters. ORYsa;Sultr1;1 is expressed in roots with levels of expression being strongly enhanced by sulfate starvation. In situ hybridization experiments revealed that ORYsa;Sultr1;1 expression is localized to the main absorptive region of roots. This gene probably encodes a transporter that is responsible for uptake of sulfate from the soil solution. In contrast, ORYsa;Sultr4;1 was expressed in both roots and shoots and was unresponsive to the sulfur status of the plant. The sequence of ORYsa;Sultr4;1 contains a possible plastid-targeting transit peptide which may indicate a role in transport of sulfate to sites of sulfate reduction in plastids. The role of the transporter encoded by ORYsa;Sultr4;1 is likely to be significantly different fromORYsa;Sultr1;1. These are the first reports of isolation of genes encoding sulfate transporters from rice and provide a basis for further studies involving sulfate transport.  相似文献   

5.
Acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) is one of the four intestinal membrane bound acyltransferases implicated in dietary fat absorption. Recently, it was found that, in addition to acylating diacylglycerol (DAG), DGAT1 also possesses robust enzymatic activity for acylating monoacylglycerol (MAG) (Yen, C. L., Monetti, M., Burri, B. J., and Farese, R. V., Jr. (2005) J. Lipid Res. 46, 1502-1511). In the current paper, we have conducted a detailed characterization of this reaction in test tube, intact cell culture, and animal models. Enzymatically, we found that triacylglycerol (TAG) synthesis from MAG by DGAT1 does not behave according to classic Michaelis-Menten kinetics. At low concentrations of 2-MAG (<50 microm), the major acylation product by DGAT1 was TAG; however, increased concentrations of 2-MAG (50-200 microm) resulted in decreased TAG formation. This unique product/substrate relationship is similar to MGAT3 but distinct from DGAT2 and MGAT2. We have also found that XP620 is an inhibitor that selectively inhibits the acylation of MAG by DGAT1 (IC(50) of human DGAT1: 16.6+/-4.0 nM (MAG as substrate) and 1499+/-318 nM (DAG as substrate); IC(50) values of human DGAT2, MGAT2, and MGAT3 are >30,000 nM). Using this pharmacological tool, we have shown that approximately 76 and approximately 89% of the in vitro TAG synthesis initiated from MAG is mediated by DGAT1 in Caco-2 cell and rat intestinal mucosal membranes, respectively. When applied to intact cultured cells, XP620 substantially decreased but did not abolish apoB secretion in differentiated Caco-2 cells. It also decreased TAG and DAG syntheses in primary enterocytes. Last, when delivered orally to rats, XP620 decreased absorption of orally administered lipids by approximately 50%. Based on these data, we conclude that the acylation of acylglycerols by DGAT1 is important for dietary fat absorption in the intestine.  相似文献   

6.
7.
8.
9.
10.
11.
In order to identify novel genes encoding enzymes involved in the terminal step of triacylglycerol (TAG) formation, a database search was carried out in the genome of the unicellular photoautotrophic green alga Ostreococcus tauri. The search led to the identification of three putative type 2 acyl-CoA:diacylglycerol acyltransferase-like sequences (DGAT; EC 2.3.1.20), and revealed the absence of any homolog to type 1 or type 3 DGAT sequence in the genome of O. tauri. For two of the cDNA sequences (OtDGAT2A and B) enzyme activity was detected by heterologous expression in Saccharomyces cerevisiae mutant strains with impaired TAG metabolism. However, activity of OtDGAT2A was too low for further analysis. Analysis of their amino acid sequences showed that they share limited identity with other DGAT2 from different plant species, such as Ricinus communis and Vernicia fordii with ~25 to 30% identity. Lipid analysis of the mutant yeast cells revealed that OtDGAT2B showed broad substrate specificity accepting saturated as well as mono- and poly-unsaturated acyl-CoAs as substrates.  相似文献   

12.
The last step in triacylglycerols (TAG) biosynthesis in oil seeds, the acylation of diacylglycerols (DAG), is catalysed by two types of enzymes: the acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). The relative contribution of these enzymes in the synthesis of TAG has not yet been defined in any plant tissue. In the presented work, microsomal preparations were obtained from sunflower and safflower seeds at different stages of development and used in DGAT and PDAT enzyme assays. The ratio between PDAT and DGAT activity differed dramatically between the two different species. DGAT activities were measured with two different acyl acceptors and assay methods using two different acyl-CoAs, and in all cases the ratio of PDAT to DGAT activity was significantly higher in safflower than sunflower. The sunflower DGAT, measured by both methods, showed significant higher activity with 18:2-CoA than with 18:1-CoA, whereas the opposite specificity was seen with the safflower enzyme. The specificities of PDAT on the other hand, were similar in both species with 18:2-phosphatidylcholine being a better acyl donor than 18:1-PC and with acyl groups at the sn-2 position utilised about fourfold the rate of the sn-1 position. No DAG:DAG transacylase activity could be detected in the microsomal preparations.  相似文献   

13.
14.
A rice XIP-type inhibitor was purified by affinity chromatography with an immobilized Aspergillus aculeatus family 10 endoxylanase. Rice XIP is a monomeric protein, with a molecular mass of ca. 32 kDa and a pI of ca. 5.6. Its N-terminal amino acid sequence was identical to that of a rice chitinase homologue, demonstrating the difficulty when using sequence information to differentiate between endoxylanase inhibitors and (putative) chitinases in rice. Rice XIP inhibited different endoxylanases to a varying degree. In particular, it most strongly inhibited family 10 endoxylanases from A. niger and A. oryzae, while several family 11 enzymes from Bacillus subtilis, A. niger and Trichoderma sp. were not sensitive to inhibition. The above mentioned A. aculeatus endoxylanase was not inhibited either, although gel permeation chromatography revealed that it complexed rice XIP in a 1:1 molar stoichiometric ratio.  相似文献   

15.
The eukaryotic initiation factor 1A(eIF1A) is essential for transferring of the initiator Met-tRNA to 40S ribosomal subunits to form the 40S pre-initiation complex. In present study, we describe the cloning and characterization of two eIF1A genes from rice, which were designated as Oryza sativa eukaryotic initiation factor 1A genes OseIF1A-1, OseIF1A-2, respectively. Both rice elF1As shared high identities in amino acids with eIF1A proteins from other eukaryotes. The mRNA expression analysis revealed that OseIF1A-2 mRNA was much more accumulated than OseIF1A-1 in all tissues but each gene is expressed in root, stem, leaf and flowering spike in high and nearly equal level, and in immature spike in lower level. These results, together with their different location in unrooted phylogenetic tree inferred from amino acid sequences of all known eIF1As, suggested that there are two types of eIF1A genes with different function or different regulation in rice.  相似文献   

16.
17.
18.
Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is one of two known DGAT enzymes that catalyze the final step in triglyceride synthesis. Findings from genetically modified mice as well as pharmacological studies suggest that inhibition of DGAT1 is a promising strategy for the treatment of obesity and type 2 diabetes. Here we characterize a tool DGAT1 inhibitor compound, T863. We found that T863 is a potent inhibitor for both human and mouse DGAT1 in vitro, which acts on the acyl-CoA binding site of DGAT1 and inhibits DGAT1-mediated triacylglycerol formation in cells. In an acute lipid challenge model, oral administration of T863 significantly delayed fat absorption and resulted in lipid accumulation in the distal small intestine of mice, mimicking the effects of genetic ablation of DGAT1. In diet-induced obese mice, oral administration of T863 for 2 weeks caused weight loss, reduction in serum and liver triglycerides, and improved insulin sensitivity. In addition to the expected triglyceride-lowering activity, T863 also lowered serum cholesterol. Hepatic IRS2 protein was dramatically up-regulated in mice treated with T863, possibly contributing to improved insulin sensitivity. In differentiated 3T3-L1 adipocytes, T863 enhanced insulin-stimulated glucose uptake, suggesting a possible role for adipocytes to improve insulin sensitivity upon DGAT1 inhibition. These results reveal novel mechanistic insights into the insulin-sensitizing effects of DGAT1 inhibition in mouse models. Taken together, our study provides a comprehensive evaluation of a small molecule inhibitor for DGAT1 and suggests that pharmacological inhibition of DGAT1 holds promise in treating diverse metabolic disorders.  相似文献   

19.
Triacylglycerol (TAG) synthesis and secretion are important functions of the liver that have major impacts on health, as overaccumulation of TAG within the liver (steatosis) or hypersecretion of TAG within very low density lipoproteins (VLDL) both have deleterious metabolic consequences. Two diacylglycerol acyltransferases (DGATs 1 and 2) can catalyze the final step in the synthesis of TAG from diacylglycerol, which has been suggested to play an important role in the transfer of the glyceride moiety across the endoplasmic reticular membrane for (re)synthesis of TAG on the lumenal aspect of the endoplasmic reticular (ER) membrane (Owen, M., Corstorphine, C. C., and Zammit, V. A. (1997) Biochem. J. 323, 17-21). Recent topographical studies suggested that the oligomeric enzyme DGAT1 is exclusively lumen facing (latent) in the ER membrane. By contrast, in the present study, using two specific inhibitors of human DGAT1, we present evidence that DGAT1 has a dual topology within the ER of HepG2 cells, with approximately equal DGAT1 activities exposed on the cytosolic and lumenal aspects of the ER membrane. This was confirmed by the observation of the loss of both overt (partial) and latent (total) DGAT activity in microsomes prepared from livers of Dgat1(-/-) mice. Conformational differences between DGAT1 molecules having the different topologies were indicated by the markedly disparate sensitivities of the overt DGAT1 to one of the inhibitors. These data suggest that DGAT1 belongs to the family of oligomeric membrane proteins that adopt a dual membrane topology.  相似文献   

20.
Acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme plays a significant role in dietary triacylglycerol (TAG) absorption in the small intestine. However, the characteristics of human intestinal DGAT enzyme have not been examined in detail. The aim of our study was to characterize the human intestinal DGAT enzyme by examining acyl-CoA specificity, temperature dependency, and selectivity for 1,2-diacylglycerol (DAG) or 1,3-DAG. We detected DGAT activity of human intestinal microsome and found that the acyl-CoA specificity and temperature dependency of intestinal DGAT coincided with those of recombinant human DGAT1. To elucidate the selectivity of human intestinal DGAT to 1,2-DAG or 1,3-DAG, we conducted acyl-coenzyme A:monoacylglycerol acyltransferase assays using 1- or 2-monoacylglycerol (MAG) as substrates. When 2-MAG was used as acyl acceptor, both 1,2-DAG and TAG were generated; however, when 1-MAG was used, 1,3-DAG was predominantly observed and little TAG was detected. These findings suggest that human small intestinal DGAT, which is mainly encoded by DGAT1, utilizes 1,2-DAG as the substrate to form TAG. This study will contribute to understand the lipid absorption profile in the small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号