首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DEAD-box RNA helicases in Escherichia coli   总被引:1,自引:1,他引:1  
In spite of their importance in RNA metabolism, the function of DExD/H-box proteins (including DEAD-box proteins) is poorly understood at the molecular level. Here, we present recent progress achieved with the five DEAD-box proteins from Escherichia coli, which have been particularly well studied. These proteins, which have orthologues in many bacteria, participate, in particular, in specific steps of mRNA decay and ribosome assembly. In vitro, they behave as poorly processive RNA helicases, presumably because they only unwind a few base pairs at each cycle so that stable duplexes can reanneal rather than dissociate. Except for one of them (DbpA), these proteins lack RNA specificity in vitro, and specificity in vivo is likely conferred by partners that target them to defined substrates. Interestingly, at least one of them is multifunctional, presumably because it can interact with different partners. Altogether, several aspects of the information gathered with these proteins have become paradigms for our understanding of DEAD-box proteins in general.  相似文献   

2.
Abstract

In eukaryotic organisms, the orthologs of the DEAD-box RNA helicase Ded1p from yeast and DDX3 from human form a well-defined subfamily that is characterized by high sequence conservation in their helicase core and their N- and C- termini. Individual members of this Ded1/DDX3 subfamily perform multiple functions in RNA metabolism in both nucleus and cytoplasm. Ded1/DDX3 subfamily members have also been implicated in cellular signaling pathways and are targeted by diverse viruses. In this review, we discuss the considerable body of work on the biochemistry and biology of these proteins, including the recently discovered link of human DDX3 to tumorigenesis.  相似文献   

3.
DEAD-box helicases perform diverse cellular functions in virtually all steps of RNA metabolism from Bacteria to Humans. Although DEAD-box helicases share a highly conserved core domain, the enzymes catalyze a wide range of biochemical reactions. In addition to the well established RNA unwinding and corresponding ATPase activities, DEAD-box helicases promote duplex formation and displace proteins from RNA. They can also function as assembly platforms for larger ribonucleoprotein complexes, and as metabolite sensors. This review aims to provide a perspective on the diverse biochemical features of DEAD-box helicases and connections to structural information. We discuss these data in the context of a model that views the enzymes as integrators of RNA, nucleotide, and protein binding. This article is part of a Special Issue entitled: The Biology of RNA helicases — Modulation for life.  相似文献   

4.
5.
Summary Temperature controls the developmental fate of isolated Brassica napus microspores in vitro. Culture at 32.5°C leads to sporophytic development and the formation of embryos. Here we show that culture at 17.5°C leads to gametophytic development, and the formation of pollen-like structures at high frequencies (up to 80% after 7 days in culture). Early stages of both developmental pathways are observed in culture at 25.0°C, and embryos are produced at low frequencies (0.7%) at that temperature. Culturing B. napus microspores at 32.5°C versus 17.5°C brings the switch from gametophytic to sporophytic development under simple experimental control and provides a convenient tool for investigating the cellular and molecular mechanisms controlling this developmental switch.  相似文献   

6.
DEAD-box proteins are the most common RNA helicases, and they are associated with virtually all processes involving RNA. They have nine conserved motifs that are required for ATP and RNA binding, and for linking phosphoanhydride cleavage of ATP with helicase activity. The Q motif is the most recently identified conserved element, and it occurs approximately 17 amino acids upstream of motif I. There is a highly conserved, but isolated, aromatic group approximately 17 amino acids upstream of the Q motif. These two elements are involved in adenine recognition and in ATPase activity of DEAD-box proteins. We made extensive analyses of the Q motif and upstream aromatic residue in the yeast translation-initiation factor Ded1. We made site-specific mutations and tested them for viability in yeast. Moreover, we purified various mutant proteins and obtained the Michaelis-Menten parameters for the ATPase activities. We also measured RNA affinities and strand-displacement activities. We find that the Q motif not only regulates ATP binding and hydrolysis but also regulates the affinity of the protein for RNA substrates and ultimately the helicase activity.  相似文献   

7.
Summary The overlap of gametophytic and sporophytic gene expression in barley was studied by means of enzyme electrophoresis. Of the isozymes found, 60% were expressed in both gametophyte and sporophyte, 30% were sporophyte specific, and 10% were gametophyte specific. A considerable amount of the barley genome is thus potentially amenable to gametophytic selection. The estimated sizes of the common, sporophytic and gametophytic domains in barley gene expression correspond with the estimates obtained in other plant species.  相似文献   

8.
Summary Pollinations were made on either the tip or the basal portions of the stigmatic surface in Dianthus chinensis. These two treatments provided, respectively, either good or modest opportunity for pollen tube competition. The pollen used came from a single clone. Technical and statistical methods were used to reduce greatly the influence of variation in seed weight. Seeds resulting from the two contrasting treatments were planted, and it was found that there were statistically significant differences in germination time and seedling weight between treatments. These results suggest that the quality of the F1 generation can be significantly modified by competition between pollen tubes from a single plant.  相似文献   

9.
Carrageenans in the gametophytic and sporophytic stages of Chondrus crispus   总被引:2,自引:0,他引:2  
Summary The morphologically similar sporophytic and gametophytic plants of Chondrus crispus Stackhouse were examined and it was shown that the former contain -carrageenan. The gametophytes contain - and two additional carrageenans which are KCl-soluble and may comprise up to 25% of the total carrageenan. After alkaline modification, these KCl-soluble components were separated into a gel and a soluble carrageenan. The gel was indistinguishable from -carrageenan and presumably was derived from -carrageenan while the KCl-soluble fraction possessed a unique infrared spectrum easily distinguished from alkali-modified -carrageenan. This appears to represent a third carrageenan in the gametophytes.Our observations suggest that the biologically separate plants of C. crispus exhibit distinctive patterns of sulfation of their galactans. The sporophytes add SO4 2- at C2 of the precursor, whereas the gametophytes appear to add it principally at the available C4 positions. Both types of plant are capable of sulfating at C6 of the 4-linked galactose unit.Issued as NRC No. 13119.  相似文献   

10.
11.
Helicases unwind RNA or DNA duplexes and displace proteins from nucleic acids in an ATP-dependent fashion. To unwind duplexes, helicases typically load onto one of the two nucleic acid strands, usually at a single-stranded region, and then translocate on this strand in a unidirectional fashion, thereby displacing the complementary DNA or RNA. Here we show that the DEAD-box RNA helicase Ded1 unwinds duplexes in a different manner. Ded1 uses the single-stranded region to gain access to the duplex. Strand separation is directly initiated from the duplex region and no covalent connection between the single strand and the duplex region is required. This new type of helicase activity explains observations with other DEAD-box proteins and may be the prototype for duplex-unwinding reactions in RNA metabolism.  相似文献   

12.
DEAD-box RNA解旋酶是一种特殊的RNA分子伴侣,参与了RNA代谢,包括前体RNA剪接、核糖体合成、RNA降解以及基因表达,并对植物的发育和抗性等也具有重要作用。根据已报道的拟南芥DEAD-box蛋白,通过同源比对,在NCBI据库中筛选得到一个DEAD-box RNA解旋酶同源蛋白,命名为SlDEAH1,并根据其基因序列设计特异引物,应用RT-PCR方法从野生型番茄(Solanum lycopersicum)AC++中克隆得到了该基因的全长编码区序列。利用生物学网站、软件及实时荧光定量PCR方法,对其进行生物信息学、表达模式、胁迫及激素处理分析。结果表明:SlDEAH1包括2 073 bp的开放阅读框,编码690个氨基酸残基,其编码蛋白有9个保守结构基序,其所涉及到的ATP结合、ATP水解及RNA结合等功能对于解旋酶活性是至关重要的;表达模式分析表明SlDEAH1基因可能在野生型番茄萼片、叶片发育及果实成熟方面起到重要作用;高温、低温、脱水、伤害、盐胁迫不同程度的诱导了SlDEAH1的表达,但在根中该基因的表达受盐胁迫抑制;ABA、ACC、IAA、GA3、MeJA和ZT均不同程度诱导了SlDEAH1的表达,其中ABA诱导效应最为明显。这些结果为进一步研究SlDEAH1在番茄发育和胁迫响应中的功能奠定了基础。  相似文献   

13.
Mutants altered in their response to auxins and cytokinins have been isolated in the moss Physcomitrella patens either by screening clones from mutagenized spores for growth on high concentrations of cytokinin or auxin, in which case mutants showing altered sensitivities can be recognized 3–4 weeks later, or by non-selective isolation of morphologically abnormal mutants, some of which are found to have altered sensitivities. Most of the mutants obtained selectively are also morphologically abnormal. The mutants are heterogeneous in their responses to auxin and cytokinin, and the behaviour of some is consistent with their being unable to make auxin, while that of others may be due to their being unable to synthesize cytokinin. Physiological analysis of the mutants has shown that both endogenous auxin and cytokinin are likely to play important and interdependent roles in several steps of gametophytic development. Although their morphological abnormalities lead to sterility, genetic analysis of some of the mutants has been possible by polyethyleneglycol induced protoplast fusion.Abbreviations NTG N-methyl-N-nitro-N-nitrosoguanidine - NAA 1-naphthalene acetic acid - 2,4D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine - IAP 6-( 2isopentenyl) aminopurine - NAR NAA resistant mutants - BAR BAP resistant mutants  相似文献   

14.
A key step in sulfate assimilation into cysteine is the reduction of sulfite to sulfide by sulfite reductase (SiR). This enzyme is encoded by three genes in the moss Physcomitrella patens. To obtain a first insight into the roles of the individual isoforms, we deleted the gene encoding the SiR1 isoform in P. patens by homologous recombination and subsequently analysed the ΔSiR1 mutants. While ΔSiR1 mutants showed no obvious alteration in sulfur metabolism, their regeneration from protoplasts and their ability to produce mature spores was significantly affected, highlighting an unexpected link between moss sulfate assimilation and development, that is yet to be characterized.  相似文献   

15.
The organization and dynamics of the plant endomembrane system require both universal and plant-specific molecules and compartments. The latter, despite the growing wealth of information, remains poorly understood. From the study of an Arabidopsis thaliana male gametophytic mutant, it was possible to isolate a gene named POKY POLLEN TUBE (POK) essential for pollen tube tip growth. The similarity between the predicted POK protein sequence and yeast Vps52p, a subunit from the GARP/VFT complex which is involved in the docking of vesicles from the prevacuolar compartment to the Golgi apparatus, suggested that the POK protein plays a role in plant membrane trafficking. Genetic analysis of Arabidopsis mutants affecting AtVPS53 or AtVPS54 genes which encode putative POK partners shows a transmission defect through the male gametophyte for all lines, which is similar to the pok mutant. Using a combination of biochemical approaches and specific antiserum it has been demonstrated that the POK protein is present in phylogenetically divergent plant species, associated with membranes and belongs to a high molecular weight complex. Combination of immunolocalization studies and pharmacological approaches in different plant cells revealed that the POK protein associates with Golgi and post-Golgi compartments. The role of POK in post-Golgi endomembrane trafficking and as a member of a putative plant GARP/VFT complex is discussed.  相似文献   

16.
17.
Summary Experiments were conducted to determine the chromosomal location of the gene conditioning overproduction of a methionine-rich, 10-K zein in maize kernels of line BSSS53. In addition, the chromosomal location of the structural gene encoding the overproduced protein was determined. Whereas the structural gene, designated Zps10/(22), was found to be located on the long arm of chromosome 9 near the centromere, the locus regulating overproduction of the zein protein was mapped to the short arm of chromosome 4. This regulatory gene has been designated Zpr10/(22). Regulation of 10-K zein production by Zpr10/(22) is, therefore, via a trans-acting mechanism.  相似文献   

18.
The DEAD-box family of putative RNA helicases is composed of ubiquitous proteins that are found in nearly all organisms and that are involved in virtually all processes involving RNA. They are characterized by two tandemly linked, RecA-like domains that contain 11 conserved motifs and highly variable amino- and carboxy-terminal flanking sequences. For this reason, they are often considered to be modular multi-domain proteins. We tested this by making extensive BLASTs and sequence alignments to elucidate the minimal functional unit in nature. We then used this information to construct chimeras and deletions of six essential yeast proteins that were assayed in vivo. We purified many of the different constructs and characterized their biochemical properties in vitro. We found that sequence elements can only be switched between closely related proteins and that the carboxy-terminal sequences are important for high ATPase and strand displacement activities and for high RNA binding affinity. The amino-terminal elements were often toxic when overexpressed in vivo, and they may play regulatory roles. Both the amino and the carboxyl regions have a high frequency of sequences that are predicted to be intrinsically disordered, indicating that the flanking regions do not form distinct modular domains but probably assume an ordered structure with ligand binding. Finally, the minimal functional unit of the DEAD-box core starts two amino acids before the isolated phenylalanine of the Q motif and extends to about 35 residues beyond motif VI. These experiments provide evidence for how a highly conserved structural domain can be adapted to different cellular needs.  相似文献   

19.
Toxoplasma gondii is an obligate intracellular protozoan which infects one-third of the human population. Due to its high infection prevalence, Toxoplasma offers an ideal system for the study of host–parasite interaction. Similar to other eukaryotes, Toxoplasma maintains levels and localization of cytoplasmic mRNAs throughout its life cycle as part of a gene regulation network to meet all cellular and biochemical requirements. More recently, it was reported that the presence of cytoplasmic mRNA granules could contribute to the parasite pathogenesis and viability. Here we identified a novel Toxoplasma DEAD-box RNA helicase, referred to as Toxoplasma gondiiHomolog of DOZI (TgHoDI), because of its high homology (81%) to Plasmodium DOZI. TgHoDI is the functional ortholog of yeast DHH1, and its function was authenticated by complementation studies in Δdhh1 yeast strain. We demonstrated that TgHoDI is a marker of cytoplasmic RNA stress granules, which assemble when the parasites experience cellular stresses and translational arrest.  相似文献   

20.
Summary. Arabidopsis thaliana plants expressing AtSERK1 fused to yellow-fluorescent protein were generated. Fluorescence was detected predominantly at the cell periphery, most likely the plasma membrane, of cells in ovules, embryo sacs, anthers, and embryos and in seedlings. The AtSERK1 protein was detected in diverse cell types including the epidermis and the vascular bundles. In some cells, fluorescent receptors were seen in small vesicle-like compartments. After application of the fungal toxin Brefeldin A, the fluorescent receptors were rapidly internalized in the root meristem and root vascular tissue. We conclude that the AtSERK1 receptor functions in a common signalling pathway employed in both sporophytic and gametophytic cells. Correspondence and reprints: Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号