首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dual-specific A-kinase-anchoring protein 2 (D-AKAP2/AKAP10), which interacts at its carboxyl terminus with protein kinase A and PDZ domain proteins, contains two tandem regulator of G-protein signaling (RGS) domains for which the binding partners have remained unknown. We show here that these RGS domains interact with Rab11 and GTP-bound Rab4, the first demonstration of RGS domains binding small GTPases. Rab4 and Rab11 help regulate membrane trafficking through the endocytic recycling pathways by recruiting effector proteins to specific membrane domains. Although D-AKAP2 is primarily cytosolic in HeLa cells, a fraction of the protein localizes to endosomes and can be recruited there to a greater extent by overexpression of Rab4 or Rab11. D-AKAP2 also regulates the morphology of the Rab11-containing compartment, with co-expression causing accumulation of both proteins on enlarged endosomes. Knockdown of D-AKAP2 by RNA interference caused a redistribution of both Rab11 and the constitutively recycling transferrin receptor to the periphery of cells. Knockdown also caused an increase in the rate of transferrin recycling, suggesting that D-AKAP2 promotes accumulation of recycling proteins in the Rab4/Rab11-positive endocytic recycling compartment.  相似文献   

3.
Previously we described clathrin-coated buds on tubular early endosomes that are distinct from those at the plasma membrane and the trans-Golgi network. Here we show that these clathrin-coated buds, like plasma membrane clathrin-coated pits, contain endogenous dynamin-2. To study the itinerary that is served by endosome-derived clathrin-coated vesicles, we used cells that overexpressed a temperature-sensitive mutant of dynamin-1 (dynamin-1(G273D)) or, as a control, dynamin-1 wild type. In dynamin-1(G273D)-expressing cells, 29-36% of endocytosed transferrin failed to recycle at the nonpermissive temperature and remained associated with tubular recycling endosomes. Sorting of endocytosed transferrin from fluid-phase endocytosed markers in early endosome antigen 1-labeled sorting endosomes was not inhibited. Dynamin-1(G273D) associated with accumulated clathrin-coated buds on extended tubular recycling endosomes. Brefeldin A interfered with the assembly of clathrin coats on endosomes and reduced the extent of transferrin recycling in control cells but did not further affect recycling by dynamin-1(G273D)-expressing cells. Together, these data indicate that the pathway from recycling endosomes to the plasma membrane is mediated, at least in part, by endosome-derived clathrin-coated vesicles in a dynamin-dependent manner.  相似文献   

4.
Endocytic recycling of receptors and lipids occurs via a complex network of tubular and vesicular membranes. EHD1 is a key regulator of endocytosis and associates with tubular membranes to facilitate recycling. Although EHD proteins tubulate membranes in vitro, EHD1 primarily associates with preexisting tubules in vivo. How EHD1 is recruited to these tubular endosomes remains unclear. We have determined that the Rab8-interacting protein, MICAL-L1, associates with EHD1, with both proteins colocalizing to long tubular membranes, in vitro and in live cells. MICAL-L1 is a largely uncharacterized member of the MICAL-family of proteins that uniquely contains two asparagine-proline-phenylalanine motifs, sequences that typically interact with EH-domains. Our data show that the MICAL-L1 C-terminal coiled-coil region is necessary and sufficient for its localization to tubular membranes. Moreover, we provide unexpected evidence that endogenous MICAL-L1 can link both EHD1 and Rab8a to these structures, as its depletion leads to loss of the EHD1-Rab8a interaction and the absence of both of these proteins from the membrane tubules. Finally, we demonstrate that MICAL-L1 is essential for efficient endocytic recycling. These data implicate MICAL-L1 as an unusual type of Rab effector that regulates endocytic recycling by recruiting and linking EHD1 and Rab8a on membrane tubules.  相似文献   

5.
Iron Sensing as a Partnership: HFE and Transferrin Receptor 2   总被引:1,自引:0,他引:1  
  相似文献   

6.
The present study demonstrates the distribution of transferrin and the transferrin receptor in the integument of eleven wild mammalian species using immunohistochemical methods. Both substances were regularly found in or near the peripheral cells of the sebaceous glands, especially of dense-haired animals. The transferrin receptor was also detectable in the epidermis, the secretory portion of tubular apocrine glands, and the outer epithelium of primary hair follicles. Transferrin as well as the transferrin receptor reacted strongly in macrophages of the papillary dermis only in the common seal. The results obtained are discussed with regard to possible biological functions in the skin of the substances demonstrated. Keywords: immunohistochemistry, integument, mammals, transferrin, transferrin receptor  相似文献   

7.
Transferrin and Transferrin Receptor Function in Brain Barrier Systems   总被引:15,自引:0,他引:15  
1. Iron (Fe) is an essential component of virtually all types of cells and organisms. In plasma and interstitial fluids, Fe is carried by transferrin. Iron-containing transferrin has a high affinity for the transferrin receptor, which is present on all cells with a requirement for Fe. The degree of expression of transferrin receptors on most types of cells is determined by the level of Fe supply and their rate of proliferation.2. The brain, like other organs, requires Fe for metabolic processes and suffers from disturbed function when a Fe deficiency or excess occurs. Hence, the transport of Fe across brain barrier systems must be regulated. The interaction between transferrin and transferrin receptor appears to serve this function in the blood–brain, blood–CSF, and cellular–plasmalemma barriers. Transferrin is present in blood plasma and brain extracellular fluids, and the transferrin receptor is present on brain capillary endothelial cells, choroid plexus epithelial cells, neurons, and probably also glial cells.3. The rate of Fe transport from plasma to brain is developmentally regulated, peaking in the first few weeks of postnatal life in the rat, after which it decreases rapidly to low values. Two mechanisms for Fe transport across the blood–brain barrier have been proposed. One is that the Fe–transferrin complex is transported intact across the capillary wall by receptor-mediated transcytosis. In the second, Fe transport is the result of receptor-mediated endocytosis of Fe–transferrin by capillary endothelial cells, followed by release of Fe from transferrin within the cell, recycling of transferrin to the blood, and transport of Fe into the brain. Current evidence indicates that although some transcytosis of transferrin does occur, the amount is quantitatively insufficient to account for the rate of Fe transport, and the majority of Fe transport probably occurs by the second of the above mechanisms.4. An additional route of Fe and transferrin transport from the blood to the brain is via the blood–CSF barrier and from the CSF into the brain. Iron-containing transferrin is transported through the blood–CSF barrier by a mechanism that appears to be regulated by developmental stage and iron status. The transfer of transferrin from blood to CSF is higher than that of albumin, which may be due to the presence of transferrin receptors on choroid plexus epithelial cells so that transferrin can be transported across the cells by a receptor-mediated process as well as by nonselective mechanisms.5. Transferrin receptors have been detected in neurons in vivo and in cultured glial cells. Transferrin is present in the brain interstitial fluid, and it is generally assumed that Fe which transverses the blood–brain barrier is rapidly bound by brain transferrin and can then be taken up by receptor-mediated endocytosis in brain cells. The uptake of transferrin-bound Fe by neurons and glial cells is probably regulated by the number of transferrin receptors present on cells, which changes during development and in conditions with an altered iron status.6. This review focuses on the information available on the functions of transferrin and transferrin receptor with respect to Fe transport across the blood–brain and blood–CSF barriers and the cell membranes of neurons and glial cells.  相似文献   

8.
In this study, we tested the hypothesis that the elongation 1A (eEF1A) family regulates the cell surface density of the M4 subtype of the muscarinic acetylcholine receptors (mAChR) following agonist-induced internalization. Here, we show that mouse brains lacking eEF1A2 have no detectable changes in M4 expression or localization. We, however, did discover that eEF1A1, the other eEF1A isoform, is expressed in adult neurons contrary to previous reports. This novel finding suggested that the lack of change in M4 expression and distribution in brains lacking eEF1A2 might be due to compensatory effects of eEF1A1. Supporting this theory, we demonstrate that the overexpression of either eEF1A1 or eEF1A2 inhibits M4 recovery to the cell surface after agonist-induced internalization in PC12 cells. Furthermore, eEF1A1 or eEF1A2 had no effect on the recovery of the M1 subtype in PC12 cells. These results demonstrate the novel ability of the eEF1A family to specifically regulate the M4 mAChR.  相似文献   

9.
ZIP14 is a transmembrane metal ion transporter that is abundantly expressed in the liver, heart, and pancreas. Previous studies of HEK 293 cells and the hepatocyte cell lines AML12 and HepG2 established that ZIP14 mediates the uptake of non-transferrin-bound iron, a form of iron that appears in the plasma during pathologic iron overload. In this study we investigated the role of ZIP14 in the cellular assimilation of iron from transferrin, the circulating plasma protein that normally delivers iron to cells by receptor-mediated endocytosis. We also determined the subcellular localization of ZIP14 in HepG2 cells. We found that overexpression of ZIP14 in HEK 293T cells increased the assimilation of iron from transferrin without increasing levels of transferrin receptor 1 or the uptake of transferrin. To allow for highly specific and sensitive detection of endogenous ZIP14 in HepG2 cells, we used a targeted knock-in approach to generate a cell line expressing a FLAG-tagged ZIP14 allele. Confocal microscopic analysis of these cells detected ZIP14 at the plasma membrane and in endosomes containing internalized transferrin. HepG2 cells in which endogenous ZIP14 was suppressed by siRNA assimilated 50% less iron from transferrin compared with controls. The uptake of transferrin, however, was unaffected. We also found that ZIP14 can mediate the transport of iron at pH 6.5, the pH at which iron dissociates from transferrin within the endosome. These results suggest that endosomal ZIP14 participates in the cellular assimilation of iron from transferrin, thus identifying a potentially new role for ZIP14 in iron metabolism.  相似文献   

10.
转铁蛋白受体及其在药物运输中的作用   总被引:3,自引:0,他引:3  
血脑屏障的存在阻止了中枢神经系统疾病许多潜在治疗药物的通过.近年来主要利用脑毛细血管内皮细胞膜中的转运蛋白,如转铁蛋白受体、胰岛素受体等,将外源药物与这些受体的特异性抗体相连,通过受体介导的内吞作用将药物转运到脑组织中.转铁蛋白受体在抗癌药物定向运输及恶性肿瘤细胞基因治疗中的研究已经处于临床阶段.  相似文献   

11.
The aim of this study was to assess the effect of vegetarian diet on iron metabolism parameters paying special attention to serum hepcidin and soluble transferrin receptor (sTfR) concentrations in 43 prepubertal children (age range 4.5–9.0 years) on vegetarian and in 46 children on omnivorous diets. There were no significant differences according to age, weight, height, and body mass index (BMI) between vegetarian and omnivorous children. Vegetarians had similar intake of iron and vitamin B12 and a significantly higher intake of vitamin C (p < 0.05) compared with non-vegetarians. Hematologic parameters and serum iron concentrations were within the reference range in both groups of children. Serum transferrin levels were similar in all subjects; however, ferritin concentrations were significantly (p < 0.01) lower in vegetarians than in omnivores. In children on a vegetarian diet, median hepcidin levels were lower (p < 0.05) but sTfR concentrations significantly higher (p < 0.001) compared with omnivorous children. In the multivariate regression model, we observed associations between hepcidin level and ferritin concentration (β = 0.241, p = 0.05) in the whole group of children as well as between hepcidin concentration and CRP level (β = 0.419, p = 0.047) in vegetarians. We did not find significant associations with concentration of sTfR and selected biochemical, anthropometric, and dietary parameters in any of the studied groups of children. As hematologic parameters and iron concentrations in vegetarians and omnivores were comparable and ferritin level was lower in vegetarians, we suggest that inclusion of novel markers, in particular sTfR (not cofounded by inflammation) and hepcidin, can better detect subclinical iron deficiency in children following vegetarian diets.  相似文献   

12.
Toll-like receptors (TLRs) 3, 7, and 9 are innate immune receptors that recognize nucleic acids from pathogens in endosomes and initiate signaling transductions that lead to cytokine production. Activation of TLR9 for signaling requires proteolytic processing within the ectodomain by endosome-associated proteases. Whether TLR3 requires similar proteolytic processing to become competent for signaling remains unclear. Herein we report that human TLR3 is proteolytically processed to form two fragments in endosomes. Unc93b1 is required for processing by transporting TLR3 through the Golgi complex and to the endosomes. Proteolytic cleavage requires the eight-amino acid Loop1 within leucine-rich repeat 12 of the TLR3 ectodomain. Proteolytic cleavage is not required for TLR3 signaling in response to poly(I:C), although processing could modulate the degree of response toward viral double-stranded RNAs, especially in mouse cells. Both the full-length and cleaved fragments of TLR3 can bind poly(I:C) and are present in endosomes. However, although the full-length TLR3 has a half-life in HEK293T cells of 3 h, the cleaved fragments have half-lives in excess of 7 h. Inhibition of TLR3 cleavage by either treatment with cathepsin inhibitor or by a mutation in Loop1 decreased the abundance of TLR3 in endosomes targeted for lysosomal degradation.  相似文献   

13.
目的:从胎盘中提取转铁蛋白受体并获得抗转铁蛋白受体的抗体。方法:人新鲜胎盘组织被破碎后,用去污剂TritonX-100裂解细胞膜,释放膜蛋白。利用膜蛋白中的转铁蛋白受体能与铁-转铁蛋白复合物特异性结合的特性对其进行亲和纯化。对纯化得到的目的蛋白,经脱盐后进行ELISA及肽质量图谱分析,证明为所需的转铁蛋白受体后,以其包被免疫管,从全合成人源噬菌体抗体库中筛选抗体。结果:从人源噬菌体抗体库中筛选到5个能够与转铁蛋白受体特异性结合的噬菌体单链抗体。结论:以人源转铁蛋白受体为抗体,可从全人源噬菌体抗体库中筛选到其特异性的抗体。  相似文献   

14.
Transferrin and Iron Uptake by the Brain: Effects of Altered Iron Status   总被引:4,自引:3,他引:4  
Transferrin (Tf) and iron uptake by the brain were measured in rats using 59Fe-125I-Tf and 131I-albumin (to correct for the plasma content of 59Fe and 125I-Tf in the organs). The rats were aged from 15 to 63 days and were fed (a) a low-iron diet (iron-deficient) or, as control, the same diet supplemented with iron, or (b) a chow diet with added carbonyl iron (iron overload), the chow diet alone acting as its control. Iron deficiency was associated with a significant decrease and iron overload with a significant increase in brain nonheme iron concentration relative to the controls. In each dietary treatment group, the uptake of Tf and iron by the brain decreased as the rats aged from 15 to 63 days. Both Tf and iron uptake were significantly greater in the iron-deficient rats than in their controls and lower in the iron-loaded rats than in the corresponding controls. Overall, iron deficiency produced about a doubling and iron overload a halving of the uptake values compared with the controls. In contrast to that in the brain, iron uptake by the femurs did not decrease with age and there was relatively little difference between the different dietary groups. 125I-Tf uptake by the brains of the iron-deficient rats increased very rapidly after injection of the labelled proteins, within 15 min reaching a plateau level which was maintained for at least 6 h. The uptake of 59Fe, however, increased rapidly for 1 h and then more slowly, and in terms of percentage of injected dose reached much higher values than did 125I-Tf uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
Transferrin receptor 2 (TfR2) is a homologue of transferrin receptor 1 (TfR1) but has distinct functions from TfR1 in iron homeostasis. In keeping with its proposed role in iron sensing, previous studies showed that TfR2 has a short half-life and that holo-Tf stabilizes TfR2 by redirecting it from a degradative pathway to a recycling pathway. In this study, we characterized how the endocytosis, recycling and degradation of TfR2 relates to its function and differs from TfR1. TfR2 endocytosis was adaptor protein-2 (AP-2) dependent. Flow cytometry analysis showed that TfR1 and TfR2 utilized the same endocytic pathway only in the presence of holo-Tf, indicating that holo-Tf alters the interaction of TfR2 with the endocytic machinery. Unlike TfR1, phosphofurin acidic cluster sorting protein 1 (PACS-1) binds to the cytoplasmic domain of TfR2 and data suggest that PACS-1 is involved in the TfR2 recycling. Depletion of TSG101 by siRNA or expression of a dominant negative Vps4 inhibited TfR2 degradation, indicating that TfR2 degradation occurs through a multivesicular body (MVB) pathway. TfR2 degradation is not mediated through ubiquitination on the single lysine (K31) in the cytoplasmic domain or on the amino terminal residue. No ubiquitination of TfR2 by HA-ubiquitin was detected, indicating a lack of direct TfR2 ubiquitination involvement in its degradation.  相似文献   

17.
转铁蛋白受体2及其功能与相关疾病   总被引:3,自引:1,他引:3  
转铁蛋白受体2(transferrin receptor 2, TfR2) 是最近发现的一种重要铁代谢蛋白.研究显示它不仅是一种介导肝脏细胞铁摄取的主要蛋白,而且在调节小肠铁吸收方面起着极其关键的作用,是控制肝脏铁调素合成和释放的关键成分.已经证实,TfR2基因突变是遗传性血色素沉着病的重要原因之一.  相似文献   

18.
The recycling of internalized signaling receptors, which has direct functional consequences, is subject to multiple sequence and biochemical requirements. Why signaling receptors recycle via a specialized pathway, unlike many other proteins that recycle by bulk, is a fundamental unanswered question. Here, we show that these specialized pathways allow selective control of signaling receptor recycling by heterologous signaling. Using assays to visualize receptor recycling in living cells, we show that the recycling of the beta‐2 adrenergic receptor (B2AR), a prototypic signaling receptor, is regulated by Src family kinases. The target of Src is cortactin, an essential factor for B2AR sorting into specialized recycling microdomains on the endosome. Phosphorylation of a single cortactin residue, Y466, regulates the rate of fission of B2AR recycling vesicles from these microdomains and, therefore, the rate of delivery of B2AR to the cell surface. Together, our results indicate that actin‐stabilized microdomains that mediate signaling receptor recycling can serve as a functional point of convergence for crosstalk between signaling pathways.   相似文献   

19.
Transferrin receptor 2 (TfR2), a homologue of the classical transferrin receptor 1 (TfR1), is found in two isoforms, α and β. Like TfR1, TfR2α is a type II membrane protein, but the β form lacks transmembrane portions and therefore is likely to be an intracellular protein. To investigate the functional properties of TfR2α, we expressed the protein with FLAG tagging in transferrin-receptor-deficient Chinese hamster ovary cells. The association constant for the binding of diferric transferrin (Tf) to TfR2α is 5.6 × 106 M 1, which is about 50 times lower than that for the binding of Tf to TfR1, with correspondingly reduced rates of iron uptake. Evidence for Tf internalization and recycling via TfR2α without degradation, as in the TfR1 pathway, was also found. The interaction of TfR2α with Tf was further investigated using atomic force microscopy, a powerful tool used for investigating the interaction between a ligand and its receptor at the single-molecule level on the living cell surface. Dynamic force microscopy reveals a difference in the interactions of Tf with TfR2α and TfR1, with Tf-TfR1 unbinding characterized by two energy barriers, while only one is present for Tf-TfR2. We speculate that this difference may reflect Tf binding to TfR2α by a single lobe, whereas two lobes of Tf participate in binding to TfR1. The difference in the binding properties of Tf to TfR1 and TfR2α may help account for the different physiological roles of the two receptors.  相似文献   

20.
During conditions of moderate sodium excess, the dopaminergic system regulates blood pressure and water and electrolyte balance by engendering natriuresis. Dopamine exerts its effects on dopamine receptors, including the dopamine D3 receptor. G protein-coupled receptor kinase 4 (GRK4), whose gene locus (4p16.3) is linked to essential hypertension, desensitizes the D1 receptor, another dopamine receptor. This study evaluated the role of GRK4 on D3 receptor function in human proximal tubule cells. D3 receptor co-segregated in lipid rafts and co-immunoprecipitated and co-localized in human proximal tubule cells and in proximal and distal tubules and glomeruli of kidneys of Wistar Kyoto rats. Bimolecular fluorescence complementation and confocal microscopy revealed that agonist activation of the receptor initiated the interaction between D3 receptor and GRK4 at the cell membrane and promoted it intracellularly, presumably en route to endosomal trafficking. Of the four GRK4 splice variants, GRK4-γ and GRK4-α mediated a 3- and 2-fold increase in the phosphorylation of agonist-activated D3 receptor, respectively. Inhibition of GRK activity with heparin or knockdown of GRK4 expression via RNA interference completely abolished p44/42 phosphorylation and mitogenesis induced by D3 receptor stimulation. These data demonstrate that GRK4, specifically the GRK4-γ and GRK4-α isoforms, phosphorylates the D3 receptor and is crucial for its signaling in human proximal tubule cells.During conditions of moderate sodium excess, the dopaminergic system sits at the fulcrum of homeostatic control of water and electrolyte balance and blood pressure (1, 2). Dopamine promotes natriuresis by inhibiting sodium chloride reabsorption in specific segments of the nephron. Dopamine exerts its action on dopamine receptors, which belong to the family of G protein-coupled receptors (GPCRs).2 The dopamine receptors are classified into two subtypes based on their ability to increase cAMP levels, sequence similarity, G protein coupling, and pharmacological profiles (3, 4). The D1-like dopamine receptors activate adenylyl cyclase by coupling to stimulatory Gαs/Gαolf and include the D1 (D1R) and D5 receptors (D5R). The D2-like dopamine receptors inhibit adenylyl cyclase by coupling to Gαi/Gαo and consist of the D2 (D2R), D3 (D3R), and D4 (D4R) receptors. The D3R has also been shown to couple to Gαo, Gβγ, and to the stimulatory Gαs (5, 6).The signal transduction that follows ligand occupation of a GPCR is tightly regulated to limit the specificity and extent of cellular response. GPCR-mediated signal transduction is rapidly dampened via receptor desensitization or the waning of the responsiveness of the receptor to agonist with time. Desensitization involves receptor phosphorylation and is carried out by either GPCR kinases (GRKs) or second messenger-activated kinases such as protein kinase A and protein kinase C. Homologous desensitization involves GRKs that selectively phosphorylate only agonist-activated receptors, whereas heterologous desensitization is carried out by second messenger-dependent kinases that indiscriminately phosphorylate agonist-activated receptors and those that have not been exposed to the agonist (7).The GRKs are serine/threonine protein kinases comprising seven isoforms that are grouped into three subfamilies. GRK1 and GRK7 belong to the rhodopsin kinase subfamily and are expressed exclusively in the retina (810). GRK2 and GRK3 phosphorylate the β-adrenergic receptor and belong to the β-adrenergic receptor kinase subfamily (11), and GRK4, GRK5, and GRK6 belong to the GRK4 subfamily. GRK4 is highly enriched in the testis and, to a lesser degree, in the kidneys (12, 13). Four splice variants of human GRK4 result from the alternative splicing of exons 2 and 15 (11). GRK4-α is considered the full-length version, whereas GRK4-β, -γ, and -δ are shortened versions of GRK4-α (14). The coding region of the GRK4 gene, whose 4p16.3 locus has been linked to essential hypertension (15, 16), contains several single nucleotide polymorphisms, including R65L, A142V, and A486V, which have been linked to essential hypertension and/or salt sensitivity in various ethnic groups (17).The D3R gene is found at 3q13.3 (18), a locus that is also linked to essential hypertension (19, 20). Sequence analysis of the D3R gene shows the presence of several single nucleotide polymorphisms, which do not correlate with either essential hypertension among Japanese (21) or with blood pressure levels and diabetic nephropathy among Finns (22). However, D3R knock-out mice develop a renin-dependent form of hypertension and fail to excrete a sodium load (23).The D3R has a long third intracellular loop that contains several putative GRK phosphorylation sites (24). A previous study evaluated the ability of GRK2 and GRK3 to phosphorylate D3R and showed that co-transfection of GRK3, but not GRK2, resulted in a weak phosphorylation of the heterologously expressed, dopamine-stimulated D3R in HEK-293 (25), a human embryonic kidney cell line. We tested the hypothesis that GRK4 is required in D3R signaling in terminally differentiated human renal proximal tubule cells (hPTCs) by determining the spatiotemporal dynamics of the interaction of D3R and GRK4 through their subfractionation in membrane microdomains and subcellular co-localization via confocal microscopy and bimolecular fluorescence complementation assay (BiFC). We also identified which of the GRK4 splice variants are involved in D3R phosphorylation and evaluated the physiological roles of GRK4 in D3R signaling in the hPTCs. We now report that D3R and GRK4 co-fractionate in lipid rafts and co-localize in both hPTCs and WYK kidneys. Moreover, D3R is phosphorylated by GRK4-γ and GRK4-α isoforms, and the absence of GRK4 impairs D3R-mediated mitogenesis and activation of p44/42 in hPTCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号