首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Nonmuscle myosin II (NM II) is the name given to the multi-subunit protein product of three genes (myh9, myh10, and myh14) encoding different nonmuscle myosin heavy chains. The three NM II isoforms share a very similar molecular structure and play important roles in a variety of fundamental biological processes. NM II-B (myh10) has been shown to be essential for the formation of mouse neural system and heart. But so far the complete knowledge for its expression in developing zebrafish embryos is lacking. In current study, we proved the conservation of zebrafish NM II-B in vertebrate evolution by in silicon analysis. Afterwards the NM II-B (myh10) expression was demonstrated to initiate after gastrulation stage. At 20 hpf, the expression is mainly restricted in central nervous system (CNS). It was maintained and expanded to sensor organ including eye, otic vesicle, and olfactory bulb at 36 hpf and later. We also detected myh10 mRNA hybridization signal in 48 hpf zebrafish heart. In addition, we investigated myh9a and myh9b mRNA distribution in zebrafish developing embryos. It was shown that myh10 and myh9 have distinct expression pattern, with myh9s not in neural system but in epidermis, enveloping layer (EVL). Our study provides new insight into the NM II expression and the use of this model organism to tackle future studies on the role of NM II in embryo development.  相似文献   

5.
Embryonic development involves dramatic changes in cell proliferation and differentiation that must be highly coordinated and tightly regulated. Cellular redox balance is critical for cell fate decisions, but it is susceptible to disruption by endogenous and exogenous sources of oxidative stress. The most abundant endogenous nonprotein antioxidant defense molecule is the tripeptide glutathione (γ-glutamylcysteinylglycine, GSH), but the ontogeny of GSH concentration and redox state during early life stages is poorly understood. Here, we describe the GSH redox dynamics during embryonic and early larval development (0–5 days postfertilization) in the zebrafish (Danio rerio), a model vertebrate embryo. We measured reduced and oxidized glutathione using HPLC and calculated the whole embryo total glutathione (GSHT) concentrations and redox potentials (Eh) over 0–120 h of zebrafish development (including mature oocytes, fertilization, midblastula transition, gastrulation, somitogenesis, pharyngula, prehatch embryos, and hatched eleutheroembryos). GSHT concentration doubled between 12 h postfertilization (hpf) and hatching. The GSH Eh increased, becoming more oxidizing during the first 12 h, and then oscillated around −190 mV through organogenesis, followed by a rapid change, associated with hatching, to a more negative (more reducing) Eh (−220 mV). After hatching, Eh stabilized and remained steady through 120 hpf. The dynamic changes in GSH redox status and concentration defined discrete windows of development: primary organogenesis, organ differentiation, and larval growth. We identified the set of zebrafish genes involved in the synthesis, utilization, and recycling of GSH, including several novel paralogs, and measured how expression of these genes changes during development. Ontogenic changes in the expression of GSH-related genes support the hypothesis that GSH redox state is tightly regulated early in development. This study provides a foundation for understanding the redox regulation of developmental signaling and investigating the effects of oxidative stress during embryogenesis.  相似文献   

6.
The insulin-like growth factor (Igf) family is an evolutionarily conserved system essential for normal growth and development in vertebrates. Unlike mammals, four distinct Igf ligands (Igf1, Igf2a, Igf2b and Igf3) and two Igf type 1 receptors (Igf1ra and Igf1rb) are present in zebrafish. However, the localization of these multiple ligands and receptors especially the recently discovered igf3 during early development of zebrafish is poorly understood. In this study, detailed expression patterns of these components of the Igf system during embryogenesis of zebrafish were analyzed. It was found that igf1 is specifically expressed in the trigeminal ganglia region from 18 hpf to 72 hpf, while igf2a is restricted to the caudal regions of the notochord from 14 hpf to 18 hpf as well as in the midbrain, dorsal hind brain and otic vesicle at 24 hpf. On the other hand, igf2a is highly expressed in the midbrain and pharyngeal arch region at 48 hpf, followed by its appearance in the liver and brain at 72 hpf, while igf2b is restricted to the floor plate and hypochord from 12 hpf to 18 hpf, and strong expression is also detected in the midbrain and dorsal hind brain at 24 hpf. The teleost specific igf3 is highly expressed in the pharyngeal arch region before 24 hpf, but is then restricted to the sternohyoideus after 48 hpf. The receptor subtype igf1ra is ubiquitously expressed before 24 hpf but is confined to the brain at 72 hpf. However, igf1rb is widely expressed before 10 hpf, but is more confined to the brain region at 24 hpf and 72 hpf. This dynamic temporal-spatial expression during embryogenesis of zebrafish, together with the unique and overlapping expression patterns of the Igf ligands and receptors suggest the coordination of the divergent functions of the Igf system during early development in zebrafish.  相似文献   

7.
We used a green fluorescent kidney line, Tg(wt1b:GFP), as a model to access the acetaminophen (AAP)-induced nephrotoxicity dynamically. Zebrafish (Danio rerio) embryos at different developmental stages (12–60 hpf) were treated with different dosages of AAP (0–45 mM) for different time courses (12–60 h). Results showed that zebrafish embryos exhibited no evident differences in survival rates and morphological changes between the mock-treated control (0 mM) and 2.25 mM AAP-exposure (12–72 hpf) groups. In contrast, after higher doses (22.5 and 45 mM) of exposure, embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tube, pronephric duct, and a cystic and atrophic glomerulus. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AAP increased. Interestingly, under the same exposure time course (12 h) and dose (22.5 mM), embryos displayed higher percentages of severe defects at earlier developmental stage of exposure (12–24 hpf), whereas embryos displayed higher percentages of mild defects at later exposure (60–72 hpf). With an exposure time course less than 24 h of 45 mM AAP, no embryo survived by the developmental stage of 72 hpf. These results indicated that AAP-induced nephrotoxicity depended on the exposure dose, time course and developmental stages. Immunohistochemical experiments showed that the cells' morphologies of the pronephric tube, pronephric duct and glomerulus were disrupted by AAP, and consequently caused cell death. Real-time RT-PCR revealed embryos after AAP treatment decreased the expression of cox2 and bcl2, but increased p53 expression. In conclusion, AAP-induced defects on glomerulus, pronephric tube and pronephric duct could be easily and dynamically observed in vivo during kidney development in this present model.  相似文献   

8.
Breast cancer tissue estrogen levels on an average exceed plasma as well as benign breast tissue levels. To evaluate the contribution of intra-tumor aromatization to individual tumor estrogen levels (estradiol, E2; estrone, E1; estrone sulfate, E1S), breast cancer tissue sections obtained during mastectomy in 28 postmenopausal breast cancer patients were stained for aromatase protein expression using the aromatase antibody 677. The findings were correlated to intra-tumor estrogen levels determined with a highly sensitive HPLC-RIA. Staining with 677 alone (irrespective of the hormone receptor status) revealed no difference in tumor E2 levels comparing 677+ versus 677? tumors, although a non-significant trend towards higher tumor E1 and E1S levels was observed in 677+ breast cancers. In contrast, tumor levels of E2 were significantly higher in ER+ tumors compared to ER? tumors (P < 0.001) and to benign breast tissue from the same breast (P < 0.001). Analysing the additional effect of positive staining with the aromatase antibody 677 on tumor estrogen levels in the subgroup of ER+ tumors, revealed significantly higher tumor levels of E2 (mean level of 544.7 versus 197.1 fmol/g tissue) as well as a non-significant trend concerning tumor E1 (mean level of 296.9 versus 102.1 fmol/g tissue). The mean tumor tissue E1S level was observed somewhat lower in ER+677+ (103.5 fmol/g) versus ER+677? tumors (190.1 fmol/g). In the subgroup of ER+PgR+ tumors, tissue levels of E2 were also found to be significantly higher among 677+ compared to 677? tumors: 873.2 fmol/g (95% CI 395.9–1925.6) versus 217.9 fmol/g (95% CI 88.8–534.9) (P = 0.015).In conclusion, our results indicate a moderate effect of aromatase enzyme expression evaluated by IHC using the antibody 677 on intra-tumor estrogen levels among ER+ breast cancers. A substantial interindividual variation in the ratios between the individual estrogen fractions suggests additional effects, like alterations in other enzymes to be involved in the intra-tumor estrogen homeostasis.  相似文献   

9.
10.
The purpose of this study was to assess the effect of relative exercise intensity on various plasma trace elements in euhydrated endurance athletes.Twenty-seven well-trained endurance athletes performed a cycloergometer test: after a warm-up of 10 min at 2.0 W kg−1, workload increased by 0.5 W kg−1 every 10 min until exhaustion. Oxygen uptake, blood lactate concentration ([La]b), and plasma ions (Zn, Se, Mn and Co) were measured at rest, at the end of each stage, and 3, 5 and 7 min post-exercise. Urine specific gravity (USG) was measured before and after the test, and subjects drank water ad libitum. Fat oxidation (FATOXR), carbohydrate oxidation (CHOOXR), energy expenditure from fat (EEFAT), from carbohydrates (EECHO) and total EE (EET) were estimated using stoichiometric equations. A repeated measure (ANOVA) was used to compare plasma ion levels at each exercise intensity level. The significance level was set at P < 0.05.No significant differences were found in USG between, before, and after the test (1.014 ± 0.004 vs. 1.014 ± 0.004 g cm−3) or in any plasma ion level as a function of intensity. There were weak significant correlations of Zn (r = 0.332, P < 0.001) and Se (r = 0.242, P < 0.01) with [La]b, but no relationships were established between [La]b, VO2, FATOXR, CHOOXR, EEFAT, EECHO, or EET and plasma ion levels.Acute exercise at different submaximal intensities in euhydrated well-trained endurance athletes does not provoke a change in plasma trace element levels, suggesting that plasma volume plays an important role in the homeostasis of these elements during exercise.  相似文献   

11.
12.
13.
14.
The present study was designed to assess the participation of estrogen receptors alpha (ERα) and beta (ERβ) in the short-term facilitation of lordosis behavior in ovariectomized (ovx), estradiol (E2) primed rats. In experiment 1, dose response curves for PPT and DPN (ERα and ERβ agonists, respectively) facilitation of lordosis behavior (lordosis quotient and lordosis score) were established by infusing these agonists into the right lateral ventricle (icv) in female rats injected 40 h previously with 5 μg of E2 benzoate. PPT doses of 0.08 and 0.4 ng produced high lordosis quotients starting at 30 min and continuing at 120 and 240 min post-injection. DPN induced high levels of lordosis behavior at all times tested. However, the intensity of lordosis induced by both agonists was weak. In experiment 2, we tested the involvement of each ER in facilitation of lordosis by icv infusion of MPP (ERα-selective antagonist) or PHTPP (ERβ-selective antagonist) prior to infusion of 2 ng of free E2. Icv infusion of either MPP or PHTPP 30 min before free E2 significantly depressed E2 facilitation of lordosis. The results suggest that both forms of ER are involved in the short-latency facilitation of lordosis behavior in E2-primed rats.  相似文献   

15.
AimsWe recently reported that acute exposure to nicotine vasodilates the renal vasculature of male rats via facilitation of endothelial nitric oxide synthase (eNOS). In this study, we investigated whether this effect of nicotine is sexually dimorphic and the role of estrogen in modulating the nicotine effect.Main methodsNicotine-evoked vasodilation was evaluated in phenylephrine-preconstricted perfused kidneys obtained from male, proestrus female, ovariectomized (OVX) and estrogen-replaced OVX (OVXE2) rats.Key findingsNicotine infusion (5 × 10? 5, 1 × 10? 4, and 5 × 10? 4 M) produced greater concentration-dependent reductions in the renal perfusion pressure (RPP) in an isolated kidney from proestrus females than from males. Inhibition of NOS by NG-nitro-l-arginine abolished the nicotine-evoked reduction in RPP and abolished the gender difference in the nicotine effect. Nicotine vasodilation was also attenuated in kidneys isolated from OVX and diestrus rats, models characterized by reduced estrogen levels. Further, estrogen or l-arginine supplementation in OVX rats largely restored the renal vasodilatory response to nicotine. Estrogen receptor blockade by tamoxifen abrogated the enhanced nicotine-evoked vasodilation elicited by E2 in OVX rats. The nitrite/nitrate levels and protein expressions of eNOS and α7 nicotinic cholinergic receptor (α7 nAChRs) were significantly higher in renal tissues of OVXE2 compared with OVX rats, suggesting a facilitatory effect for E2 on α7 nAChRs/eNOS signaling.SignificanceEstrogen-dependent facilitation of NOS signaling mediates the enhanced vasodilator capacity of nicotine in the renal vasculature of female rats. Preliminary evidence also suggests a potential role for α7 nAChRs in this estrogen-dependent phenomenon.  相似文献   

16.

Background

Angiogenesis plays an important role in a wide range of physiological processes, and many diseases are associated with the dysregulation of angiogenesis. Radix Astragali is a Chinese medicinal herb commonly used for treating cardiovascular disorders and has been shown to possess angiogenic effect in previous studies but its active constituent and underlying mechanism remain unclear. The present study investigates the angiogenic effects of calycosin, a major isoflavonoid isolated from Radix Astragali, in vitro and in vivo.

Methodology

Tg(fli1:EGFP) and Tg(fli1:nEGFP) transgenic zebrafish embryos were treated with different concentrations of calycosin (10, 30, 100 µM) from 72 hpf to 96 hpf prior morphological observation and angiogenesis phenotypes assessment. Zebrafish embryos were exposed to calycosin (10, 100 µM) from 72 hpf to 78 hpf before gene-expression analysis. The effects of VEGFR tyrosine kinase inhibitor on calycosin-induced angiogenesis were studied using 72 hpf Tg(fli1:EGFP) and Tg(fli1:nEGFP) zebrafish embryos. The pro-angiogenic effects of calycosin were compared with raloxifene and tamoxifen in 72 hpf Tg(fli1:EGFP) zebrafish embryos. The binding affinities of calycosin to estrogen receptors (ERs) were evaluated by cell-free and cell-based estrogen receptor binding assays. Human umbilical vein endothelial cell cultures (HUVEC) were pretreated with different concentrations of calycosin (3, 10, 30, 100 µM) for 48 h then tested for cell viability and tube formation. The role of MAPK signaling in calycosin-induced angiogenesis was evaluated using western blotting.

Conclusion

Calycosin was shown to induce angiogenesis in human umbilical vein endothelial cell cultures (HUVEC) in vitro and zebrafish embryos in vivo via the up-regulation of vascular endothelial growth factor (VEGF), VEGFR1 and VEGFR2 mRNA expression. It was demonstrated that calycosin acted similar to other selective estrogen receptor modulators (SERMs), such as raloxifene and tamoxifen, by displaying selective potency and affinity to estrogen receptors ERα and ERβ. Our results further indicated that calycosin promotes angiogenesis via activation of MAPK with the involvement of ERK1/2 and ER. Together, this study revealed, for the first time, that calycosin acts as a selective estrogen receptor modulator (SERM) to promote angiogenesis, at least in part through VEGF-VEGFR2 and MAPK signaling pathways.  相似文献   

17.
Mammalian oocyte restores meiosis can be stimulated by follicle-stimulating hormone (FSH) under normal physiological conditions. G-protein coupled receptor 30 (GPR30), an non-classical estrogen membrane receptor, has been widely reported in teleost oocyte maturation. However, it remains unknown whether GPR30 involves the role of FSH in mammalian cumulus expansion and oocyte maturation. Here, we used mouse cumulus-oocyte complexes (COCs) as a model to investigate how FSH affects the in vitro maturation of mouse oocytes mediated by 17β-estradiol (E2)/GPR30 signaling. Our study reveals that FSH starts regulating mouse cumulus expansion precisely at 8 h in in vitro culture. ELISA measurement of E2 levels in culture medium revealed that FSH activated aromatase to promote E2 production in vitro in cultured mouse COCs. Moreover, the results of real-time quantitative PCR indicated that FSH-induced in vitro maturation of mouse oocytes was regulated by the estrogen-signaling pathway mediated by GPR30; FSH treatment markedly increased the mRNA expression of HAS2, PTGS2, and GREM1 in COCs. Exploration of the underlying mechanism suggested that E2 produced by mouse COCs regulated the phosphorylation level of extracellular signal-regulated kinase 1/2 (ERK1/2) through GPR30 and thereby promoted mouse cumulus-cell expansion and oocyte maturation. In conclusion, our study reveals that FSH induced estrogen production in mouse COCs through aromatase, and that aromatase/GPR30/ERK1/2 signaling is involved in FSH-induced cumulus expansion.  相似文献   

18.
To determine the interactions between temperature and cadmium on zebrafish (Danio rerio) development, fertilized eggs were exposed to combinations of three temperature levels (21 °C, 26 °C, and 33 °C) and six cadmium concentrations (0, 0.25, 0.5, 2.0, 5.0, and 10.0 mg/L). Endpoints used included LC50 value (48 h), developmental rate, mortality, heart rate, hatching success, liver histopathology, embryo abnormalities, and heat shock protein (hsp) induction. Results showed a significant acceleration in the developmental rate with increasing temperature and irrespective of the presence of cadmium. Data on LC50 and ELS-test revealed that simultaneous exposure to both cadmium ions and cold stress (21 °C) was highly detrimental to growing embryos, causing a pronounced mortality and a significant reduction in average heart rate and embryo hatchability. In contrast, no similar reactions to cadmium were observed in pre-hatched embryos exposed to both control (26 °C) and high temperature (33 °C), and this can be explained by the significantly higher expression of hsp (hsp70) in embryos at these temperatures. Upon hatching, however, the larvae showed increased sensitivity to cadmium. The severity of malformations in the post-hatched larvae was in the order: hot cadmium stress>cold cadmium stress>cadmium stress alone>no stress at all. Liver histopathology as well as depletion in glycogen reserves exhibited greater severity with increasing cadmium concentration, irrespective of temperature. The present study confirms that temperature effectively confounds cadmium toxicity and needs to be considered for the accurate prediction and assessment of cadmium-induced toxicity in fish.  相似文献   

19.
The ability of replication protein A (RPA) to bind single-stranded DNA (ssDNA) underlines its crucial roles during DNA replication and repair. A combination of immunofluorescence and live cell imaging of GFP-tagged RPA70 revealed that RPA, in contrast to other replication factors, does not cluster into replication foci, which is explained by its short residence time at ssDNA. In addition to replication, RPA also plays a crucial role in both the pre- and post-incision steps of nucleotide excision repair (NER). Pre-incision factors like XPC and TFIIH accumulate rapidly at locally induced UV-damage and remain visible up to 4 h. However, RPA did not reach its maximum accumulation level until 3 h after DNA damage infliction and a chromatin-bound pool remained detectable up to 8 h, probably reflecting its role during the post-incision step of NER. During the pre-incision steps of NER, RPA could only be visualized at DNA lesions in incision deficient XP-F cells, however without a substantial increase in residence time at DNA damage. Together our data show that RPA is an intrinsically highly dynamic ssDNA-binding complex during both replication and distinct steps of NER.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号