首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The present study aimed at determining the functional characteristics of anti-neuroexcitation peptide II (ANEPII). The depressant insect toxin ANEPII from the Chinese scorpion Buthus martensii Karsch had an effect on insect sodium channels. Previous studies showed that scorpion depressant toxins induce insect flaccid paralysis upon binding to receptor site-4, so we tried to predict the functional residues involved using computational techniques. In this study, three-dimensional structure modeling of ANEPII and site-4 of the insect sodium channel were carried out by homology modeling, and these models were used as the starting point for nanosecond-duration molecular dynamics simulations. Docking studies of ANEPII in the sodium channel homology model were conducted, and likely ANEPII binding loci were investigated. Based on these analyses, the residues Tyr34, Trp36, Gly39, Leu40, Trp53, Asn58, Gly61 and Gly62 were predicted to interact with sodium channel receptor and to act as functional residues.  相似文献   

2.
The bioactive surface of scorpion beta-toxins that interact with receptor site-4 at voltage-gated sodium channels is constituted of residues of the conserved betaalphabetabeta core and the C-tail. In an attempt to evaluate the extent by which residues of the toxin core contribute to bioactivity, the anti-insect and anti-mammalian beta-toxins Bj-xtrIT and Css4 were truncated at their N and C termini, resulting in miniature peptides composed essentially of the core secondary structure motives. The truncated beta-toxins (DeltaDeltaBj-xtrIT and DeltaDeltaCss4) were non-toxic and did not compete with the parental toxins on binding at receptor site-4. Surprisingly, DeltaDeltaBj-xtrIT and DeltaDeltaCss4 were capable of modulating in an allosteric manner the binding and effects of site-3 scorpion alpha-toxins in a way reminiscent of that of brevetoxins, which bind at receptor site-5. While reducing the binding and effect of the scorpion alpha-toxin Lqh2 at mammalian sodium channels, they enhanced the binding and effect of LqhalphaIT at insect sodium channels. Co-application of DeltaDeltaBj-xtrIT or DeltaDeltaCss4 with brevetoxin abolished the brevetoxin effect, although they did not compete in binding. These results denote a novel surface at DeltaDeltaBj-xtrIT and DeltaDeltaCss4 capable of interaction with sodium channels at a site other than sites 3, 4, or 5, which prior to the truncation was masked by the bioactive surface that interacts with receptor site-4. The disclosure of this hidden surface at both beta-toxins may be viewed as an exercise in "reverse evolution," providing a clue as to their evolution from a smaller ancestor of similar scaffold.  相似文献   

3.
Moran Y  Cohen L  Kahn R  Karbat I  Gordon D  Gurevitz M 《Biochemistry》2006,45(29):8864-8873
Type I sea anemone toxins are highly potent modulators of voltage-gated Na-channels (Na(v)s) and compete with the structurally dissimilar scorpion alpha-toxins on binding to receptor site-3. Although these features provide two structurally different probes for studying receptor site-3 and channel fast inactivation, the bioactive surface of sea anemone toxins has not been fully resolved. We established an efficient expression system for Av2 (known as ATX II), a highly insecticidal sea anemone toxin from Anemonia viridis (previously named A. sulcata), and mutagenized it throughout. Each toxin mutant was analyzed in toxicity and binding assays as well as by circular dichroism spectroscopy to discern the effects derived from structural perturbation from those related to bioactivity. Six residues were found to constitute the anti-insect bioactive surface of Av2 (Val-2, Leu-5, Asn-16, Leu-18, and Ile-41). Further analysis of nine Av2 mutants on the human heart channel Na(v)1.5 expressed in Xenopus oocytes indicated that the bioactive surfaces toward insects and mammals practically coincide but differ from the bioactive surface of a structurally similar sea anemone toxin, Anthopleurin B, from Anthopleura xanthogrammica. Hence, our results not only demonstrate clear differences in the bioactive surfaces of Av2 and scorpion alpha-toxins but also indicate that despite the general conservation in structure and importance of the Arg-14 loop and its flanking residues Gly-10 and Gly-20 for function, the surface of interaction between different sea anemone toxins and Na(v)s varies.  相似文献   

4.
Four novel insecticidal toxins were isolated from the venom of the spider Paracoelotes luctuosus (Araneae: Amaurobiidae) and named delta-palutoxins IT1 to IT4. The four toxins are homologous 36-37 amino acid peptides reticulated by four disulfide bridges and three have amidated C-terminal residues. The delta-palutoxins are highly homologous with the previously described mu-agatoxins and curtatoxins (77-97%). The four peptides demonstrated significant toxicity against larvae of the crop pest Spodoptera litura (Lepidoptera: Noctuidae) in a microinjection bioassay, with LD50 values in the 9-50 microg per g of insect range. This level of toxicity is equivalent to that of several of the most active scorpion toxins used in the development of recombinant baculoviruses, and the delta-palutoxins appear to be insect specific. Electrophysiological experiments demonstrated that delta-palutoxin IT1, the most active toxin acts by affecting insect sodium channel inactivation, resulting in the appearance of a late-maintained sodium current, in a similar fashion to insecticidal scorpion alpha and alpha-like toxins and is thus likely to bind to channel receptor site 3. However, delta-palutoxin IT1 was distinguished by its lack of effect on peak sodium conductance, on the early phase of sodium current inactivation and the absence of a shift in the activation voltage of the sodium channels. delta-Palutoxins are thus proposed as new insecticidal toxins related to the alpha and alpha-like scorpion toxins. They will be useful both in the development of recombinant baculoviruses in agrochemical applications and also as molecular probes for the investigation of molecular mechanisms of insect selectivity and structure and function of sodium channels.  相似文献   

5.
Zhu S  Gao B 《FEBS letters》2006,580(25):5979-5987
Toxins affecting sodium channels widely exist in the venoms of scorpions throughout the world. These molecules comprise an evolutionarily related peptide family with three shared features including conserved three-dimensional structure and gene organization, and similar function. Based on different pharmacological profiles and binding properties, scorpion sodium channel toxins are divided into alpha- and beta-groups. However, their evolutionary relationship is not yet established. Here, we report a gene isolated from the venom gland of scorpion Mesobuthus martensii which encodes a novel sodium channel toxin-like peptide of 64 amino acids, named Mesotoxin. The Mesotoxin gene is organized into three exons and two introns with the second intron location conserved across the family. This peptide is unusual in that it has only three disulfides and a long cysteine-free tail with loop size and structural characteristics close to beta-toxins. Evolutionary analysis favors its basal position in the origin of scorpion sodium channel toxins as a progenitor. The discovery of Mesotoxin will assist investigations into the key issue regarding the origin and evolution of scorpion toxins.  相似文献   

6.
A new anti-insect neurotoxin, AaH IT4, has been isolated from the venom of the North African scorpion Androctonus australis Hector. This polypeptide has a toxic effect on insects and mammals and is capable of competing with anti-insect scorpion toxins for binding to the sodium channel of insects; it also modulates the binding of alpha-type and beta-type anti-mammal scorpion toxins to the mammal sodium channel. This is the first report of a scorpion toxin able to exhibit these three kinds of activity. The molecule is composed of 65 amino acid residues and lacks methionine and, more unexpectedly, proline, which until now has been considered to play a role in the folded structure of all scorpion neurotoxins. The primary structure showed a poor homology with the sequences of other scorpion toxins; however, it had features in common with beta-type toxins. In fact, radioimmunoassays using antibodies directed to scorpion toxins representative of the main structural groups showed that there is a recognition of AaH IT4 via anti-beta-type toxin antibodies only. A circular dichroism study revealed a low content of regular secondary structures, particularly in beta-sheet structures, when compared to other scorpion toxins. This protein might be the first member of a new class of toxins to have ancestral structural features and a wide toxic range.  相似文献   

7.
Six peptide toxins (Magi 1-6) were isolated from the Hexathelidae spider Macrothele gigas. The amino acid sequences of Magi 1, 2, 5 and 6 have low similarities to the amino acid sequences of known spider toxins. The primary structure of Magi 3 is similar to the structure of the palmitoylated peptide named PlTx-II from the North American spider Plectreurys tristis (Plectreuridae). Moreover, the amino acid sequence of Magi 4, which was revealed by cloning of its cDNA, displays similarities to the Na+ channel modifier delta-atracotoxin from the Australian spider Atrax robustus (Hexathelidae). Competitive binding assays using several 125I-labelled peptide toxins clearly demonstrated the specific binding affinity of Magi 1-5 to site 3 of the insect sodium channel and also that of Magi 5 to site 4 of the rat sodium channel. Only Magi 6 did not compete with the scorpion toxin LqhalphaIT in binding to site 3 despite high toxicity on lepidoptera larvae of 3.1 nmol/g. The K(i)s of other toxins were between 50 pM for Magi 4 and 1747 nM for Magi 1. In addition, only Magi 5 binds to both site 3 in insects (K(i)=267 nM) and site 4 in rat brain synaptosomes (K(i)=1.2 nM), whereas it showed no affinities for either mammal binding site 3 or insect binding site 4. Magi 5 is the first spider toxin with binding affinity to site 4 of a mammalian sodium channel.  相似文献   

8.
The binding of 125I-labeled derivatives of scorpion toxin and sea anemone toxin to tetrodotoxin-insensitive sodium channels in cultured rat muscle cells has been studied. Specific binding of 125I-labeled scorpion toxin and 125I-labeled sea anemone toxin was each blocked by either native scorpion toxin or native sea anemone toxin. K0.5 for block of binding by several polypeptide toxins was closely correlated with K0.5 for enhancement of sodium channel activation in rat muscle cells. These results directly demonstrate binding of sea anemone toxin and scorpion toxin to a common receptor site on the sodium channel. Binding of both 125I-labeled toxin derivatives is enhanced by the alkaloids aconitine and batrachotoxin due to a decrease in KD for polypeptide toxin. Enhancement of polypeptide toxin binding by aconitine and batrachotoxin is precisely correlated with persistent activation of sodium channels by the alkaloid toxins consistent with the conclusion that there is allosteric coupling between receptor sites for alkaloid and polypeptide toxins on the sodium channel. The binding of both 125I-labeled scorpion toxin and 125I-labeled sea anemone toxin is reduced by depolarization due to a voltage-dependent increase in KD. Scorpion toxin binding is more voltage-sensitive than sea anemone toxin binding. Our results directly demonstrate voltage-dependent binding of both scorpion toxin and sea anemone toxin to a common receptor site on the sodium channel and introduce the 125I-labeled polypeptide toxin derivatives as specific binding probes of tetrodotoxin-insensitive sodium channels in cultured muscle cells.  相似文献   

9.
Four depressant insect-selective neurotoxin analogs (termed Bs-dprIT1 to 4) from the venom of the scorpion Buthus sindicus were purified to homogeneity in a single step using reverse-phase HPLC. The molecular masses of the purified toxins were 6820.9, 6892.4, 6714.7, and 6657.1 Da, respectively, as determined by mass spectrometry. These long-chain neurotoxins were potent against insects with half lethal dose values of 67, 81, 103, and 78 ng/100 mg larva and 138, 160, 163, and 142 ng/100 mg cockroach, respectively, but were not lethal to mice even at the highest applied dose of 10 microg/20 g mouse. When injected into blowfly larvae (Sarcophaga falculata), Bs-dprIT1 to 4 induced classical manifestations of depressant toxins, i.e., a slow depressant flaccid paralysis. The primary structures of Bs-dprIT 1 to 4 revealed high sequence homology (60-75%) with other depressant insect toxins isolated from scorpion venoms. Despite the high sequence conservation, Bs-dprIT1 to 4 showed some remarkable features such as (i) the presence of methionine (Met(6) in Bs-dprIT1 and Met(24) in Bs-dprIT2 to 4) and histidine (His(53) and His(57) in Bs-dprIT1) residues, i.e., amino acid residues that are uncommon to this type of toxin; (ii) the substitution of two highly conserved tryptophan residues (Trp43 --> Ala and Trp53 --> His) in the sequence of Bs-dprIT1; and (iii) the occurrence of more positively charged amino acid residues at the C-terminal end than in other depressant insect toxins. Multiple sequence alignment, sequence analysis, sequence-based structure prediction, and 3D homology modeling studies revealed a protein fold and secondary structural elements similar to those of other scorpion toxins affecting sodium channel activation. The electrostatic potential calculated on the surface of the predicted 3D model of Bs-dprIT1 revealed a significant positive patch in the region of the toxin that is supposed to bind to the sodium channel.  相似文献   

10.
The muO-conotoxins MrVIA and MrVIB are 31-residue peptides from Conus marmoreus, belonging to the O-superfamily of conotoxins with three disulfide bridges. They have attracted attention because they are inhibitors of tetrodotoxin-insensitive voltage-gated sodium channels (Na(V)1.8) and could therefore serve as lead structure for novel analgesics. The aim of this study was to elucidate the molecular mechanism by which muO-conotoxins affect Na(V) channels. Rat Na(V)1.4 channels and mutants thereof were expressed in mammalian cells and were assayed with the whole-cell patch-clamp method. Unlike for the M-superfamily mu-conotoxin GIIIA from Conus geographus, channel block by MrVIA was strongly diminished after activating the Na(V) channels by depolarizing voltage steps. Searching for the source of this voltage dependence, the gating charges in all four-voltage sensors were reduced by site-directed mutagenesis showing that alterations of the voltage sensor in domain-2 have the strongest impact on MrVIA action. These results, together with previous findings that the effect of MrVIA depends on the structure of the pore-loop in domain-3, suggest a functional similarity with scorpion beta-toxins. In fact, MrVIA functionally competed with the scorpion beta-toxin Ts1 from Tityus serrulatus, while it did not show competition with mu-GIIIA. Ts1 and mu-GIIIA did not compete either. Thus, similar to scorpion beta-toxins, muO-conotoxins are voltage-sensor toxins targeting receptor site-4 on Na(V) channels. They "block" Na(+) flow most likely by hindering the voltage sensor in domain-2 from activating and, hence, the channel from opening.  相似文献   

11.
Scorpion beta-toxins affect the activation of voltage-sensitive sodium channels (NaChs). Although these toxins have been instrumental in the study of channel gating and architecture, little is known about their active sites. By using an efficient system for the production of recombinant toxins, we analyzed by point mutagenesis the entire surface of the beta-toxin, Bj-xtrIT, an anti-insect selective excitatory toxin from the scorpion Buthotus judaicus. Each toxin mutant was purified and analyzed using toxicity and binding assays, as well as by circular dichroism spectroscopy to discern the differences among mutations that caused structural changes and those that specifically affected bioactivity. This analysis highlighted a functional discontinuous surface of 1405 A(2), which was composed of a number of non-polar and three charged amino acids clustered around the main alpha-helical motif and the C-tail. Among the charged residues, Glu(30) is a center of a putative "hot spot" in the toxin-receptor binding-interface and is shielded from bulk solvent by a hydrophobic "gasket" (Tyr(26) and Val(34)). Comparison of the Bj-xtrIT structure with that of other beta-toxins that are active on mammals suggests that the hot spot and an adjacent non-polar region are spatially conserved. These results highlight for the first time structural elements that constitute a putative "pharmacophore" involved in the interaction of beta-toxins with receptor site-4 on NaChs. Furthermore, the unique structure of the C-terminal region most likely determines the specificity of excitatory toxins for insect NaChs.  相似文献   

12.
The µO-conotoxins MrVIA and MrVIB are 31-residue peptides from Conus marmoreus, belonging to the O-superfamily of conotoxins with three disulfide bridges. They have attracted attention because they are inhibitors of tetrodotoxin-insensitive voltage-gated sodium channels (NaV1.8) and could therefore serve as lead structure for novel analgesics. The aim of this study was to elucidate the molecular mechanism by which µO-conotoxins affect NaV channels. Rat NaV1.4 channels and mutants thereof were expressed in mammalian cells and were assayed with the whole-cell patch-clamp method. Unlike for the M-superfamily µ-conotoxin GIIIA from Conus geographus, channel block by MrVIA was strongly diminished after activating the NaV channels by depolarizing voltage steps. Searching for the source of this voltage dependence, the gating charges in all four voltage sensors were reduced by site-directed mutagenesis showing that alterations of the voltage sensor in domain-2 have the strongest impact on MrVIA action. These results, together with previous findings that the effect of MrVIA depends on the structure of the pore-loop in domain-3, suggest a functional similarity with scorpion β-toxins. In fact, MrVIA functionally competed with the scorpion β-toxin Ts1 from Tityus serrulatus, while it did not show competition with µ-GIIIA. Ts1 and µ-GIIIA did not compete either. Thus, similar to scorpion β-toxins, µO-conotoxins are voltage-sensor toxins targeting receptor site-4 on NaV channels. They \"block\" Na+ flow most likely by hindering the voltage sensor in domain-2 from activating and, hence, the channel from opening.  相似文献   

13.
All scorpion toxins from different 30 species are simply reviewed. A new classification system of scorpion toxins is first proposed: scorpion toxins are classified into three families (long-chain scorpion toxins with 4 disulfide bridges, short-chain scorpion toxins with 3 disulfide bridges, and intermediate-type scorpion toxins with 3 or 4 disulfide bridges). Intermediate-type scorpion toxins provide a strong proof for the conclusion that channel toxins from scorpion venoms evolve from a common ancestor. Common organization of precursor nucleotides and genomic sequence, similar 3-dimensional structure, and the existence of intermediate type scorpion toxins and functionally intercrossing scorpion toxins show that all scorpion toxins affecting ion channels evolve from the common ancestor, which produce millions of scorpion toxins with function-diversity.  相似文献   

14.
Diverse subtypes of voltage-gated sodium channels (VGSCs) have been found throughout tissues of the brain, muscles and the heart. Neurotoxins extracted from the venom of the Asian scorpion Buthus martensi Karsch (BmK) act as sodium channel-specific modulators and have therefore been widely used to study VGSCs. α-type neurotoxins, named BmK I, BmK αIV and BmK abT, bind to receptor site-3 on VGSCs and can strongly prolong the inactivation phase of VGSCs. In contrast, β-type neurotoxins, named BmK AS, BmK AS-1, BmK IT and BmK IT2, occupy receptor site-4 on VGSCs and can suppress peak currents and hyperpolarize the activation kinetics of sodium channels. Accumulating evidence from binding assays of scorpion neurotoxins on VGSCs, however, indicate that pharmacological sensitivity of VGSC subtypes to different modulators is much more complex than that suggested by the simple α-type and β-type neurotoxin distinction. Exploring the mechanisms of possible dynamic interactions between site 3-/4-specific modulators and region- and/or species-specific subtypes of VGSCs would therefore greatly expand our understanding of the physiological and pharmacological properties of diverse VGSCs. In this review, we discuss the pharmacological and structural diversity of VGSCs as revealed by studies exploring the binding properties and cross-competitive binding of site 3- or site 4-specific modulators in VGSC subtypes in synaptosomes from distinct tissues of diverse species.  相似文献   

15.
Delta-atracotoxins (delta-ACTXs) from Australian funnel-web spiders differ structurally from scorpion alpha-toxins (Sc(alpha)Tx) but similarly slow sodium current inactivation and compete for their binding to sodium channels at receptor site-3. Characterization of the binding of 125I-labelled delta-ACTX-Hv1a to various sodium channels reveals a decrease in affinity for depolarized (0 mV; Kd=6.5 +/- 1.4 nm) vs.polarized (-55 mV; Kd=0.6 +/- 0.2 nm) rat brain synaptosomes. The increased Kd under depolarized conditions correlates with a 4.3-fold reduction in the association rate and a 1.8-increase in the dissociation rate. In comparison, Sc(alpha)Tx binding affinity decreased 33-fold under depolarized conditions due to a 48-fold reduction in the association rate. The binding of 125I-labelled delta-ACTX-Hv1a to rat brain synaptosomes is inhibited competitively by classical Sc(alpha)Txs and allosterically by brevetoxin-1, similar to Sc(alpha)Tx binding. However, in contrast with classical Sc(alpha)Txs, 125I-labelled delta-ACTX-Hv1a binds with high affinity to cockroach Na+ channels (Kd=0.42 +/- 0.1 nm) and is displaced by the Sc(alpha)Tx, Lqh(alpha)IT, a well-defined ligand of insect sodium channel receptor site-3. However, delta-ACTX-Hv1a exhibits a surprisingly low binding affinity to locust sodium channels. Thus, unlike Sc(alpha)Txs, which are capable of differentiating between mammalian and insect sodium channels, delta-ACTXs differentiate between various insect sodium channels but bind with similar high affinity to rat brain and cockroach channels. Structural comparison of delta-ACTX-Hv1a to Sc(alpha)Txs suggests a similar putative bioactive surface but a 'slimmer' overall shape of the spider toxin. A slimmer shape may ease the interaction with the cockroach and mammalian receptor site-3 and facilitate its association with different conformations of the rat brain receptor, correlated with closed/open and slow-inactivated channel states.  相似文献   

16.
Voltage-sensitive sodium channels are responsible for the generation of electrical signals in most excitable tissues and serve as specific targets for many neurotoxins. At least seven distinct classes of neurotoxins have been designated on the basis of physiological activity and competitive binding studies. Although the characterization of the neurotoxin receptor sites was predominantly performed using vertebrate excitable preparations, insect neuronal membranes were shown to possess similar receptor sites. We have demonstrated that the two mutually competing antiinsect excitatory and depressant scorpion toxins, previously suggested to occupy the same receptor site, bind to two distinct receptors on insect sodium channels. The latter provides a new approach to their combined use in insect control strategy. Although the sodium channel receptor sites are topologically separated, there are strong allosteric interactions among them. We have shown that the lipid-soluble sodium channel activators, veratridine and brevetoxin, reveal divergent allosteric modulation on scorpion α-toxins binding at homologous receptor sites on mammalian and insect sodium channels. The differences suggest a functionally important structural distinction between these channel subtypes. The differential allosteric modulation may provide a new approach to increase selective activity of pesticides on target organisms by simultaneous application of allosterically interacting drugs, designed on the basis of the selective toxins. Thus, a comparative study of neurotoxin receptor sites on mammalian and invertebrate sodium channels may elucidate the structural features involved in the binding and activity of the various neurotoxins, and may offer new targets and approaches to the development of highly selective pesticides.  相似文献   

17.
Seven polypeptides highly toxic to mice were isolated from the venom of the scorpion, Centruroides suffusus suffusus (Css), and their chemical and toxic properties were characterized. It was shown that the most active toxins by intracerebroventricular injection are less active when injected subcutaneously. The complete amino acid sequence (66 residues) of toxin II (Css II) has been determined. The C-terminal end is amidated as found for most other scorpion toxins. Css II is a beta-type toxin, previously used to define the binding site for activation of the sodium channel. Using rat brain synaptosomes, we demonstrated that all Css toxins compete with 125I-Css II to bind to site 4 and should be considered as beta-scorpion toxins. Specific binding parameters for Css VI, one of the most active toxins, were determined: KD = 100 pM; capacity in binding sites, 2.2 pmol of toxin/mg of synaptosomal protein. Css VI was shown to inhibit gamma-aminobutyric acid uptake by synaptosomes: K 0.5 = 100 pM, which agrees with its KD. Competition experiments between the seven Css toxins and 125I-Css II for antiserum raised against Css II demonstrated that all these toxins have common antigenic properties.  相似文献   

18.
Many scorpion toxins that act on sodium channels (NaScTxs) have been characterized till date. These toxins may act modulating the inactivation or the activation of sodium channels and are named α- or β-types, respectively. Some venom toxins from Tityus obscurus (Buthidae), a scorpion widely distributed in the Brazilian Amazon, have been partially characterized in previous studies; however, little information about their electrophysiological role on sodium ion channels has been published. In the present study, we describe the purification, identification and electrophysiological characterization of a NaScTx, which was first described as Tc54 and further fully sequenced and renamed To4. This toxin shows a marked β-type effect on different sodium channel subtypes (hNav1.1–hNav1.7) at low concentrations, and has more pronounced activity on hNav1.1, hNav1.2 and hNav1.4. By comparing To4 primary structure with other Tityus β-toxins which have already been electrophysiologically tested, it is possible to establish some key amino acid residues for the sodium channel activity. Thus, To4 is the first toxin from T. obscurus fully electrophysiologically characterized on different human sodium channel isoforms.  相似文献   

19.
东亚钳蝎蝎毒素BmKBT基因组序列的克隆及其分析   总被引:3,自引:0,他引:3  
东亚钳蝎 (ButhusmartensiiKarsch ,BmK)蝎毒素BmKBT(又名BmKabT)是一个在初级结构上相似于β类哺乳动物毒素和功能接近于α类哺乳动物毒素的Na+ 通道毒素 .基于从毒腺cDNA文库中筛选得到的全长BmKBT前体核苷酸序列设计引物 ,以蝎基因组总DNA为模板进行聚合酶链式反应 (PCR) ,将PCR产物克隆至T载体、测序 .序列分析表明 :在BmKBT信号肽编码区的 3′端的- 4位Gly密码子的第 1位与第 2位碱基中有 1个长 2 2 5nt的内含子 ,插入位点距离该基因的起始密码子 4 6nt ,AT含量为 78 7% ,其内含子可能的剪接分枝位点距离 3′剪接受体位点 4 7nt.内含子的大小及其基因组织结构分析表明 :BmKBT具有与α类哺乳动物毒素类似的基因组织结构 ,进一步说明BmKBT是一个介于α类和β类Na+ 通道毒素之间的中间型蝎毒素 ,可以作为研究蝎毒素分子进化的合适材料  相似文献   

20.
Although many studies concerning the sensitivity mechanism of scorpion toxin-potassium channel interactions have been reported, few have explored the biochemical insensitivity mechanisms of potassium channel receptors toward natural scorpion toxin peptides, such as the KCNQ1 channel. Here, by sequence alignment analyses of the human KCNQ1 channel and scorpion potassium channel MmKv2, which is completely insensitive to scorpion toxins, we proposed that the insensitivity mechanism of KCNQ1 toward natural scorpion toxins might involve two functional regions, the turret and filter regions. Based on this observation, a series of KCNQ1 mutants were constructed to study molecular mechanisms of the KCNQ1 channel insensitivity toward natural scorpion toxins. Electrophysiological studies of chimera channels showed that the channel filter region controls KCNQ1 insensitivity toward the classical scorpion toxin ChTX. Interestingly, further residue mutant experiments showed that a single basic residue in the filter region determined the insensitivity of KCNQ1 channels toward scorpion toxins. Our present work showed that amino acid residue diversification at common sites controls the sensitivity and insensitivity of potassium channels toward scorpion toxins. The unique insensitivity mechanism of KCNQ1 toward natural scorpion toxins will accelerate the rational design of potent peptide inhibitors toward this channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号