首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An antisense oligodeoxynucleotide-doxorubicin conjugate was synthesized by an aminocaproic acid linker. The synthetic conjugate was identified by HPLC analysis and UV-vis spectra. Properties of the conjugate in vitro conditions were investigated. The results demonstrated that the conjugate was remarkably stabilized by doxorubicin. When incubated in Dulbecco Phosphate-Buflered Saline (pH 7.4) at 37 degrees C, the conjugate was more stable than doxorubicin or the mixture of doxorubicin and antisense oligodeoxynucleotide. When incubated in 10% fetal serum at 37 degrees C, the conjugate showed a remarkable stabilization as compared to the unmodified oligodeoxynucleotide. Melting experiments demonstrated that the covalent attachment of doxorubicin strongly stabilized the binding of the oligodeoxynucleotide to its complementary sequence. In addition, in vitro reversion of multidrug resistance by the conjugate was assayed in a human carcinoma cell line (KB-A-1) resisting to doxorubicin. The result showed that the conjugate displayed very high reversal multdrug resistance activity in KB-A-1 cells in vitro. The conjugate lowered the IC50 value from 21.5 microM to 2.2 microM with a fold-reversal factor of 10. In contrast, a slight decrease of the IC50 value was observed when they combined with the "free" antisense oligodeoxynucleotide: the IC50 value was down from 21.5 microM to 16.8 microM. This study suggested that antisense oligodeoxynucleotide-doxorubicin conjugate might be helpful in multidrug resistance reversal.  相似文献   

2.
A conjugate of DHA and doxorubicin (DHA-Dox) was synthesized, and its antitumor activity was evaluated in vitro against L1210 leukemia cells and in experimental animal tumor models including L1210 leukemia and B16 melanoma. DHA-Dox showed a greatly improved antitumor efficacy compared to free doxorubicin.  相似文献   

3.
The aim of this study was to compare the properties and antitumor potential of a novel type of antibody-targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-bound doxorubicin conjugates with star structure with those of previously described classic antibody-targeted or lectin-targeted HPMA copolymer-bound doxorubicin conjugates. Classic antibody-targeted conjugates were prepared by aminolytic reaction of the multivalent HPMA copolymer containing side-chains ending in 4-nitrophenyl ester (ONp) reactive groups with primary NH(2) groups of the antibodies. The star structure of antibody-targeted conjugates was prepared using semitelechelic HPMA copolymer chains containing only one reactive N-hydroxysuccinimide group at the end of the backbone chain. In both types of conjugates, B1 monoclonal antibody (mAb) was used as a targeting moiety. B1 mAb recognizes the idiotype of surface IgM on BCL1 cells. The star structure of the targeted conjugate had a narrower molecular mass distribution than the classic structure. The peak in the star structure was around 300-350 kDa, while the classic structure conjugate had a peak around 1300 kDa. Doxorubicin was bound to the HPMA copolymer via Gly-Phe(D,L)-Leu-Gly spacer to ensure the controlled intracellular delivery. The release of doxorubicin from polymer conjugates incubated in the presence of cathepsin B was almost twice faster from the star structure of targeted conjugate than from the classic one. The star structure of the targeted conjugate showed a lower binding activity to BCL1 cells in vitro, but the cytostatic activity measured by [(3)H]thymidine incorporation was three times higher than that seen with the classic conjugate. Cytostatic activity of nontargeted and anti-Thy 1.2 mAb (irrelevant mAb) modified HPMA copolymer-bound doxorubicin was more than hundred times lower as compared to the star structure of B1 mAb targeted conjugate. In vivo, both types of conjugates targeted with B1 mAb bound to BCL1 cells in the spleen with approximately the same intensity. The classic structure of the targeted conjugate bound to BCL1 cells in the blood with a slightly higher intensity than the star structure. Both types of targeted conjugates had a much stronger antitumor effect than nontargeted HPMA copolymer-bound doxorubicin and free doxorubicin. The star structure of targeted conjugate had a remarkably higher antitumor effect than the classic structure: a single intravenous dose of 100 microg of doxorubicin given on day 11 completely cured five out of nine experimental animals whereas the classic structure of targeted conjugate given in the same schedule only prolonged the survival of experimental mice to 138% of control mice. These results show that the star structure of antibody-targeted HPMA copolymer-bound doxorubicin is a suitable conjugate for targeted drug delivery with better characterization, higher cytostatic activity in vitro, and stronger antitumor potential in vivo than classic conjugates.  相似文献   

4.
Coupling anticancer drugs to synthetic polymers is a promising approach of enhancing the antitumor efficacy and reducing the side-effects of these agents. Doxorubicin maleimide derivatives containing an amide or acid-sensitive hydrazone linker were therefore coupled to alpha-methoxy-poly(ethylene glycol)-thiopropionic acid amide (MW 20000 Da), alpha,omega-bis-thiopropionic acid amide poly(ethylene glycol) (MW 20000 Da) or alpha-tert-butoxy-poly(ethylene glycol)-thiopropionic acid amide (MW 70000 Da) and the resulting polyethylene glycol (PEG) conjugates isolated through size-exclusion chromatography. The polymer drug derivatives were designed as to release doxorubicin inside the tumor cell by acid-cleavage of the hydrazone bond after uptake of the conjugate by endocytosis. The acid-sensitive PEG conjugates containing the carboxylic hydrazone bonds exhibited in vitro activity against human BXF T24 bladder carcinoma and LXFL 529L lung cancer cells with IC70 values in the range 0.02-1.5 microm (cell culture assay: propidium iodide fluorescence or colony forming assay). In contrast, PEG doxorubicin conjugates containing an amide bond between the drug and the polymer showed no in vitro activity. Fluorescence microscopy studies in LXFL 529 lung cancer cells revealed that free doxorubicin accumulates in the cell nucleus whereas doxorubicin of the acid-sensitive PEG doxorubicin conjugates is primarily localized in the cytoplasm. Nevertheless, the acid-sensitive PEG doxorubicin conjugates retain their ability to bind to calf thymus DNA as shown by fluorescence and visible spectroscopy studies. Results regarding the effect of an acid-sensitive PEG conjugate of molecular weight 20000 in the chorioallantoic membrane (CAM) assay indicate that this conjugate is significantly less embryotoxic than free doxorubicin although antiangiogenic effects were not observed.  相似文献   

5.
Doxorubicin is one of the most potent anti-tumor drugs with a broad spectrum of use. To reduce its toxic effect and improve its pharmacokinetics, we conjugated it to an HPMA copolymer carrier that enhances its passive accumulation within solid tumors via the EPR effect and decreases its cytotoxicity to normal, noncancer cells. In this study, we compared the antiproliferative, pro-survival, and death signals triggered in EL-4 cancer cells exposed to free doxorubicin and doxorubicin conjugated to a HPMA copolymer carrier via either enzymatically (PK1) or hydrolytically (HYD) degradable bonds. We have previously shown that the intracellular distribution of free doxorubicin, HYD, and PK1 is markedly different. Here, we demonstrated that these three agents greatly differ also in the antiproliferative effect and cell death signals they trigger. JNK phosphorylation sharply increased in cells treated with HYD, while treatment with free doxorubicin moderately decreased and treatment with PK1 even strongly decreased it. On the other hand, treatment with free doxorubicin greatly increased p38 phosphorylation, while PK1 and HYD increased it slightly. PK1 also significantly increased ERK phosphorylation, while both the free doxorubicin and HYD conjugate slightly decreased it. Long-term inhibition of JNK significantly increased both proliferation and viability of EL-4 cells treated with free doxorubicin, showing that the JNK signaling pathway could be critical for mediating cell death in EL-4 cells exposed to free doxorubicin. Both activation of caspase 3 and decreased binding activity of the p50 subunit of NFkappaB were observed in cells treated with free doxorubicin and HYD, while no such effects were seen in cells incubated with PK1. Analysis of the expression of genes involved in apoptosis and regulation of the cell cycle demonstrated that free doxorubicin and HYD have very similar mechanisms of action, while PK1 has very different characteristics.  相似文献   

6.
目的:制备叶酸介导的普兰多糖-阿霉素聚合物前药(FA-MP-DOX),实现阿霉素药物的靶向控制释放。方法:将普鲁兰多糖用马来酸酐进行修饰后,通过酰胺键键合阿霉素制备得到普鲁兰多糖-阿霉素(MP-DOX),继而酯键键合叶酸制备得到叶酸介导的普鲁兰多糖-阿霉素聚合物前药(FA-MP-DOX)。红外光谱、核磁共振光谱表征聚合物药物的结构,动态透析法模拟体外释药特性,监测不同pH值聚合物药物中阿霉素的释药特性,同时采用人口腔表皮样癌细胞(KB细胞)测定聚合物药物体系的细胞毒性。结果:①经核磁共振表征FA-MP-DOX聚合物合成完成。②在pH2.5、pH5.0及pH7.4的PBS缓冲体系16h中,阿霉素药物累积释放率分别为49.1%,30.3%和15.3%,证实FA-MP-DOX中阿霉素的释放具有pH依赖性。③细胞实验证实FA-MP-DOX的细胞毒性高于阿霉素和MP-DOX。结论:FA-MP-DOX聚合物药物有望成为阿霉素智能型控释和靶向性药物载体。  相似文献   

7.
alpha-Fetoprotein (AFP) was conjugated with doxorubicin (DR) using glutaraldehyde as a cross-linking agent. The protein/DR molar ratio in the conjugate is 1 : 2. Cytotoxic activities (CTA) of the AFP-DR conjugate and of the free DR were compared using human mammary gland carcinoma cells, both DR-sensitive (MCF-7Wt) and DR-resistant (MCF-7AdrR). The CTA of the AFP-DR conjugate was fivefold higher than the CTA of the free DR for sensitive cells of the MCF-7Wt line and sevenfold higher for resistant cells of the MCF-7AdrR line. The CTA of the AFP-DR conjugate was also studied in vitro using the proliferating endothelium taken for a model of endothelial cell lining of blood vessels that supply the tumor. The AFP-DR conjugate was shown to have a high CTA for the endothelial cells (IC50 = 2.5 nM); thus, the conjugate is suggested to manifest an anti-angiogenic effect in vivo. The antitumor activity of the AFP-DR conjugate was studied using mice with inoculated melanoma B16 tumors. The treatment of animals significantly inhibited the tumor growth (>97%) and increased by 60% the mean life span of the animals compared to the control. The high antitumor efficiency of the AFP-DR conjugate and the possibility to significantly decrease the tumor cell resistance to DR make this conjugate a promising chemotherapeutic agent.  相似文献   

8.
Pharmacokinetics of the doxorubicin (DOX) conjugates with magnetite nanoparticles of the core/ shell type in mice following i.v. injection in a dose of 12.5 microg Fe/g tissue w/w was studied using electron spin resonance technique (ESR). Conjugation of the DOX with magnetic nanoparticles was shown to considerably decrease DOX bioavailability in the heart and kidney tissues compared to the free DOX. A non-uniform stationary magnetic field B of 210 mT and [deltaB] of 200 mT/cm was found to be efficient in increasing DOX conjugate bioavailability in the target site. The magnetic field was also found to inhibit conjugate accumulation in the liver resulted in the increased bioavailability of the conjugates in the blood. The phenomenon can be associated with in vivo inhibition of the phagocytic activity of the immunocompetent cells upon application of magnetic fields. Morphometry data in agreement with pharmacokinetic data revealed a decrease in the conjugate concentration in the liver tissue and cells as well as the relative decrease in conjugate concentration in the Kupffer cells compared to hepatocytes upon application of magnetic fields.  相似文献   

9.
Pheophorbide-a, a chlorine based photosensitizer known to be selectively accumulated in cancer cells, was conjugated with anticancer drugs, doxorubicin and paclitaxel in the purpose of selective cancer diagnosis and therapy. Pheophorbide-a was conjugated with anticancer drugs via directly and by the use of selective cleavage linkers in cancer cell. The fluorescence of pheophorbide-a and doxorubicin conjugate by excitation at 420 or 440 nm was greatly diminished possibly by the energy transfer mechanism between two fluorescent groups. However, upon treatment in cancer cells, the conjugate showed to be cleaved to restore each fluorescence of pheophorbide-a and doxorubicin after 48 h of incubation. Also, pheophorbide-a conjugates either with doxorubicin and paclitaxel inhibited the growth of various cancer cells more potently than pheophorbide-a, which displayed very weak inhibitory activity. The results indicated that the pheophorbide-a conjugates with anticancer drugs could be utilized for selective cancer therapy as well as for the fluorescence detection of cancer.  相似文献   

10.
The conventional chemotherapy agent, doxorubicin, is of limited clinical use because of its systemic toxicity toward normal healthy tissue. A new doxorubicin conjugate with α-linolenic acid showed good anti-tumor activity with lower toxicity than free doxorubicin and exhibited an active tumor-targeting profile due to the introduction of α-linolenic acid which might be an effective tumor-targeting moiety for the modification of chemotherapeutics.  相似文献   

11.
Alterations in the immunogenic properties of tumor cells frequently accompany selection for multipledrug-resistant (MDR) variants. Therefore, studies were performed to examine the hypothesis that overexpression of membrane P-glycoprotein, commonly observed in MDR tumor cells, is associated with enhanced immunogenic properties. Immunogenicity was determined by (a) the ability of drug-sensitive parental UV2237M fibrosarcoma cells and drug-resistant UV2237M variant cells to immunize normal mice against rechallenge with parental tumor cells and (b) the ability of normal syngeneic mice to reject cell inocula that caused progressive tumor growth in immunocompromised mice. Variant UV2237M cell lines included subpopulations selected for a six- to ten-fold increase in mRNA for P-glycoprotein and expression of the MDR phenotype (resistance to doxorubicin) and cells sensitive to doxorubicin (and no expression of MDR properties) but resistant to ouabain. All UV2237M drug-resistant cells were highly immunogenic in immunocompetent mice, regardless of their MDR phenotype. Additional studies showed that CT-26 murine adenocarcinoma cells, sensitive or resistant to doxorubicin (expressing high levels of P-glycoprotein), injected into normal syngeneic Balb/c mice produced rapidly growing tumors. The data do not demonstrate a correlation between the immunogenic properties of drug-resistant tumor cells and the expression of P-glycoprotein.Supported in part by core grant CA-16672 R35-CA42 107 from the National Cancer Institute, and postdoctoral fellowship grant PF-3446 from the American Cancer Society (R. R.)  相似文献   

12.
Enhanced ceramide glycosylation catalyzed by glucosylceramide synthase (GCS) limits therapeutic efficiencies of antineoplastic agents including doxorubicin in drug-resistant cancer cells. Aimed to determine the role of GCS in tumor response to chemotherapy, a new mixed-backbone oligonucleotide (MBO-asGCS) with higher stability and efficiency has been generated to silence human GCS gene. MBO-asGCS was taken up efficiently in both drug-sensitive and drug-resistant cells, but it selectively suppressed GCS overexpression, and sensitized drug-resistant cells. MBO-asGCS increased doxorubicin sensitivity by 83-fold in human NCI/ADR-RES, and 43-fold in murine EMT6/AR1 breast cancer cells, respectively. In tumor-bearing mice, MBO-asGCS treatment dramatically inhibited the growth of multidrug-resistant NCI/ADR-RE tumors, decreasing tumor volume to 37%, as compared with scrambled control. Furthermore, MBO-asGCS sensitized multidrug-resistant tumors to chemotherapy, increasing doxorubicin efficiency greater than 2-fold. The sensitization effects of MBO-asGCS relied on the decreases of gene expression and enzyme activity of GCS, and on the increases of C18-ceramide and of caspase-executed apoptosis. MBO-asGCS was accumulation in tumor xenografts was greater in other tissues, excepting liver and kidneys; but MBO-asGCS did not exert significant toxic effects on liver and kidneys. This study, for the first time in vivo, has demonstrated that GCS is a promising therapeutic target for cancer drug resistance, and MBO-asGCS has the potential to be developed as an antineoplastic agent.  相似文献   

13.
Internalization of an intact doxorubicin immunoconjugate   总被引:2,自引:0,他引:2  
An immunoconjugate between doxorubicin and anti-(carcinoembryonic antigen) (CEA) was prepared by using aminodextran (M r=40 000) as the intermediate carrier, and the carbohydrate moiety of the antibody as the linking site. The resulting immunoconjugate was subjected to an in vitro evaluation for the internalization on the target cells (LoVo), and compared to that of unconjugated antibody, as well as the cellular uptake of unconjugated doxorubicin. The internalization was evaluated microscopically by following the translocation of the red fluorescence of doxorubicin and the green fluorescence of the fluorescein-isothiocyanate-labeled goat anti-(mouse Ig) antibody, which visualizes the location of the primary mouse antibody. Anti-CEA monoclonal antibody (NP-4) was found to internalize into LoVo cells. The immunoconjugate made with this antibody was similarly internalized, and the doxorubicin was found to distribute with the primary antibody. The cell surface and cytoplasm were the major compartments of their distribution. These results indicate that the drug molecules were indeed delivered into the cells by the antibody as an intact conjugate. Unconjugated doxorubicin, on the contrary, was quickly absorbed by the cells and concentrated in the nucleus within 30 min, and never showed a distribution in the cytoplasm or cell membrane as in the nucleus by this procedure. The intermediate drug conjugate, doxorubicin-dextran, did not show internalization. The internalization of NP-4 antibody (or the doxorubicin conjugate) was also confirmed by studying the intracellular catabolism of the cell-bound antibody (or conjugate). The release of the degraded antibody by the cells, as differentiated by trichloroacetic acid precipitation techniques, was considered an indication of internalization. Lysosomes were involved in the degradation, since the process was markedly inhibited in the presence of the lysosomal enzyme inhibitor, ammonium chloride.Supported in part by USPHS grant CA 39841 from the NIH, grant EDT-16 from the American Cancer Society, and grant 89-240360-6 from the New Jersey Commission on Science and Technology.  相似文献   

14.
In this study, the modulatory effect of ferulic acid on P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) was examined in KB ChR8-5 resistant cells and drug-resistant tumor xenografts. We observed that ferulic acid enhanced the cytotoxicity of doxorubicin and vincristine in the P-gp overexpressing KB ChR8-5 cells. Further, ferulic acid enhances the doxorubicin induced γH2AX foci formation and synergistically augmented doxorubicin-induced apoptotic signaling in the drug-resistant cells. It has also been noticed that NF-κB nuclear translocation was suppressed by ferulic acid and that this response might be associated with the modulation of phosphatidyinositol 3-kinase (PI3K)/Akt/signaling pathway. We also found that ferulic acid and doxorubicin combination reduced the size of KB ChR8-5 tumor xenograft by threefold as compared to doxorubicin-alone treated group. Thus, ferulic acid contributes to the reversal of the MDR through suppression of P-gp expression via the inhibition of PI3K/Akt/NF-κB signaling pathway.  相似文献   

15.
Neutrophil gelatinase-associated lipocalin (NGAL, a.k.a Lnc2) is a member of the lipocalin family and has diverse roles. NGAL can stabilize matrix metalloproteinase-9 from autodegradation. NGAL is considered as a siderocalin that is important in the transport of iron. NGAL expression has also been associated with certain neoplasias and is implicated in the metastasis of breast cancer. In a previous study, we examined whether ectopic NGAL expression would alter the sensitivity of breast epithelial, breast and colorectal cancer cells to the effects of the chemotherapeutic drug doxorubicin. While abundant NGAL expression was detected in all the cells infected with a retrovirus encoding NGAL, this expression did not alter the sensitivity of these cells to doxorubicin as compared with empty vector-transduced cells. We were also interested in determining the effects of ectopic NGAL expression on the sensitivity to small-molecule inhibitors targeting key signaling molecules. Ectopic NGAL expression increased the sensitivity of MCF-7 breast cancer cells to EGFR, Bcl-2 and calmodulin kinase inhibitors as well as the natural plant product berberine. Furthermore, when suboptimal concentrations of certain inhibitors were combined with doxorubicin, a reduction in the doxorubicin IC50 was frequently observed. An exception was observed when doxorubicin was combined with rapamycin, as doxorubicin suppressed the sensitivity of the NGAL-transduced MCF-7 cells to rapamycin when compared with the empty vector controls. In contrast, changes in the sensitivities of the NGAL-transduced HT-29 colorectal cancer cell line and the breast epithelial MCF-10A cell line were not detected compared with empty vector-transduced cells. Doxorubicin-resistant MCF-7/DoxR cells were examined in these experiments as a control drug-resistant line; it displayed increased sensitivity to EGFR and Bcl-2 inhibitors compared with empty vector transduced MCF-7 cells. These results indicate that NGAL expression can alter the sensitivity of certain cancer cells to small-molecule inhibitors, suggesting that patients whose tumors exhibit elevated NGAL expression or have become drug-resistant may display altered responses to certain small-molecule inhibitors.  相似文献   

16.
One of the major obstacles which are opposed to the success of anticancer treatment is the cell resistance that generally develops after administration of commonly used drugs. In this study, we try to overcome the tumour cell resistance of doxorubicin (Dox) by developing a cell-penetrating peptide (CPP)-anticancer drug conjugate in aim to enhance its intracellular delivery and that its therapeutic effects. For this purpose, two cell-penetrating peptides, penetratin (pene) and tat, derived from the HIV-1 TAT protein, were chemically conjugated to Dox. The cytotoxicity, intracellular distribution and uptake were accessed in CHO cells (Chinese Hamster Ovarian carcinoma cells), HUVEC (Human Umbilical Vein Endothelial Cells), differentiated NG108.15 neuronal cell and breast cancer cells MCF7drug-sensitive or MDA-MB 231 drug-resistant cell lines. The conjugates showed different cell killing activity and intracellular distribution pattern by comparison to Dox as assessed respectively by MTT-based colorimetric cellular cytotoxicity assay, confocal fluorescence microscopy and FACS analysis. After treatment with 3 μM with Dox-CPPs for 2 h, pene increase the Dox cytotoxicity by 7.19-fold in CHO cells, by 11.53-fold in HUVEC cells and by 4.87-fold in MDA-MB 231 cells. However, cytotoxicity was decreased in NG108.15 cells and MCF7. Our CPPs-Dox conjugate proves the validity of CPPs for the cytoplasmic delivery of therapeutically useful molecules and also a valuable strategy to overcome drug resistance.  相似文献   

17.
Dendritic nanostructures can play a key role in drug delivery, due to the high density and variety of surface functional groups that can facilitate and modulate the delivery process. We have investigated the effect of dendrimer end-functionality on the activity of polyamido amine (PAMAM) dendrimer-methotrexate (MTX) conjugates in MTX-sensitive and MTX-resistant human acute lymphoblastoid leukemia (CCRF-CEM) and Chinese hamster ovary (CHO) cell lines. Two amide-bonded PAMAM dendrimer-MTX conjugates were prepared using a dicyclohexylcarbodiimide (DCC) coupling reaction: one between a carboxylic acid-terminated G2.5 dendrimer and the amine groups of the MTX (conjugate A) and another between an amine-terminated G3 dendrimer and the carboxylic acid group of the MTX (conjugate B). Our studies suggest that conjugate A showed an increased drug activity compared to an equimolar amount of free MTX toward both sensitive and resistant cell lines, whereas conjugate B did not show significant activity on any of the cell lines. Despite substantially impaired MTX transport by MTX-resistant CEM/MTX and RII cells, conjugate A showed sensitivity increases of approximately 8- and 24-fold (based on IC50 values), respectively, compared to free MTX. Co-incubation of the cells with adenosine and thymidine along with either conjugate A or MTX resulted in almost complete protection, suggesting that the conjugate achieves its effect on dihyrofolate reductase (DHFR) enzyme through the same mechanism as that of MTX. The differences in cytotoxicity of these amide-bonded conjugates may be indicative of differences in the intracellular drug release from the cationic dendrimer (conjugate B) versus the anionic dendrimer (conjugate A), perhaps due to the differences in lysosomal residence times dictated by the surface functionality. These findings demonstrate the feasibility of using dendrimers as drug delivery vehicles for achieving higher therapeutic effects in chemotherapy, especially in drug-resistant cells.  相似文献   

18.
A new biodegradable water-soluble phosphazene trimer-doxorubicin conjugate was synthesized, in which equimolar hydrophilic methoxy-poly(ethylene glycol) with a molecular weight of 350 (MPEG350) and a tumor-specific tetrapeptide (Gly-Phe-Leu-Gly) were grafted to cyclotriphosphazene. The present conjugate exhibited cytotoxicity lower than that of free doxorubicin (IC50=0.10 microM) but a reasonably higher in vitro cytotoxicity (IC50=1.1 microM) against the leukemia L1210 cell line probably due to its enzymatically controlled release.  相似文献   

19.
High molecular weight polymers (> 20 000 Da) have been widely used as soluble drug carriers to improve drug targeting and therapeutic efficacy. Dendritic polymers are exceptional candidates for the preparation of near monodisperse drug carriers due to their well-defined structure, multivalency, and flexibility for tailored functionalization. We evaluated various dendritic architectures composed of a polyester dendritic scaffold based on the monomer unit 2,2-bis(hydroxymethyl)propanoic acid for their suitability as drug carriers both in vitro and in vivo. These systems are both water soluble and nontoxic. In addition, the potent anticancer drug, doxorubicin, was covalently bound via a hydrazone linkage to a high molecular weight 3-arm poly(ethylene oxide)-dendrimer hybrid. Drug release was a function of pH, and the release rate was more rapid at pH < 6. The cytotoxicity of the DOX-polymer conjugate measured on multiple cancer lines in vitro was reduced but not eliminated, indicating that some active doxorubicin was released from the drug polymer conjugate under physiological conditions. Furthermore, biodistribution experiments show little accumulation of the DOX-polymer conjugate in vital organs, and the serum half-life of doxorubicin attached to an appropriate high molecular weight polymer has been significantly increased when compared to the free drug. Thus, this new macromolecular system exhibits promising characteristics for the development of new polymeric drug carriers.  相似文献   

20.
We covalently linked doxorubicin with a peptide that is hydrolyzable by prostate-specific antigen. In the presence of prostate tumor cells secreting prostate-specific antigen, the peptide moiety of this conjugate, L-377,202, was hydrolyzed, resulting in the release of leucine-doxorubicin and doxorubicin, which are both very cytotoxic to cancer cells. However, L-377,202 was much less cytotoxic than conventional doxorubicin to cells in culture that do not secrete prostate-specific antigen. L-377,202 was approximately 15 times more effective than was conventional doxorubicin at inhibiting the growth of human prostate cancer tumors in nude mice when both drugs were used at their maximally tolerated doses. Nude mice inoculated with human prostate tumor cells secreting prostate-specific antigen showed considerable reductions in tumor burden with minimal total body weight loss when treated with L-377, 202. This improvement in therapeutic index correlated with the selective localization of leucine-doxorubicin and free doxorubicin in tissues secreting prostate-specific antigen after exposure to L-377,202.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号