首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial patterns of intraspecific variation are shaped by geographical distance among populations, historical changes in gene flow and interactions with local environments. Although these factors are not mutually exclusive and operate on both genomic and phenotypic variation, it is unclear how they affect these two axes of variation. We address this question by exploring the predictors of genomic and phenotypic divergence in Icterus gularis, a broadly distributed Middle American bird that exhibits marked geographical variation in body size across its range. We combined a comprehensive single nucleotide polymorphism and phenotypic data set to test whether genome‐wide genetic and phenotypic differentiation are best explained by (i) isolation by distance, (ii) isolation by history or (iii) isolation by environment. We find that the pronounced genetic and phenotypic variation in I. gularis are only partially correlated and differ regarding spatial predictors. Whereas genomic variation is largely explained by historical barriers to gene flow, phenotypic diversity can be best predicted by contemporary environmental heterogeneity. Our genomic analyses reveal strong phylogeographical structure coinciding with the Chivela Pass at the Isthmus of Tehuantepec that was formed during the Pleistocene, when populations were isolated in north–south refugia. In contrast, we found a strong association between body size and environmental variables, such as temperature and precipitation. The relationship between body size and local climate is consistent with a pattern produced by either natural selection or environmental plasticity. Overall, these results provide empirical evidence for why phenotypic and genomic data are often in conflict in taxonomic and phylogeographical studies.  相似文献   

2.
To understand the impact of various factors on the maintenance of genetic variation in natural populations, we need to focus on situations where at least some of these factors are removed or controlled. In this study, we used highly variable, presumably neutral, microsatellite and mtDNA markers to assess the nature of genetic variation in 14 island and two mainland populations of the Australian bush rat, where there is no migration between islands. Thus we are controlling for selection and gene flow. Both marker sets revealed low levels of diversity within the small island populations and extreme differentiation between populations. For six microsatellite loci, all of the small island populations had less genetic variation than the mainland populations; reduction in allelic diversity was more pronounced than loss of heterozygosity. Kangaroo Island, the large island population, had similar levels of diversity to the mainland populations. A 442 base pair (bp) section of the mtDNA control region was screened for variation by outgroup heteroduplex analysis/temperature gradient gel electrophoresis (OHA/TGGE). Only three of the 13 small island populations showed haplotypic diversity: Gambier (2), Waldegrave (2), and Eyere (3). The level of haplotypic diversity in the small island populations was similar to that on the mainland, most likely reflecting a recent population bottleneck on the mainland. In contrast, Kangaroo Island had 9 mtDNA haplotypes. The dominant factor influencing genetic diversity on the islands was island size. No correlation was detected between genetic diversity and the time since isolation or distance form the mainland. The combination of genetic drift within and complete isolation among the small island populations has resulted in rapid and extreme population divergence. Population pair-wise comparisons of allele frequency distributions showed significant differences for all populations for all loci (F st = 0.11–0.84, R st = 0.07–0.99). For the mtDNA control region, 92.6% of variation was apportioned between populations; only the Pearson islands shared a haplotype. Mantel tests of pair-wise genetic distance with pair-wise geographic distance showed no significant geographical clustering of haplotypes. However, population substructuring was detected within populations where sampling was conducted over a broader geographical range, as indicated by departures from Hardy-Weinberg equilibrium. Thus substructuring in the ancestral population cannot be ruled out. The dominant evolutionary forces on the islands, after the initial founder event, are stochastic population processes such as genetic drift and mutation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The smooth and the Montandon's newts (Triturus vulgaris and T. montandoni) are genetically similar sister species with highly divergent male secondary sexual traits involved in complex courtship behaviour. Their parapatric ranges overlap at moderate elevations in the Carpathian Mountains where they hybridize readily. Here we present a detailed study of genetic and morphological variation in populations from the area of sympatry. Analysis of variation at seven nuclear markers, mtDNA and male sexual secondary traits was complemented with an ecological survey of breeding sites characteristics. Extensive hybridization was revealed with back-cross individuals similar to either parental species predominating among hybrids. The hybrid zone exhibited a mosaic pattern: the genetic composition of the populations was correlated only weakly with their geographical position. No association with habitat type was found. Departures from Hardy-Weinberg proportions, significant linkage disequilibria and bimodal distribution of genotypes suggest strongly that assortative mating is an important factor shaping the genetic composition of hybrid populations. The pattern of cytonuclear disequilibria did not indicate much asymmetry in interspecific matings. Changes in the frequency of nuclear markers were highly concordant, whereas mtDNA showed much wider bidirectional introgression with 14% excess of T. montandoni haplotype. We argue that the mosaic structure of the newt hybrid zone results mainly from stochastic processes related to extinction and recolonization. Microgeographical differences in mtDNA introgression are explained by historical range shifts. Since morphologically intermediate males were underrepresented when compared to hybrid males identified by genetic markers, sexual selection acting against the morphological intermediates is implied. We discuss the implications of these findings in the context of reinforcement of prezygotic isolation in newts.  相似文献   

4.
Bull trout, Salvelinus confluentus (Salmonidae), are distributed in northwestern North America from Nevada to Yukon Territory, largely in interior drainages. The species is of conservation concern owing to declines in abundance, particularly in southern portions of its range. To investigate phylogenetic structure within bull trout that might form the basis for the delineation of major conservation units, we conducted a mitochondrial DNA (mtDNA) survey in bull trout from throughout its range. Restriction fragment length polymorphism (RFLP) analysis of four segments of the mtDNA genome with 11 restriction enzymes resolved 21 composite haplotypes that differed by an average of 0.5% in sequence. One group of haplotypes predominated in 'coastal' areas (west of the coastal mountain ranges) while another predominated in 'interior' regions (east of the coastal mountains). The two putative lineages differed by 0.8% in sequence and were also resolved by sequencing a portion of the ND1 gene in a representative of each RFLP haplotype. Significant variation existed within individual sample sites (12% of total variation) and among sites within major geographical regions (33%), but most variation (55%) was associated with differences between coastal and interior regions. We concluded that: (i) bull trout are subdivided into coastal and interior lineages; (ii) this subdivision reflects recent historical isolation in two refugia south of the Cordilleran ice sheet during the Pleistocene: the Chehalis and Columbia refugia; and (iii) most of the molecular variation resides at the interpopulation and inter-region levels. Conservation efforts, therefore, should focus on maintaining as many populations as possible across as many geographical regions as possible within both coastal and interior lineages.  相似文献   

5.
The putative hybrid zone between Eucalyptus populnea and E. brownii is examined using morphological and molecular techniques. This species complex displays continuous morphological variation across the study area, which has been previously interpreted as the product of hybridization between allopatric species. A microsatellite analysis indicates that there was little genetic structuring across the morphological cline and only low levels of population differentiation. The nested clade analysis of the JLA+ region of the chloroplast DNA (cpDNA) indicates that the geographical distribution of cpDNA haplotypes is unlikely to be the result of historical hybridization events, and that restricted seed-mediated gene flow with isolation by distance is responsible for the phylogeographical distribution. A more plausible explanation for the origin and persistence of the morphological cline is that the process of continuous morphological diversification has been promoted by a directional selection gradient. This study addresses species status within Eucalyptus and the belief that hybridization is widespread and is an important process in the group's evolution.  相似文献   

6.
We performed a combined analysis of mitochondrial DNA (mtDNA) and microsatellite loci among lake whitefish (Coregonus clupeaformis) populations in order to assess the levels of congruence between both types of markers in defining patterns of genetic structuring, introgressive hybridization and inferring population origins in the hybrid zone of the St. John River basin. A second objective was to test the hypothesis that secondary contact between glacial lineages always resulted in the occurrence of sympatric dwarf and normal whitefish ecotypes. Fish were sampled from 35 populations and polymorphism was screened at mtDNA and six microsatellite loci for a total of 688 and 763 whitefish, respectively. Four lakes harbouring a single whitefish population of normal ecotype admixed with mtDNA haplotypes of different lineages were found. This confirmed that secondary contact between whitefish evolutionary lineages did not always result in the persistence of reproductively isolated ecotypes. Microsatellites further supported the definition of distinct glacial lineages by identifying lineage-specific allelic size groups. They also further supported the hypothesis that ecotypes originated from either a single founding lineage (sympatric divergence) or following secondary contacts between lineages (allopatric divergence), depending on the lake. In general, however, the pattern of population differentiation and introgressive hybridization observed at microsatellites was in sharp contrast with that depicted by mtDNA variation. Both factorial correspondence analysis and analysis of admixture proportion revealed a much more pronounced pattern of introgressive hybridization than depicted by mtDNA analyses. Variable levels of introgression indicated that environmental differences may be as important as the historical contingency of secondary contact in explaining the persistence of sympatric ecotypes and the differential pattern of introgressive hybridization among lakes. Whitefish populations from the St. John River basin hybrid zone represent a rare illustration of a continuum of both morphological and genetic differentiation within a given taxon, spanning from complete introgression to possibly complete reproductive isolation, depending on lakes. Thus, each lake may be viewed as a different temporal snapshot taken throughout the gradual process of speciation.  相似文献   

7.
Restriction fragment length polymorphism analysis of mitochondrial DNA (mtDNA) was used to examine the genetic structure among field voles (Microtus agrestis) from southern and central Sweden. A total of 57 haplotypes was identified in 158 voles from 60 localities. Overall mtDNA diversity was high, but both haplotype and nucleotide diversity exhibited pronounced geographic heterogeneity. Phylogenetic analyses revealed a shallow tree with seven primary mtDNA lineages separated by sequence divergences ranging from 0.6% to 1.0%. The geographic structure of mtDNA diversity and lineage distribution was complex but strongly structured and deviated significantly from an equilibrium situation. The extensive mtDNA diversity observed and the recent biogeographic history of the region suggests that the shallow mtDNA structure in the field vole cannot be explained solely by stochastic lineage sorting in situ or isolation by distance. Instead, the data suggest that the genetic imprints of historical demographic conditions and vicariant geographic events have been preserved and to a large extent determine the contemporary geographic distribution of mtDNA variation. A plausible historical scenario involves differentiation of mtDNA lineages in local populations in glacial refugia, a moving postglacial population structure, and bottlenecks and expansions of mtDNA lineages during the postglacial recolonization of Sweden. By combining the mtDNA data with an analysis of Y-chromosome variation, a specific population unit was identified in southwestern Sweden. This population, defined by a unique mtDNA lineage and fixation of a Y-chromosome variant, probably originated in a population bottleneck in southern Sweden about 12,000 to 13,000 calendar years ago.  相似文献   

8.
Elucidating the factors influencing genetic differentiation is an important task in biology, and the relative contribution from natural selection and genetic drift has long been debated. In this study, we used a regression-based approach to simultaneously estimate the quantitative contributions of environmental adaptation and isolation by distance on genetic variation in Boechera stricta, a wild relative of Arabidopsis. Patterns of discrete and continuous genetic differentiation coexist within this species. For the discrete differentiation between two major genetic groups, environment has larger contribution than geography, and we also identified a significant environment-by-geography interaction effect. Elsewhere in the species range, we found a latitudinal cline of genetic variation reflecting only isolation by distance. To further confirm the effect of environmental selection on genetic divergence, we identified the specific environmental variables predicting local genotypes in allopatric and sympatric regions. Water availability was identified as the possible cause of differential local adaptation in both geographical regions, confirming the role of environmental adaptation in driving and maintaining genetic differentiation between the two major genetic groups. In addition, the environment-by-geography interaction is further confirmed by the finding that water availability is represented by different environmental factors in the allopatric and sympatric regions. In conclusion, this study shows that geographical and environmental factors together created stronger and more discrete genetic differentiation than isolation by distance alone, which only produced a gradual, clinal pattern of genetic variation. These findings emphasize the importance of environmental selection in shaping patterns of species-wide genetic variation in the natural environment.  相似文献   

9.
Analysis of population genetic relationships reveals the signatures of current processes such as spawning behaviour and migration, as well as those of historical events including vicariance and climate change. This study examines these signatures through testing broad‐ to fine‐scale genetic patterns among smallmouth bass Micropterus dolomieu spawning populations across their native Great Lakes range and outgroup areas, with fine‐scale concentration in Lake Erie. Our primary hypotheses include whether genetic patterns result from behavioural and/or geographical isolation, specifically: (i) Are spawning groups in interconnected waterways genetically separable? (ii) What is the degree of isolation across and among lakes, basins, and tributaries? (iii) Do genetic divergences correspond to geographical distances? and (iv) Are historical colonization patterns from glacial refugia retained? Variation at eight nuclear microsatellite DNA loci are analysed for 666 smallmouth bass from 28 locations, including 425 individuals in Lake Erie; as well as Lakes Superior, Huron, and Ontario, and outgroups from the Mississippi, Ohio, St. Lawrence, and Hudson River drainages. Results reveal marked genetic differences among lake and river populations, as well as surprisingly high divergences among closely spaced riverine sites. Results do not fit an isolation‐by‐geographical‐distance prediction for fine‐scale genetic patterns, but show weak correspondence across large geographical scales. Genetic relationships thus are consistent with hypotheses regarding divergent origins through vicariance in glacial refugia, followed by colonization pathways establishing modern‐day Great Lakes populations, and maintenance through behavioural site fidelity. Conservation management practices thus should preserve genetic identity and unique characters among smallmouth bass populations.  相似文献   

10.
Natural populations of widely distributed organisms often exhibit genetic clinal variation over their geographical ranges. The European anchovy, Engraulis encrasicolus, illustrates this by displaying a two-clade mitochondrial structure clinally arranged along the eastern Atlantic. One clade has low frequencies at higher latitudes, whereas the other has an anti-tropical distribution, with frequencies decreasing towards the tropics. The distribution pattern of these clades has been explained as a consequence of secondary contact after an ancient geographical isolation. However, it is not unlikely that selection acts on mitochondria whose genes are involved in relevant oxidative phosphorylation processes. In this study, we performed selection tests on a fragment of 1044 bp of the mitochondrial cytochrome b gene using 455 individuals from 18 locations. We also tested correlations of six environmental features: temperature, salinity, apparent oxygen utilization and nutrient concentrations of phosphate, nitrate and silicate, on a compilation of mitochondrial clade frequencies from 66 sampling sites comprising 2776 specimens from previously published studies. Positive selection in a single codon was detected predominantly (99%) in the anti-tropical clade and temperature was the most relevant environmental predictor, contributing with 59% of the variance in the geographical distribution of clade frequencies. These findings strongly suggest that temperature is shaping the contemporary distribution of mitochondrial DNA clade frequencies in the European anchovy.  相似文献   

11.
To understand the demographic history of Arabidopsis thaliana within its native geographical range, we have studied its genetic structure in the Iberian Peninsula region. We have analyzed the amount and spatial distribution of A. thaliana genetic variation by genotyping 268 individuals sampled in 100 natural populations from the Iberian Peninsula. Analyses of 175 individuals from 7 of these populations, with 20 chloroplast and nuclear microsatellite loci and 109 common single nucleotide polymorphisms, show significant population differentiation and isolation by distance. In addition, analyses of one genotype from 100 populations detected significant isolation by distance over the entire Iberian Peninsula, as well as among six Iberian subregions. Analyses of these 100 genotypes with different model-based clustering algorithms inferred four genetic clusters, which show a clear-cut geographical differentiation pattern. On the other hand, clustering analysis of a worldwide sample showed a west–east Eurasian longitudinal spatial gradient of the commonest Iberian genetic cluster. These results indicate that A. thaliana genetic variation displays significant regional structure and consistently support the hypothesis that Iberia has been a glacial refugium for A. thaliana. Furthermore, the Iberian geographical structure indicates a complex regional population dynamics, suggesting that this region contained multiple Pleistocene refugia with a different contribution to the postglacial colonization of Europe.  相似文献   

12.
The effects of Pleistocene environmental fluctuations on the distribution and diversity of organisms in Southeast Asia are much less well known than in Europe and North America. In these regions, the combination of palaeoenvironmental reconstruction and inferences about population history from genetic data has been very powerful. In Southeast Asia, mosquitoes are good candidates for the genetic approach, with the added benefit that understanding the relative contributions of historical and current processes to population structure can inform management of vector species. Genetic variation among populations of Anopheles minimus was examined using 144 mtDNA COII sequences from 23 sites in China, Thailand and Vietnam. Haplotype diversity was high, with two distinct lineages that have a sequence divergence of over 2% and exhibit different geographical distributions. We compare alternative hypotheses concerning the origin of this pattern. The observed data deviate from the expectations based on a single-panmictic population with or without growth, or a stable but spatially structured population. However, they can be readily accommodated by a model of past fragmentation into eastern and western refugia, followed by growth and range expansion. This is consistent with the palaeoenvironmental reconstructions currently available for the region.  相似文献   

13.
Rudh A  Rogell B  Höglund J 《Molecular ecology》2007,16(20):4284-4294
The relative roles that geographical isolation and selection play in driving population divergence remain one of the central questions in evolutionary biology. We approached this question by investigating genetic and morphological variation among populations of the strawberry poison frog, Dendrobates pumilio, in the Bocas del Toro archipelago, Panama. We found significant population genetic structure and isolation by distance based on amplified fragment length polymorphism markers. Snout vent length (SVL), coloration and the extent and size of dorsal black spots showed large variation among the studied populations. Differences in SVL correlated with genetic distance, whereas black spot patterns and other coloration parameters did not. Indeed, the latter characters were observed to be dramatically different between contiguous populations located on the same island. These results imply that neutral divergence among populations may account for the genetic patterns based on amplified fragment length polymorphism markers and SVL. However, selective pressures need to be invoked in order to explain the extraordinary variation in spot size and coverage, and coloration. We discuss the possibility that the observed variation in colour morphs is a consequence of a combination of local variation in both natural selection on an aposematic signal towards visual predators and sexual selection generated by colour morph-specific mate preferences.  相似文献   

14.
Arabidopsis thaliana provides a useful model system for functional, evolutionary and ecological studies in plant biology. We have analysed natural genetic variation in A. thaliana in order to infer its biogeographical and historical distribution across Eurasia. We analysed 79 amplified fragment length polymorphism (AFLP) markers in 142 accessions from the species' native range, and found highly significant genetic isolation by distance among A. thaliana accessions from Eurasia and southern Europe. These spatial patterns of genetic variation suggest that A. thaliana colonized central and northern Europe from Asia and from Mediterranean Pleistocene refugia, a trend which has been identified in other species. Statistically significant levels of multilocus linkage disequilibrium suggest intermediate levels of disequilibrium among subsets of loci, and analysis of genetic relationships among accessions reveal a star or bush-like dendrogram with low bootstrap support. Taken together, it appears that there has been sufficient historical recombination in the A. thaliana genome such that accessions do not conform to a tree-like, bifurcating pattern of evolution - there is no 'ecotype phylogeny.' Nonetheless, significant isolation by distance provides a framework upon which studies of natural variation in A. thaliana may be designed and interpreted.  相似文献   

15.
Genetic diversity is low in natural populations of red pine, Pinus resinosa, a species that has a vast range across north-eastern North America. In this study, we examined 10 chloroplast microsatellite or simple sequence repeats (cpSSR) loci in 136 individuals from 10 widespread populations. Substantial variation for the cpSSR loci was observed in the study populations. The contrast with red pine's lack of variation for other types of loci is likely to be due to the higher mutation rates typical of SSR loci. The amount of variation is lower than that generally found for cpSSR loci in other pine species. In addition, the variation exhibits a striking geographical pattern. Most of the genetic diversity is among populations, with little within populations, indicating substantial isolation of and genetic drift within many populations in the southern half of the species distribution. The greatest diversity now occurs in the north-eastern part of New England, which is especially intriguing because this entire area was glaciated. Thus the centre of diversity cannot be the origin of postglacial populations, rather it is likely caused by admixture, most probably because of influences from two separate refugia. Furthermore, the pattern indicates that the spread of red pine since the last glaciation is rather more complex than usually described, and it likely includes more than one refugia, complex migration routes, and postglacial-retreat isolation and genetic drift among shrinking populations in regions of the present southern range.  相似文献   

16.
Previous studies of Partula land snails from the Society Islands, French Polynesia, have shown that populations within species are highly differentiated in terms of their morphology, behaviour, ecology and molecular genetic variation. Despite this level of variability, differences between species are sometimes small, possibly reflecting the fact that reproductive isolation is not always complete and there exists the opportunity for genetic exchange between taxa through hybridization. The present study uses sequence data from a mitochondrial gene to further investigate genetic variation in Society Island Partula. Most populations are found in this study to be highly differentiated, but within individual species there seems to be no simple relationship either between genetic distance and geographical proximity, or between variation in mitochondria and that in allozymes or morphological characteristics. Among species there appears to be no simple correlation between degrees of reproductive isolation and genetic relatedness according to mitochondrial DNA. The results suggest that past events as well as ongoing drift and selection may have been important in affecting patterns of variation. Similarities among species at specific localities suggest that there must have been some genetic exchange in the past, although this may not necessarily reflect ongoing rates of hybridization. The discrepancy between results for different markers probably reflects the differential effects of drift and selection on mitochondrial and nuclear genes.  相似文献   

17.
Research investigating the geographical context of speciation has primarily focused on abiotic factors such as the role of Pleistocene glacial cycles, or geotectonic events. Few study systems allow a direct comparison of how biological differences, such as dispersal behaviour, affect population genetic structure of organisms that were subdivided during the Pleistocene. Mormon crickets exist in solitary and gregarious 'phases', which broadly correspond with an east-west mtDNA division across the Rocky Mountains. Gregarious individuals form bands that can move up to 2 km daily. This study assessed whether population genetic structure results mainly from deep Pleistocene vicariance or if we can also detect more recent genetic patterns due to phase and dispersal differences superimposed on the older, deeper divisions. We found that separation in refugia was a more important influence on genetic divergence than phase, with the Rockies acting as a barrier that separated Mormon cricket populations into eastern and western refugia during Pleistocene glacial cycles. However, patterns of isolation by distance differ between eastern and western clades for both mitochondrial and nuclear DNA, with greater divergence within the eastern, solitary clade. An mtDNA haplotype mismatch distribution is compatible with historical population expansion in the western clade but not in the eastern clade. A persistent (and possibly sex-biased) difference in dispersal ability has most likely influenced the greater population genetic structure seen in the eastern clade, emphasizing the importance of the interaction of Quaternary climate fluctuations and geography with biotic factors in producing the patterns of genetic subdivision observed today.  相似文献   

18.
The golden-striped salamander (Chioglossa lusitanica) is an ecologically specialized species, endemic to north-western Iberia. Patterns of genetic variation were assessed at seven polymorphic enzyme loci and one mitochondrial DNA (mtDNA) marker (cytochrome b) in 17 populations across its range. Estimates of enzyme genetic diversity revealed a high degree of genetic subdivision (FST = 0.68), mainly attributable to the existence of two groups of populations. The groups were located, respectively, north and south of the Mondego River, indicating that this river coincided with a major historical barrier to gene flow. A significant decrease in genetic variability from the Mondego northwards was associated with the Douro and Minho rivers. mtDNA sequence variation revealed a congruent pattern of two haplotype groups (d = 2.2%), with a geographical distribution resembling that of allozymes. The pattern and depth of genetic variation is consistent with the following hypotheses: (i) subdivision of an ancestral range of the species prior to the middle Pleistocene; (ii) secondary contact between populations representing historical refugia; (iii) relatively recent range expansion giving rise to the northern part of the species range; and (iv) loss of genetic variation through founder effects during range expansion across major rivers.  相似文献   

19.
Tree-feeding insects that are widespread in north temperate regions are excellent models for studying how past glaciations have impacted differentiation and speciation. We used mitochondrial DNA (mtDNA) sequences and allele frequencies at nine microsatellite loci to examine genetic population structure across the current range of the spruce beetle (Dendroctonus rufipennis), an economically important insect in North America. Two major haplotype groups occur across northern North America, from Newfoundland to Alaska, on white spruce (Picea glauca), and a third distinctive haplotype group occurs throughout the Rocky Mountains on Engelmann spruce (Picea engelmannii). The two mtDNA lineages found in northern populations are 3-4% divergent from each other and from the lineages found in the Rocky Mountains. Analyses of microsatellite data also suggest the existence of major population groupings associated with different geographical regions. In the Pacific Northwest, concordant contact zones for genetically distinct populations of spruce beetles and their principal hosts appear to reflect recent secondary contact. Although we could detect no evidence of historical mtDNA gene flow between allopatric population groups, patterns of variation in the Pacific Northwest suggest recent hybridization and introgression. Together with the pollen record for spruce, they also suggest that beetles have spread from at least three glacial refugia. A minimum estimate of divergence time between the Rocky Mountain and northern populations was 1.7 Myr (million years), presumably reflecting the combined effects of isolation during multiple glacial cycles.  相似文献   

20.
Partial sequences from mitochondrial (mt) 12S and 16S rRNA genes were analyzed to characterize diversity among captive rhesus macaques (Macaca mulatta) originating from various geographic regions. Several nested clades, defined by closely related haplotypes, were identified, suggesting considerable genetic subdivision, probably relics from heterogeneous origins, founder effects, and genetic drift, followed by breeding isolation. The rhesus matrilineages from India differed discretely and markedly from Chinese matrilineages; approximately 90% of the genetic heterogeneity among the combined samples of Indian and Chinese rhesus macaques studied here was due to country of origin. In addition, mtDNA sequences from macaques of China were more diverse than those from rhesus macaques of India, an outcome consistent with China's greater subspecies diversity and with nuclear genotype distributions. Otherwise, the distribution of mtDNA variation within rhesus macaques of China, and especially within those of India, exhibited far less structure and did not conform to a simple isolation-by-distance model. As the demand for genetically heterogeneous and well-characterized rhesus macaques for biomedical-based research increases, mtDNA haplotypes can be useful for genetically defining, preserving maximal levels of genetic diversity within, and confirming the geographic origin of captive breeding groups of rhesus macaques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号