首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eukaryotic Initiation Factor 2 (eIF2) is a key regulator of protein synthesis in eukaryotic cells, implicated in the initiation step of translation. Fertilization of the sea urchin eggs triggers a rapid increase in protein synthesis activity, which is necessary for the progress into embryonic cell cycles. Here we demonstrate that fertilization triggers eIF2α dephosphorylation, concomitant with an increase in protein synthesis and that induction of the eIF2α phosphorylation is intimately linked with an inhibition of protein synthesis and cell cycle arrest. Using a phospho-mimetic protein microinjected into sea urchin eggs, we showed that dephosphorylation of eIF2α is necessary for protein synthesis activity and cell division progression following fertilization. Our results demonstrate that regulation of eIF2α plays an important role in the protein synthesis rise that occurs during early development following fertilization.  相似文献   

2.
The major coat protein of the bacteriophage f1 is synthesized during infection of Escherichia coli and becomes tightly associated with the host membrane. This synthesis was studied in conjunction with the strain BB26-36, a mutant defective in phospholipid synthesis, to investigate basic questions concerning membrane protein and phospholipid synthesis. Coat protein synthesis is decreased in the absence of net phospholipid synthesis. The coat protein produced under these conditions is still found tightly associated with the membrane. Resumption of phospholipid synthesis leads to an increase in the synthesis and accumulation of the coat protein. Therefore, a correlation between coat protein and phospholipid synthesis seems to exist. However, the packaging of phage deoxyribonucleic acid into phage particles proceeds in the absence of phospholipid synthesis, and the number of phage particles produced appears to depend only on the amount of coat protein in the membrane.  相似文献   

3.
Growth and the rate of protein synthesis in germinating wheat embryonic axes are inhibited by the analog 6-azauridine via a mechanism which is independent of the usual effect of this compound as an inhibitor of de novo synthesis of UTP. The effects on growth and protein synthesis can be separated from that on UTP biosynthesis by analyses of the kinetics by which each effect is maximized following a 1.5-h pulse with 6-azauridine, and by saturation of the responses at different doses of the analog. The inhibitions of growth and protein synthesis are apparently not mediated through the rate of poly A(+) RNA synthesis (reduced as little as 8%), but rather by an effect on translation. Since cordycepin reduces the azauridine inhibitions of growth and protein synthesis, it is suggested that these latter effects of 6-azauridine may depend upon the synthesis of an inhibitory azauridyl-RNA.  相似文献   

4.
Energy cost of whole-body protein synthesis measured in vivo in chicks   总被引:3,自引:0,他引:3  
1. Energy cost of whole-body protein synthesis was measured in vivo in chicks by comparing the changes in protein synthesis and heat production after the administration of cycloheximide, an inhibitor of protein synthesis. 2. Incorporation of phenylalanine into whole-body protein fraction was promptly inhibited after the intravenous injection of cycloheximide, and the effect was sustained for at least 3 hr. 3. Both whole-body protein synthesis and total heat production were significantly reduced by the cycloheximide administration. 4. The energy cost of whole-body protein synthesis was calculated to be 5.35 kJ per g protein synthesis, and hence on a molar basis 7.52 ATPs are required per peptide bond synthesis.  相似文献   

5.
Regulation of Ribosomal Protein Synthesis in Escherichia coli   总被引:11,自引:6,他引:5       下载免费PDF全文
  相似文献   

6.
Effects of leucine and related compounds on protein synthesis were studied in L6 myotubes. The incorporation of [3H]tyrosine into cellular protein was measured as an index of protein synthesis. In leucine-depleted L6 myotubes, leucine and its keto acid, α-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipases A2 and C, canceled stimulatory actions of L-leucine and KIC on protein synthesis. Neither indomethacin, an inhibitor of cyclooxygenase, nor caffeic acid, an inhibitor of lipoxygenase, diminished their stimulatory actions, suggesting no involvement of arachidonic acid metabolism. Conversely, 1-O-hexadecyl-2-O-methylglycerol, an inhibitor of proteinkinase C, significantly canceled the stimulatory actions of L-leucine and KIC on protein synthesis, suggesting an involvement of phosphatidylinositol degradation and activation of protein kinase C. L-Leucine caused a rapid activation of protein kinase C in both cytosol and membrane fractions of the cells. These results strongly suggest that both L-leucine and KIC stimulate protein synthesis in L6 myotubes through activation of phospholipase C and protein kinase C.  相似文献   

7.
Evidence is presented that poxvirus deoxyribonucleic acid (DNA) synthesis required concurrent protein synthesis. The protein requirement in question can be distinguished from viral-induced thymidine kinase and DNA polymerase by virture of the instability of its messenger ribonucleic acid and its stoichiometric rather than catalytic relation to DNA synthesis. The protein(s) required did accumulate in the presence of fluorodeoxyuridine, an inhibitor of DNA synthesis, and, thus, appeared to be an "early" poxvirus function. The protein(s) was stable since it did function several hours after its synthesis had been terminated by puromycin. Two possible roles for such a protein requirement are discussed.  相似文献   

8.
We demonstrate that NGF couples the rate of degradation of long-lived proteins in sympathetic neurons to the rate of protein synthesis. Inhibiting protein synthesis rate by a specific percentage caused an almost equivalent percentage reduction in the degradation rate of long-lived proteins, indicating nearly 1:1 coupling between the two processes. The rate of degradation of short-lived proteins was unaffected by suppressing protein synthesis. Included in the pool of proteins that had increased half-lives when protein synthesis was inhibited were actin and tubulin. Both of these proteins, which had half-lives of several days, exhibited no degradation over a 3-d period when protein synthesis was completely suppressed. The half-lives of seven other long-lived proteins were quantified and found to increase by 84–225% when protein synthesis was completely blocked.Degradation–synthesis coupling protected cells from protein loss during periods of decreased synthesis. The rate of protein synthesis greatly decreased and coupling between degradation and synthesis was lost after removal of NGF. Uncoupling resulted in net loss of cellular protein and somatic atrophy. We propose that coupling the rate of protein degradation to that of protein synthesis is a fundamental mechanism by which neurotrophic factors maintain homeostatic control of neuronal size and perhaps growth.  相似文献   

9.
Diphtheria toxin A-fragment enters the cytosol of target cells, where it inhibits protein synthesis by catalyzing ADP-ribosylation of elongation factor 2 (EF-2). We have here analyzed toxin-induced protein synthesis inhibition in single cells by autoradiography and compared it with inhibition of protein synthesis in the whole cell culture. The data show that half-maximal protein synthesis inhibition in the whole cell population after a short incubation time is achieved by partially inhibiting protein synthesis in basically all the cells, while half-maximal protein synthesis inhibition after a long incubation time is due to a complete protein synthesis block in about half the cells in the population. We have also compared stable and unstable A-fragment mutants with respect to the kinetics of cell intoxication. While the toxicity of the stable mutants increased with time, the unstable mutants showed a similar toxicity at early and late time points. When studying the kinetics of cell intoxication by toxins with short cytosolic half-life, we could not detect any recovery of protein synthesis at late time points when all the mutant A-fragments should be degraded. This indicates that the ADP-ribosylation of EF-2 cannot be reversed by an endogenous activity in the cells. The data indicate that entry of toxin into a cell is not associated with an immediate block in protein synthesis, and that prolonged action of single A-fragment molecules in the cytosol is sufficient to obtain complete protein synthesis inhibition at low toxin concentrations.  相似文献   

10.
A DNA synthesis inhibitor protein was purified from the conditioned medium of cycloheximide treated mouse embryo fibroblasts. This protein has a molecular weight of 45,000 as determined by gel filtration and Polyacrylamide gel electrophoresis. The levels of the [35S] methionine la belled 45 kDa protein in the medium and matrix were monitored across two cell cycles in synchronized cultures. The 45 kDa protein was present in higher levels in the medium of non-S-phase cells depicting a peak between the two S-phases. The DNA synthesis inhibitor protein was immunologically related to a chicken DNA-binding protein which showed similar cell cycle specific variations at the intracellular level. The purified 45 kDa protein inhibited DNA synthesis in murine and human cells. In mouse embryo fibroblasts, the DNA synthesis was inhibited to an extent of 86% by 0.25 μg/ml of the inhibitor, while higher amounts of the inhibitor were required to arrest DNA synthesis in human skin fibroblasts: in these cells, 4 μg/ml of the inhibitor inhibited DNA synthesis to an extent of 50%. The high levels of the 45 kDa protein in the medium of non-S phase cells and its DNA synthesis inhibitory potential suggest that this protein may be involved in the regulation of DNA synthesis during the cell cycle.  相似文献   

11.
In the physiological state, protein synthesis is controlled by calcium homeostasis in the endoplasmic reticulum (ER). Recently, evidence has been presented that dividing cells can adapt to an irreversible inhibition of the ER calcium pump (SERCA), although the mechanisms underlying this adaption have not yet been elucidated. Exposing primary neuronal cells to thapsigargin (Tg, a specific irreversible inhibition of SERCA) resulted in a complete suppression of protein synthesis and disaggregation of polyribosomes indicating inhibition of the initiation step of protein synthesis. Protein synthesis and ribosomal aggregation recovered to 50-70% of control when cells were cultured in medium supplemented with serum for 24 h, but recovery was significantly suppressed in a serum-free medium. Culturing cells in serum-free medium for 24 h already caused an almost 50% suppression of SERCA activity and protein synthesis. SERCA activity did not recover after Tg treatment, and a second exposure of cells to Tg, 24 h after the first, had no effect on protein synthesis. Acute exposure of neurons to Tg induced a depletion of ER calcium stores as indicated by an increase in cytoplasmic calcium activity, but this response was not elicited by the same treatment 24 h later. However, treatments known to deplete ER calcium stores (exposure to the ryanodine receptor agonists caffeine or 2-hydroxycarbazole, or incubating cells in calcium-free medium supplemented with EGTA) caused a second suppression of protein synthesis when applied 24 h after Tg treatment. The results suggest that after Tg exposure, restoration of protein synthesis was induced by recovery of the regulatory link between ER calcium homeostasis and protein synthesis, and not by renewed synthesis of SERCA protein or development of a new regulatory system for the control of protein synthesis. The effect of serum withdrawal on SERCA activity and protein synthesis points to a role of growth factors in maintaining ER calcium homeostasis, and suggests that the ER acts as a mediator of cell damage after interruption of growth factor supplies.  相似文献   

12.
Protein synthesis in the tumour-bearing rat   总被引:1,自引:0,他引:1  
The rates of protein synthesis in liver, muscle and tumour of animals bearing either a rapidly growing (7288c) or slow-growing (5123c) hepatoma were determined. Liver protein synthesis was increased whilst, in contrast, protein synthesis in muscle decreased. Tumour protein synthesis comprised between 15% and 43% of total body protein synthesis. Since food intake of tumour-bearing animals was not significantly different from that of controls, these changes were not attributable to an anorexic component of the tumour-bearing state but may reflect a systemic tumour-mediated effect.  相似文献   

13.
Two filamentous phage gene products are required for the replication of phage DNA. One of these, the gene II protein, is a site-specific endonuclease required for all phage-specific DNA synthesis. The other, the gene V protein, is a single-stranded DNA-binding protein required only for single-strand synthesis. Purified gene V protein, when added to an in vitro protein synthesizing system programmed by f1 DNA, specifically inhibits the synthesis of gene II protein. Inhibition seems to be translational, since synthesis of gene II protein from an RNA template is also inhibited by gene V protein. Gene V protein control of gene II expression can account for the regulation of the level of expression of the filamentous phage genome.  相似文献   

14.
Extracts of microsomal fractions cause an inhibition of protein synthesis that is most pronounced in the presence of 0.1mm-GSSG and 0.01mm-GTP, and is abolished by thiol or 0.4mm-GTP (Scornik et al., 1967). Fractionation of microsomal extracts showed that this inhibition of protein synthesis was caused by an enzyme, nucleoside diphosphate phosphohydrolase. Direct inhibition of protein synthesis on detergent-treated polyribosomes by 0.1mm-GSSG was observed under conditions of GTP limitation induced by omission of a GTP-regenerating system, or addition of a nucleoside triphosphate diphosphohydrolase. Thus GSSG potentiated the inhibition of protein synthesis caused by an enzyme that promoted removal of GTP. The inhibition was abolished by adding 4mm-2-mercaptoethanol or 0.4mm-GTP. Nucleoside diphosphate phosphohydrolase was thought also to act by promoting removal of GTP, thus causing an inhibition of protein synthesis that was potentiated by GSSG.  相似文献   

15.
When myeloma cells are incubated at 25 °C the secretion of myeloma protein ceases within 20 minutes. The synthesis of heavy and light chains and the assembly into the completed 7 S immunoglobulin continue at over 40% of the synthetic rate at 37 °C, resulting in an increasing intracellular concentration of myeloma protein with time. When myeloma cells containing an increased myeloma protein pool were re-incubated at 37 °C, there was an initially decreased synthesis of H-chain2 relative to L-chain or total protein. Whereas L-chain synthesis returned to the pre-25 °C synthetic rate within 15 minutes, the synthesis of H-chain required over 60 minutes to return to the pre-incubation rate.Myeloma cells maintained in exponential growth contain a larger intracellular pool of H2L2 than cells in late stationary phase. When both populations of cells were incubated at 25 °C and the synthesis of H and L-chain protein measured, a reduced synthesis of H-chain was again observed. Exponentially growing cells showed an 80% reduction of H-chain synthesis after 100 minutes at 25 °C. Stationary cells, with the reduced intracellular level of H2L2, required 210 minutes to effect an equivalent reduction of H-chain synthesis.The opposite effect on myeloma protein synthesis was observed following depletion of the H2L2 pool. The intracellular H2L2 pool was reduced by allowing secretion in the absence of protein synthesis. When protein synthesis was allowed to continue following the depletion, a stimulation of myeloma protein synthesis relative to total protein synthesis was observed.These experiments suggest a close relation between the intracellular level of H2L2 and the production of H-chain. From the rapidity of the repression and de-repression of H-chain synthesis, a regulation at the translational level is suggested.  相似文献   

16.
17.
The histidine analogue L-histidinol, reported by Vaughan and Hansen (1973) to establish a potent, readily reversible inhibition of eukaryotic protein synthesis in vivo, was used to investigate the regulation of macromolecular synthesis in reovirus-infected L-929 cells. The addition of L-histidinol to normal L cells led to a total inhibition of protein synthesis. The inhibition appeared to be a consequence neither of isotope dilution resulting from elevated endogenous amino acids nor of an inability of treated cells to accumulate exogenous amino acids. Addition of L-histidine to histidinol-arrested cells resulted in a complete recovery of protein synthesis. Similarly, protein synthesis in reovirus-infected L cells examined 17 h postinfection (31 C) was totally inhibited by histidinol treatment and was readily reversed by the addition of histidine. Reovirus-infected cells treated with histidinol had an essentially unaltered capacity to synthesize reovirus single-stranded RNA relative to unperturbed cultures but a diminishing ability to maintain genome RNA synthesis. Addition of L-histidine to arrested cultures led to a complete recovery of genome RNA synthesis. The L-histidinol-mediated arrest of protein synthesis was both very effective and easily reversed, suggesting the general applicability of this novel inhibitor to investigations of regulation of macromolecular synthesis in both normal and virus-infected eukaryotic cells.  相似文献   

18.
C6 cells were grown in monolayer culture under conditions permitting continued exponential cell division after attainment of a density at which extensive intercellular contacts were formed. An increase in the relative synthesis of S100 protein coincided with the time of formation of extensive intercellular contacts and preceded the onset of the stationary phase of growth by three generations. These observations suggested that the induction of S100 protein synthesis was mediated by cell contact and not by an arrest of cellular growth. The mechanism of this induction was first studied in a homologous non-initiating cell-free protein-synthesizing system from C6 cells, using fixed amounts of free amino acids or fully charged rat liver aminoacyl-tRNA as a source of precursors for protein synthesis. Real synthesis of total soluble proteins decreased as the cells progressed from logarithmic to stationary growth while synthesis of S100 protein increased during this period. The capacity of poly(A)+ RNA from logarithmic and stationary cultures to direct the synthesis of S100 protein was estimated in a cell-free protein-synthesizing system derived from wheat embryos. Increased synthesis of S100 protein in stationary cultures was directly correlated with an increase in translatable S100 protein mRNA.  相似文献   

19.
1. The present study was carried out to investigate whether or not the rate of synthesis of total protein in various oviducal segments and ovalbumin, a major egg white protein, in the magnum fluctuated during the egg formation cycle in laying hens. 2. Synthesis of total protein and ovalbumin was measured in vivo by the incorporation of [15N]methionine after a primed continuous infusion of tracer for 3 hr. 3. Protein and ovalbumin contents in the magnum and the entire oviduct decreased sharply when an ovum moved down from the magnum to the isthmus, probably due to the secretion of egg white proteins. 4. In contrast, total protein and ovalbumin synthesis in the magnum was significantly higher when an ovum was in there than when it was in any other segments. Fluctuations of ovalbumin synthesis and total protein synthesis in the magnum were roughly parallel to those of total protein synthesis in the entire oviduct. 5. It was concluded, therefore, that the changes seen in total protein synthesis in the whole oviduct during the egg formation cycle were mainly attributable to those in magnum protein synthesis, of which a significant portion was accounted for by the synthesis of ovalbumin.  相似文献   

20.
1. Although high concentrations of insulin affect both synthesis and degradation of skeletal-muscle protein, it is not known to what extent these effects occur with physiological concentrations. The effects of a physiological concentration of insulin (100 mu units/ml) on muscle protein synthesis, measured with [3H]tyrosine, and on muscle protein degradation, measured by tyrosine release in the presence of cycloheximide, were studied in mouse soleus and extensor digitorum longus muscles in vitro. 2. Insulin significantly stimualated protein synthesis in both muscles, but an inhibition of degradation was seen only in the extensor digitorum longus. 3. Starvation for 24 h decreased the rate of protein synthesis and increased the rate of breakdown in the extensor digitorum longus. Sensitivity to insulin-stimulation of proteins synthesis in the soleus was increased by starvation. 4. ;a 20%-surface-area full-skin-thickness dorsal scald injury produced a fall in total protein content in soleus and extensor digitorum muscles, maximal on the third day after injury. Soleus muscles 2 days after injury showed an impairment of protein synthesis; degradation was unaffected and neither synthesis nor degradation in vitro was significantly affected in the extensor digitorum longus. 5. The advantages and limitations of studies of protein metabolism in vitro are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号