首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The allosteric effectors of aspartate transcarbamoylase from Escherichia coli, CTP and ATP, associate with both the regulatory and the catalytic moieties of the enzyme. Studies with isolated, active subunits yield one binding site per regulatory dimer and one per catalytic trimer. Investigations of effector association with hybrid enzymes, containing either the three regulatory dimers or the two catalytic trimers in inactivated forms, indicate that the data obtained with isolated subunits can be used to analyze the binding patterns of these ligands to the native hexamer. Thus, the nonlinear Scatchard plots, characteristic of the binding of CTP and ATP to the native enzyme, can be interpreted in terms of three effector molecules associating with the regulatory subunits, and two binding to the catalytic moiety of the enzyme. Results with native protein in the presence of saturating concentrations of active site ligands support these assignments. The differences between the binding isotherms of CTP and ATP to the enzyme are due to their different affinities to the two types of subunits. The apparent half-of-the-site saturation of the regulatory moiety of aspartate transcarbamoylase supports the concept that this protein has a tendency to exist in an asymmetric state.  相似文献   

2.
A largely inactive derivative of the catalytic subunit of Escherichia coli aspartate transcarbamoylase containing trinitrophenyl groups on lysine 83 and 84 was used to study communication between polypeptide chains in the holoenzyme and the isolated catalytic trimers. Addition of native regulatory dimers to the derivative yielded a holoenzyme-like complex of low activity which exhibited sigmoidal kinetics and was inhibited by CTP and activated by ATP. The binding of CTP and ATP to the regulatory subunits caused significant and opposite changes in the absorption spectrum resulting from changes in the environment of the sensitive chromophores at the active sites. In allosteric hybrid molecules containing one native and one trinitrophenylated catalytic subunit, along with native regulatory subunits, the binding of a bisubstrate analog, N-(phosphonacetyl)-L-aspartate, to the native catalytic subunit resulted in a perturbation of the spectrum of the chromophore on the unliganded modified chains. Thus the conformational changes associated with the allosteric transition responsible for both heterotropic and homotropic effects are propagated from the sites of ligand binding to the active sites of unliganded distant chains. In addition to the communication from regulatory chains to catalytic chains and the cross-talk from one catalytic subunit to the other, communication between individual catalytic chains in isolated trimers was also demonstrated. By constructing hybrid trimers containing one trinitrophenylated chain and two native chains, we could detect a change in the environment of the chromophore upon the binding of the bisubstrate analog to the native chains.  相似文献   

3.
Most investigations of the allosteric properties of the regulatory enzyme aspartate transcarbamoylase (ATCase) from Escherichia coli are based on the sigmoidal dependence of enzyme activity on substrate concentration and the effects of the inhibitor, CTP, and the activator, ATP, on the saturation curves. Interpretations of these effects in terms of molecular models are complicated by the inability to distinguish between changes in substrate binding and catalytic turnover accompanying the allosteric transition. In an effort to eliminate this ambiguity, the binding of the 3H-labeled bisubstrate analog N-(phosphonacetyl)-L-aspartate (PALA) to aspartate transcarbamoylase in the absence and presence of the allosteric effectors ATP and CTP has been measured directly by equilibrium dialysis at pH 7 in phosphate buffer. PALA binds with marked cooperativity to the holoenzyme with an average dissociation constant of 110 nM. ATP and CTP alter both the average affinity of ATCase for PALA and the degree of cooperativity in the binding process in a manner analogous to their effects on the kinetic properties of the enzyme; the average dissociation constant of PALA decreases to 65 nM in the presence of ATP and increases to 266 nM in the presence of CTP while the Hill coefficient, which is 1.95 in the absence of effectors, becomes 1.35 and 2.27 in the presence of ATP and CTP, respectively. The isolated catalytic subunit of ATCase, which lacks the cooperative kinetic properties of the holoenzyme, exhibits only a very slight degree of cooperativity in binding PALA. The dissociation constant of PALA from the catalytic subunit is 95 nM. Interpretation of these results in terms of a thermodynamic scheme linking PALA binding to the assembly of ATCase from catalytic and regulatory subunits demonstrates that saturation of the enzyme with PALA shifts the equilibrium between holoenzyme and subunits slightly toward dissociation. Ligation of the regulatory subunits by either of the allosteric effectors leads to a change in the effect of PALA on the association-dissociation equilibrium.  相似文献   

4.
The native Escherichia coli aspartate transcarbamoylase (ATCase, E.C. 2.1.3.2) provides a classic allosteric model for the feedback inhibition of a biosynthetic pathway by its end products. Both E. coli and Erwinia herbicola possess ATCase holoenzymes which are dodecameric (2(c3):3(r2)) with 311 amino acid residues per catalytic monomer and 153 and 154 amino acid residues per regulatory (r) monomer, respectively. While the quaternary structures of the two enzymes are identical, the primary amino acid sequences have diverged by 14 % in the catalytic polypeptide and 20 % in the regulatory polypeptide. The amino acids proposed to be directly involved in the active site and nucleotide binding site are strictly conserved between the two enzymes; nonetheless, the two enzymes differ in their catalytic and regulatory characteristics. The E. coli enzyme has sigmoidal substrate binding with activation by ATP, and inhibition by CTP, while the E. herbicola enzyme has apparent first order kinetics at low substrate concentrations in the absence of allosteric ligands, no ATP activation and only slight CTP inhibition. In an apparently important and highly conserved characteristic, CTP and UTP impose strong synergistic inhibition on both enzymes. The co-operative binding of aspartate in the E. coli enzyme is correlated with a T-to-R conformational transition which appears to be greatly reduced in the E. herbicola enzyme, although the addition of inhibitory heterotropic ligands (CTP or CTP+UTP) re-establishes co-operative saturation kinetics. Hybrid holoenzymes assembled in vivo with catalytic subunits from E. herbicola and regulatory subunits from E. coli mimick the allosteric response of the native E. coli holoenzyme and exhibit ATP activation. The reverse hybrid, regulatory subunits from E. herbicola and catalytic subunits from E. coli, exhibited no response to ATP. The conserved structure and diverged functional characteristics of the E. herbicola enzyme provides an opportunity for a new evaluation of the common paradigm involving allosteric control of ATCase.  相似文献   

5.
The reaction of phenylglyoxal with aspartate transcarbamylase and its isolated catalytic subunit results in complete loss of enzymatic activity (Kantrowitz, E. R., and Lipscomb, W. N. (1976) J. Biol. Chem. 251, 2688-2695). If N-(phosphonacetyl)-L-aspartate is used to protect the active site, we find that phenylglyoxal causes destruction of the enzyme's susceptibility to activation by ATP and inhibition by CTP. Furthermore, CTP only minimally protects the regulatory site from reaction with this reagent. The modified enzyme still binds CTP although with reduced affinity. After reaction with phenylglyoxal, the native enzyme shows reduced cooperativity. The hybrid with modified regulatory subunits and native catalytic subunits exhibits slight heterotropic or homotropic properties, while the reverse hybrid, with modified catalytic subunits and native regulatory subunits, shows much reduced homotropic properties but practically normal heterotropic interactions. The decrease in the ability of CTP to inhibit the enzyme correlates with the loss of 2 arginine residues/regulatory chain (Mr = 17,000). Under these reaction conditions, 1 arginine residue is also modified on each catalytic chain (Mr = 33,000). Reaction rate studies of p-hydroxymercuribenzoate, with the liganded and unliganded modified enzyme suggest that the reaction with phenylglyoxal locks the enzyme into the liganded conformation. The conformational state of the regulatory subunit is implicated as having a critical role in the expression of the enzyme's heterotropic and homotropic properties.  相似文献   

6.
The complex formed when excess regulatory subunits (r2) of aspartate transcarbamylase is added to a dilute solution of the catalytic subunit (c3) has been further studied. By stabilizing the complex with saturating levels or r2, it was possible to perform ultracentrifugation in sucrose density gradients. The sedimentation coefficient of the complex (7.7 plus or minus 0.2 S) is intermediate between those of the catalytic subunit (5.8 S) and of the native enzyme (11.7 S). Consideration of the likely hydrodynamic properties of the complex suggests that this sedimentation coefficient may be consistent with the c3r6 structure previously proposed. The formation of c3r6 from c3 and r2 is readily reversible. At nonsaturating levels or r2, conversion to the native enzyme (c3r6) takes place. This conversion is inhibited by high concentrations of r2. The c3r6 complex shows Michaelis-Menten kinetics with a low Km for aspartate and considerable substrate inhibition. The pH activity profile at high aspartate concentrations is almost identical with that of the native enzyme. All of these observations suggest that c3r6 represents the relaxed (R) state of aspartate transcarbamylase. The insensitivity of c3r6 toward CTP or ATP can also be explained by considering c3r6 as a stabilized relaxed state. These properties of c3r6 have significant implications regarding the allosteric mechanism of the native enzyme.  相似文献   

7.
Native aspartate transcarbamoylase from Escherichia coli was modified with the bifunctional reagent tartaryl diazide in the presence of the substrate carbamoyl phosphate and the substrate analog succinate. The product had the same sedimentation coefficient as the native enzyme but showed a marked increase in affinity for the substrate aspartate with a hyperbolic saturation curve. The Michaelis constant for aspartate (7.4 mM) is similar to that estimated for the relaxed state of the enzyme. The high substrate affinity was not produced if modification was conducted in the absence of substrate analogs or with a monofunctional reagent. The modified enzyme was also desensitized towards the allosteric effectors ATP and CTP. It appears to represent a stabilized relaxed state whose conversion to the taut state is presumably prevented by cross-linking.  相似文献   

8.
The thermal denaturation of aspartate transcarbamoylas of Escherichia coli was investigated by differential scanning calorimetry. Isolated regulatory and catalytic subunits were heat denatured at 55 and 80 degrees C, respectively. In contrast, the intact enzyme was denatured in two steps. A small endotherm near 73 degrees C was assoicated with denaturation of the regulatory subunits and the major endotherm at 82 degrees C with denaturation of the catalytic subunits. Thus regulatory subunits are stabilized against heat denaturation by more than 17 degrees C when incorporated in the enzyme. Similar conclusions were obtained from measurements of the enthalpy of heat denaturation. Regulatory subunits yielded a much lower value of the enthalpy of denaturation, 1.91 cal/g, than that found for the catalytic subunit, 3.94 cal/g, or typical globular proteins (4 to 6 cal/g). When the regulatory subunits were incorporated into aspartate transcarbamoylase their enthalpy of denaturation was increased 125% (to 4.3 cal/g). The enthalpy of the catalytic subunits in the intact enzyme was increased 38% (enthalpy of denaturation of 5.43 cal/g). Stabilization of the isolated catalytic subunit as well as the intact enzyme was achieved by the addition of the bisubstrate analog N-(phosphonacetyl)-L-aspartate. Similarly the allosteric effectors, CTP and ATP, stabilized the isolated regulatory subunits or those subunits within the intact enzyme. However, the addition of the bisubstrate analog caused a decrease in the enthalpy of denaturation of the regulatory subunits within the enzyme. These results are consistent with other studies of the ligand-promoted conformational changes in the native enzyme.  相似文献   

9.
Aspartate transcarbamoylase undergoes a domain closure in the catalytic chains upon binding of the substrates that initiates the allosteric transition. Interdomain bridging interactions between Glu(50) and both Arg(167) and Arg(234) have been shown to be critical for stabilization of the R state. A hybrid version of the enzyme has been generated in vitro containing one wild-type catalytic subunit, one catalytic subunit in which Glu(50) in each catalytic chain has been replaced by Ala (E50A), and wild-type regulatory subunits. Thus, the hybrid enzyme has one catalytic subunit capable of domain closure and one catalytic subunit incapable of domain closure. The hybrid does not behave as a simple mixture of the constituent subunits; it exhibits lower catalytic activity and higher aspartate affinity than would be expected. As opposed to the wild-type enzyme, the hybrid is inhibited allosterically by CTP at saturating substrate concentrations. As opposed to the E50A holoenzyme, the hybrid is not allosterically activated by ATP at saturating substrate concentrations. Small angle x-ray scattering showed that three of the six interdomain bridging interactions in the hybrid is sufficient to cause the global structural change to the R state, establishing the critical nature of these interactions for the allosteric transition of aspartate transcarbamoylase.  相似文献   

10.
The substitution of alanine for lysine at position 56 of the regulatory polypeptide of aspartate transcarbamoylase affected both homotropic and heterotropic characteristics. In the absence of effectors, the ALAr56-substituted holoenzyme lost the homotropic cooperativity observed for aspartate in the wild-type holoenzyme. Under conditions of allosteric inhibition in the presence of 2mM CTP, the cooperative character of ATCase was restored, and the Hill coefficient increased from 1.0 to 1.7. In contrast to the native enzyme, the altered enzyme did not respond to ATP; however, ATP could still bind to the enzyme as demonstrated by its direct competition with CTP. Furthermore, the recently observed CTP-UTP synergism of the wild-type enzyme was not detectable. The site-directed mutant enzyme could not be activated by low levels of the bisubstrate analogue, N-(phosphonacetyl)-L-aspartate, and the rate of association of pHMB with the cysteine residues located at the interface of the catalytic and regulatory chains was slightly altered. These characteristics suggested that the mutant holoenzyme assumed a relaxed (or abnormal T state) conformation. Thus, this single substitution differentially affected the heterotropic responses to the various allosteric effectors of ATCase and eliminated the homotropic characteristics in response to aspartate in the absence of CTP.  相似文献   

11.
A modified form of aspartate transcarbamylase is synthesized by Escherichia coli in the presence of 2-thiouracil which does not exhibit homotropic cooperative interactions between active sites yet retains heterotropic cooperative interactions due to nucleotide binding. The conformational changes induced in the modified enzyme by the binding of different ligands (substrates, substrate analogs, a transition state analog, and nucleotide effectors) were studied using ultraviolet absorbance and circular dichroism difference spectroscopy. Comparison of the results for the modified enzyme and its isolated subunits to those for the native enzyme and its isolated subunits showed that the conformational changes detected by these methods are qualitatively similar in the two enzymes. Comparison of the absorbance difference spectra due to the binding of a transition substrate analog to the intact native or modified enzymes to the corresponding results for the isolated subunits suggested that ligand binding causes an increased exposure to solvent of certain tyrosyl and phenylalanyl residues in the intact enzymes but not in the isolated subunits. This result is consistent with a diminution of subunit contacts due to substrate binding in the course of homotropic interactions in the native enzyme. Such conformational changes, though perhaps necessary for homotropic cooperativity, are not sufficient to cause homotropic cooperativity since the modified enzyme gave identical perturbations. Interactions of the transition state analog, N-(phosphonacetyl)-L-aspartate, with the modified enzyme were studied. Enzyme kinetic data obtained at low aspartate concentrations showed that this transition state analog does not stimulate activity, but rather exhibits the inhibition predicted for the total absence of homotropic cooperative interactions in the modified enzyme. Spectrophotometric titrations of the number of catalytic sites with the transition state analog showed that the modified enzyme and its isolated subunits possess, respectively, four and two high affinity sites for the inhibitor instead of six and three observed in the case of the normal enzyme and its isolated catalytic subunits. These results are correlated with the lower specific enzymatic activities of the modified enzyme and its catalytic subunits compared to the normal corresponding enzymatic species.  相似文献   

12.
The genes encoding the catalytic (pyrB) and regulatory (pyrI) polypeptides of aspartate transcarbamoylase (ATCase, EC 2.1.3.2) from several members of the family Enterobacteriaceae appear to be organized as bicistronic operons. The pyrBI gene regions from several enteric sources were cloned into selected plasmid vectors and expressed in Escherichia coli. Subsequently, the catalytic cistrons were subcloned and expressed independently from the regulatory cistrons from several of these sources. The regulatory cistron of E. coli was cloned separately and expressed from lac promoter-operator vectors. By utilizing plasmids from different incompatibility groups, it was possible to express catalytic and regulatory cistrons from different bacterial sources in the same cell. In all cases examined, the regulatory and catalytic polypeptides spontaneously assembled to form stable functional hybrid holoenzymes. This hybrid enzyme formation indicates that the r:c domains of interaction, as well as the dodecameric architecture, are conserved within the Enterobacteriaceae. The catalytic subunits of the hybrid ATCases originated from native enzymes possessing varied responses to allosteric effectors (CTP inhibition, CTP activation, or very slight responses; and ATP activation or no ATP response). However, each of the hybrid ATCases formed with regulatory subunits from E. coli demonstrated ATP activation and CTP inhibition, which suggests that the allosteric control characteristics are determined by the regulatory subunits.  相似文献   

13.
Stabilization of the T and R allosteric states of Escherichia coli aspartate transcarbamoylase is governed by specific intra- and interchain interactions. The six interchain interactions between Glu-239 in one catalytic chain of one catalytic trimer with both Lys-164 and Tyr-165 of a different catalytic chain in the other catalytic trimer have been shown to be involved in the stabilization of the T state. In this study a series of hybrid versions of aspartate transcarbamoylase was studied to determine the minimum number of these Glu-239 interactions necessary to maintain homotropic cooperativity and the T allosteric state. Hybrids with zero, one, and two Glu-239 stabilizing interactions do not exhibit cooperativity, whereas the hybrids with three or more Glu-239 stabilizing interactions exhibit cooperativity. The hybrid enzymes with one or more of the Glu-239 stabilizing interactions also exhibit heterotropic interactions. Two hybrids with three Glu-239 stabilizing interactions, in different geometric relationships, had identical properties. From this and previous studies, it is concluded that the 239 stabilizing interactions play a critical role in the manifestation of homotropic cooperativity in aspartate transcarbamoylase by the stabilization of the T state of the enzyme. As substrate binding energy is utilized, more and more of the T state stabilizing interactions are relaxed, and finally the enzyme shifts to the R state. In the case of the Glu-239 stabilizing interactions more than three of the interactions must be broken before the enzyme shifts to the R state. The interactions between the catalytic and regulatory chains and between the two catalytic trimers of aspartate transcarbamoylase provide a global set of interlocking interactions that stabilize the T and R states of the enzyme. The substrate-induced local conformational changes observed in the structure of the isolated catalytic subunit drive the quaternary T to R transition of aspartate transcarbamoylase and functionally induced homotropic cooperativity.  相似文献   

14.
Reaction of phenylglyoxal with aspartate transcarbamylase and its isolated catalytic subunit results in complete loss of enzymatic activity. This modification reaction is markedly influenced by pH and is partially reversible upon dialysis. Carbamyl phosphate or carbamyl phosphate with succinate partially protect the catalytic subunit and the native enzyme from inactivation by phenylglyoxal. In the native enzyme complete protection from inactivation is afforded by N-(phosphonacetyl)-L-aspartate. The decrease in enzymatic activity correlates with the modification of 6 arginine residues on each aspartate transcarbamylase molecule, i.e. 1 arginine per catalytic site. The data suggest that the essential arginine is involved in the binding of carbamyl phosphate to the enzyme. Reaction of the single thiol on the catalytic chain with 2-chloromercuri-4-nitrophenol does not prevent subsequent reaction with phenylglyoxal. If N-(phosphonacetyl)-L-aspartate is used to protect the active site we find that phenylglyoxal also causes the loss of activation of ATP and inhibition by CTP. The rate of loss of heterotropic effects is exactly the same for both nucleotides indicating that the two opposite regulatory effects originate at the same location on the enzyme, or are transmitted by the same mechanism between the subunits, or both.  相似文献   

15.
The aspartate transcarbamoylases (ATCase, EC 2.1.3.2) of Escherichia coli and Serratia marcescens have similar dodecameric enzyme structures (2(c3):3(r2] but differ in both regulatory and catalytic characteristics. The catalytic cistrons (pyrB) of the ATCases from E. coli and S. marcescens encode polypeptides of 311 and 306 amino acids, respectively; there is a 76% identity between the DNA sequences and an overall amino acid homology of 88% (38 differences). The regulatory cistrons (pyrI) of these ATCases encode polypeptides of 153 and 154 amino acids, respectively, and there is a 75% identity between the DNA sequences and an overall amino acid homology of 77% (36 differences). In both species, the two genes are arranged as a bicistronic operon, with pyrB promoter proximal. A comparison of the deduced amino acid sequences reveals that the active site and the allosteric binding sites, as well as most of the intrasubunit interactions and intersubunit associations, are conserved in the E. coli and the S. marcescens enzymes; however, there are specific differences which undoubtedly contribute to the catalytic and regulatory differences between the enzymes of the two species. These differences include residues that have been implicated in the T-R transition, c1:r1 interface interactions, and the CTP binding site. A hybrid ATCase assembled in vivo with catalytic subunits from E. coli and regulatory subunits from S. marcescens has a 6 mM requirement for aspartate at half-maximal saturation, similar to the 5.5 mM aspartate requirement of the native E. coli holoenzyme at half-maximal saturation. However, the heterotropic response of this hybrid enzyme is characteristic of the heterotropic response of the native S. marcescens holoenzyme: ATP activation and CTP activation. Activation by both allosteric effectors indicates that the heterotropic response of this hybrid holoenzyme (Cec:Rsm) is determined by the associated S. marcescens regulatory subunits.  相似文献   

16.
19F nuclear magnetic resonance (NMR) spectroscopy was used to study "communication" between the catalytic and regulatory subunits in aspartate transcarbamoylase of Escherichia coli. Hybrid enzymes composed of fluorotyrosine-labeled regulatory subunits and native catalytic subunits or of native regulatory subunits and fluorotyrosine-labeled catalytic subunits were constructed and shown to have the allosteric kinetic properties of native enzyme. These hybrids exhibited the ligand-promoted "global" conformational changes characteristic of native aspartate transcarbamoylase and alterations in the NMR spectrum when ligands bind to the active site. The NMR difference spectrum caused by the binding of the bisubstrate analog N-(phosphonacetyl)-L-aspartate to the hybrid containing 19F-labeled regulatory chains consisted of two troughs and a peak, suggesting that two tyrosines in the regulatory polypeptide chains were affected by the binding of ligand to the catalytic subunits. The increase in magnitude of the peak appeared to depend directly on the fractional saturation of the active sites. A peak with two distinct shoulders was observed in the 19F NMR spectrum of the hybrid containing fluorotyrosine in the catalytic chains when it was saturated with the ligand, whereas the spectrum for the unliganded enzyme consisted of a single peak. The NMR difference spectrum showed that the bisubstrate ligand perturbed at least two resonances, and these changes appeared to be tightly linked to the binding of the ligand.  相似文献   

17.
Here we report the first use of disulfide bond formation to stabilize the R allosteric structure of Escherichia coli aspartate transcarbamoylase. In the R allosteric state, residues in the 240s loop from two catalytic chains of different subunits are close together, whereas in the T allosteric state they are far apart. By substitution of Ala-241 in the 240s loop of the catalytic chain with cysteine, a disulfide bond was formed between two catalytic chains of different subunits. The cross-linked enzyme did not exhibit cooperativity for aspartate. The maximal velocity was increased, and the concentration of aspartate required to obtain one-half the maximal velocity, [Asp](0.5), was reduced substantially. Furthermore, the allosteric effectors ATP and CTP did not alter the activity of the cross-linked enzyme. When the disulfide bonds were reduced by the addition of 1,4-dithio-dl-threitol the resulting enzyme had kinetic parameters very similar to those observed for the wild-type enzyme and regained the ability to be activated by ATP and inhibited by CTP. Small-angle x-ray scattering was used to verify that the cross-linked enzyme was structurally locked in the R state and that this enzyme after reduction with 1,4-dithio-dl-threitol could undergo an allosteric transition similar to that of the wild-type enzyme. The complete abolition of homotropic and heterotropic regulation from stabilizing the 240s loop in its closed position in the R state, which forms the catalytically competent active site, demonstrates the significance that the quaternary structural change and closure of the 240s loop has in the functional mechanism of aspartate transcarbamoylase.  相似文献   

18.
A hybrid version of Escherichia coli aspartate transcarbamoylase was investigated in which one catalytic subunit has the wild-type sequence, and the other catalytic subunit has Glu-239 replaced by Gln. Since Glu-239 is involved in intersubunit interactions, this hybrid could be used to evaluate the extent to which T state stabilization is required for homotropic cooperativity and for heterotropic effects. Reconstitution of the hybrid holoenzyme (two different catalytic subunits with three wild-type regulatory subunits) was followed by separation of the mixture by anion-exchange chromatography. To make possible the resolution of the three holoenzyme species formed by the reconstitution, the charge of one of the catalytic subunits was altered by the addition of six aspartic acid residues to the C terminus of each of the catalytic chains (AT-C catalytic subunit). Control experiments indicated that the AT-C catalytic subunit as well as the holoenzyme formed with AT-C and wild-type regulatory subunits had essentially the same homotropic and heterotropic properties as the native catalytic subunit and holoenzyme, indicating that the addition of the aspartate tail did not influence the function of either enzyme. The control reconstituted holoenzyme, in which both catalytic subunits have Glu-239 replaced by Gln, exhibited no cooperativity, an enhanced affinity for aspartate, and essentially no heterotropic response identical to the enzyme isolated without reconstitution. The hybrid containing one normal and one mutant catalytic subunit exhibited homotropic cooperativity with a Hill coefficient of 1.4 and responded to the nucleotide effectors at about 50% of the level of the wild-type enzyme. Small angle x-ray scattering experiments with the hybrid enzyme indicated that in the absence of ligands it was structurally similar, but not identical, to the T state of the wild-type enzyme. In contrast to the wild-type enzyme, addition of carbamoyl phosphate induced a significant alteration in the scattering pattern, whereas the bisubstrate analog N-phosphonoacetyl-L-aspartate induced a significant change in the scattering pattern indicating the transition to the R-structural state. These data indicate that in the hybrid enzyme only three of the usual six interchain interactions involving Glu-239 are sufficient to stabilize the enzyme in a low affinity, low activity state and allow an allosteric transition to occur.  相似文献   

19.
Aspartate transcarbamoylase labeled with 3-fluorotyrosine was purified from an Escherichia coli strain which was auxotrophic for tyrosine and overproduced aspartate transcarbamoylase upon uracil starvation. The labeled enzyme in which about 85% of the tyrosines were replaced by fluorotyrosine exhibited high enzyme activity that varied in a sigmoidal manner with respect to the aspartate concentration. Also, the labeled enzyme was inhibited by CTP, activated by ATP, and exhibited a 2.6% decrease in sedimentation coefficient upon the addition of the active-site ligand, N-(phosphonacetyl)-L-aspartate. Thus, despite extensive replacement of tyrosines by fluorotyrosine, the modified enzyme was similar to native aspartate transcarbamoylase. The 19F nuclear magnetic resonance spectrum of isolated regulatory subunits labeled with fluorotyrosine consisted of a single peak. Addition of the activator, ATP, or the inhibitor, CTP, caused a loss of intensity at about 61.3 ppm upfield from a trifluoroacetic acid reference and an increase at about 61.5 ppm, but CTP also caused an increase at about 61.0 ppm. Five overlapping resonances were observed in the 19F NMR spectrum of unliganded catalytic subunits containing fluorotyrosine. Although the binding of the bisubstrate analog, N-(phosphonacetyl)-L-aspartate, or the combination of carbamoylphosphate and succinate caused similar disappearances of resonances, the addition of N-(phosphonacetyl)-L-aspartate caused the appearance of resonances not observed with carbamoylphosphate plus succinate. Carbamoylphosphate alone perturbed three or four resonances and the subsequent addition of succinate affected at least two.  相似文献   

20.
The modified aspartate transcarbamylase (ATCase) encoded by the transducing phage described by Cunin et al. has been purified to homogeneity. In this altered form of enzyme (pAR5-ATCase) the last eight amino acids of the C-terminal end of the regulatory chains are replaced by a sequence of six amino acids coded for by the lambda DNA. This modification has very informative consequences on the allosteric properties of ATCase. pAR5-ATCase lacks the homotropic co-operative interactions between the catalytic sites for aspartate binding and is "frozen" in the R state. In addition, this altered form of enzyme is insensitive to the physiological feedback inhibitor CTP, in spite of the fact that this nucleotide binds normally to the regulatory sites. Conversely, pAR5-ATCase is fully sensitive to the activator ATP. However, this activation is limited to the extent of the previously described "primary effect" as expected from an ATCase form "frozen" in the R state. These results emphasize the importance of the three-dimensional structure of the C-terminal region of the regulatory chains for both homotropic and heterotropic interactions. In addition, they indicate that the primary effects of CTP and ATP involve different features of the regulatory chain-catalytic chain interaction area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号